next up previous


Postscript version of this file

STAT 870 Lecture 3

Goals of Today's Lecture:

Independence, conditional distributions

Events A and B independent if

\begin{displaymath}P(AB) = P(A)P(B) \, .
\end{displaymath}

Events Ai, $i=1,\ldots,p$ are independent if

\begin{displaymath}P(A_{i_1} \cdots A_{i_r}) = \prod_{j=1}^r P(A_{i_j})
\end{displaymath}

for any set of distinct indices $i_1,\ldots,i_r$ between 1 and p.

Example: p=3

\begin{eqnarray*}P(A_1A_2A_3) & = & P(A_1)P(A_2)P(A_3)
\\
P(A_1A_2) & = & P(A_1...
...\
P(A_1A_3) & = & P(A_1)P(A_3)
\\
P(A_2A_3) & = & P(A_2)P(A_3)
\end{eqnarray*}


Need all equations to be true for independence!

Example: Toss a coin twice. If A1 is the event that the first toss is a Head, A2 is the event that the second toss is a Head and A3 is the event that the first toss and the second toss are different. then P(Ai) =1/2 for each i and for $i \neq j$

\begin{displaymath}P(A_i \cap A_j) = \frac{1}{4}
\end{displaymath}

but

\begin{displaymath}P(A_1 \cap A_2 \cap A_3) = 0 \neq P(A_1)P(A_2)P(A_3) \, .
\end{displaymath}

Rvs $X_1,\ldots,X_p$ are independent if

\begin{displaymath}P(X_1 \in A_1, \cdots , X_p \in A_p ) = \prod P(X_i \in A_i)
\end{displaymath}

for any choice of $A_1,\ldots,A_p$.

$\sigma$-fields ${\cal F}_1,\ldots,{\cal F}_p$ are independent if

\begin{displaymath}P( A_1 \cap \cdots \cap A_p ) = \prod P( A_i)
\end{displaymath}

for any choice of events $A_1\in {\cal F}_1,\ldots,A_p\in {\cal F}_p$.

Theorem:

1: If X and Y are independent then

FX,Y(x,y) = FX(x)FY(y)

for all x,y

2: If X and Y are independent and have joint density fX,Y(x,y) then X and Y have densities, say fX and fY, and for almost every pair (x,y)

\begin{displaymath}f_{X,Y}(x,y) = f_X(x) f_Y(y) \, .
\end{displaymath}

3: If X, Y independent with marginal densities fX and fY then (X,Y) has joint density fX,Y(x,y) given by

\begin{displaymath}f_{X,Y}(x,y) = f_X(x) f_Y(y) \, .
\end{displaymath}

4: If

FX,Y(x,y) = FX(x)FY(y)

for all x,y then X and Y are independent.

5: If (X,Y) has density f(x,y) and there are functions g(x) and h(y) such that

f(x,y) = g(x) h(y)

for almost all (x,y) then X and Y are independent and they each have a density given by

\begin{displaymath}f_X(x) = g(x)/\int_{-\infty}^\infty g(u) du
\end{displaymath}

and

\begin{displaymath}f_Y(y) = h(y)/\int_{-\infty}^\infty h(u) du \, .
\end{displaymath}

Proof:

1: By definition $X \le x$, $Y \le y$ independent so

\begin{displaymath}P(X \le x, Y \le y) = P(X \le x)P(Y \le y)
\end{displaymath}

2: Suppose $X\in{\Bbb R}^p$, $Y\in{\Bbb R}^q$, $B\subset{\Bbb R}^q$ Borel. Then $\{Y \in A\} =\{(X,Y) \in {\Bbb R}^p \times B\}$. Hence
\begin{align*}P(Y \in B) & = P((X,Y) \in {\Bbb R}^p \times B)
\\
& = \int_{{\Bbb R}^p \times B} f_{X,Y}(x,y) dx \, dy
\\
& \equiv \int_B g(y) dy
\end{align*}
so Y has density g defined by

\begin{displaymath}g(y) = \int_{{\Bbb R}^p} f_{X,Y}(x,y) dx
\end{displaymath}

Similarly for X. So for Borel $A\subset{\Bbb R}^p$, $B\subset{\Bbb R}^q$
\begin{align*}P(X \in A, Y\in B) &= \int_A\int_B f_{X,Y}(x,y) dydx
\\
P(X\in A)...
...t_A f_X(x)dx \int_B f_Y(y) dy
\\
&= \int_A\int_B f_X(x)f_Y(y) dydx
\end{align*}
Using Fubini's theorem here.

Since $P(X \in A, Y\in B) =P(X\in A)P(Y\in B)$ we see that for any sets A and B

\begin{displaymath}\int_A\int_B [ f_{X,Y}(x,y) - f_X(x)f_Y(y) ]dydx = 0
\end{displaymath}

Hence fX,Y(x,y) = fX(x) fY(y) ae.

3: For any A and B Borel
\begin{align*}P(X \in A, Y \in B) & = P(X\in A)P(Y \in B)
\\
&= \int_Af_X(x)dx \int_B f_Y(y) dy
\\
&= \int_A\int_B f_X(x)f_Y(y) ]dydx
\end{align*}
Define g(x,y) = fX(x)fY(y). For $C=A \times B$

\begin{displaymath}P( (X,Y) \in C) = \int_C g(x,y)dy dx
\end{displaymath}

Now do general Borel C via a monotone class argument.

Monotone Class: collection ${\cal C}$ of subsets of a given set, closed under increasing countable unions and decreasing countable intersections:

1.
If $A_1\subset A_2 \subset \cdots$ are in ${\cal C}$ then $\bigcup_1^\infty A_i \in {\cal C}$.

2.
If $A_1\supset A_2 \supset \cdots$ are in ${\cal C}$ then $\bigcap_1^\infty A_i \in {\cal C}$.

Lemma: The smallest monotone class containing a field $\cal F_o$ is a $\sigma$-field.

Field: like $\sigma$-field but only finite unions and intersections.

Proof of Lemma: Let ${\cal C}$ be smallest monotone class containing $\cal F_o$ (intersection of all monotone classes containing $\cal F_o$). Put ${\cal M} = \{ A\in {\cal C}: A^c \in {\cal C}\}$.

Now apply lemma to 3.

Rectangle: set $C=A \times B$ where A, B Borel.

 \begin{displaymath}
P((X,Y) \in C) = \int _C f_X(x) f_Y(y) dx dy
\end{displaymath} (1)

for each rectangle C.

A finite union of rectangles may be written as a finite disjoint union of rectangles so (1) holds for any such C.

The complement of a rectangle may be rewritten as a finite disjoint union of rectangles.

The collection $\cal M$ of subsets of ${\Bbb R}^{p+q}$ for which (1) holds contains the field of all finite disjoin unions of rectangles.

$\cal M$ is a monotone class by the dominated convergence theorem.

Application of the dominated convergence theorem.

$g(x,y)=f_X(x) f_Y(y)\ge 0$ has integral equal to 1 by Tonelli's theorem. If $C_1 \subset C_2 \subset \cdots$put

\begin{displaymath}g_n(x,y) = g(x,y) 1(x \in C_n)
\end{displaymath}

Note that $\vert g_n(x,y)\vert \le \vert g(x,y)\vert$ and that gn converges for almost all x to

\begin{displaymath}g_\infty(x,y) = g(x,y) 1(x \in \cup C_n)
\end{displaymath}

Thus
\begin{align*}\lim_{n\to \infty} \int g_n(x,y) dx dy & =
\lim_{n\to \infty} \int...
...int g_\infty(x,y) dx dy
\\
& = \int_{\cup C_n} f_X(x) f_Y(y) dx dy
\end{align*}
At the same time

\begin{displaymath}\lim P((X,y) \in C_n) = P((X,Y) \in \cup C_n)
\end{displaymath}

so that

\begin{displaymath}P((X,Y) \in \cup C_n) = \int_{\cup C_n} f_X(x) f_Y(y) dx dy
\end{displaymath}

This and a corresponding argument for intersections show that $\cal M$ is a monotone class containing the field of all finite unions of Borel rectangles.

So $\cal M$ contains smallest $\sigma$ field containing this field.

Every open rectangle is in this field so in $\cal M$.

Every open set is a countable union of open rectangles and so in $\cal M$.

Thus $\cal M$ is a $\sigma$ field containing the open sets and so must contain the Borel $\sigma$ field.

4: Monotone class argument: Homework 1.

5:
\begin{align*}P(X \in A, Y \in B) & = \int_A \int_B g(x) h(y) dy dx
\\
& = \int_A g(x) dx \int_B h(y) dy
\end{align*}
Take $B={\Bbb R}^1$ to see that

\begin{displaymath}P(X \in A ) = c_1 \int_A g(x) dx
\end{displaymath}

where $c_1 = \int h(y) dy$. Def'n of density shows c1 g is density of X. Then $\int\int f_{X,Y}(xy)dxdy = 1$ so $\int g(x) dx \int h(y) dy = 1$ and $ c_1 = 1/\int g(x) dx$. Similar argument for Y.

Theorem 1   If $X_1,\ldots,X_p$ are independent and Yi =gi(Xi) then $Y_1,\ldots,Y_p$ are independent. Moreover, $(X_1,\ldots,X_q)$ and $(X_{q+1},\ldots,X_{p})$ are independent.

Conditional probability

Def'n: P(A|B) = P(AB)/P(B) if $P(B) \neq 0$.

Def'n: For discrete rvs X, Y conditional pmf of Y given X is
\begin{align*}f_{Y\vert X}(y\vert x) &= P(Y=y\vert X=x)
\\
&= f_{X,Y}(x,y)/f_X(x)
\\
&= f_{X,Y}(x,y)/\sum_t f_{X,Y}(x,t)
\end{align*}

Problem for absolutely continuous X: P(X=x) = 0 for all x. Solution is to take a limit

\begin{displaymath}P(A\vert X=x) = \lim_{\delta x \to 0} P(A\vert x \le X \le x+\delta x)
\end{displaymath}

If X,Y have joint density fX,Y then with $A=\{ Y \le y\}$ we have
\begin{multline*}P(A\vert x \le X \le x+\delta x)
\\ = \frac{P(A \cap \{ x \le ...
...\delta x} f_{X,Y}(u,v)dudv
}{
\int_x^{x+\delta x} f_X(u) du
}
\end{multline*}
Divide top and bottom by $\delta x$; let $\delta x\to 0$. Denominator converges to fX(x); numerator converges to

\begin{displaymath}\int_{-\infty}^y f_{X,Y}(x,v) dv
\end{displaymath}

So we define the conditional CDF of Y given X=x to be

\begin{displaymath}P(Y \le y \vert X=x) = \frac{
\int_{-\infty}^y f_{X,Y}(x,v) dv
}{
f_X(x)
}
\end{displaymath}

Differentiate wrt y to get definition of conditional density of Y given X=x:

fY|X(y|x) = fX,Y(x,y)/fX(x)

or in words ``conditional = joint/marginal''.


next up previous



Richard Lockhart
2000-09-26