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1. INTRODUCTIONIn recent years the analysis of association amongst ordinal categorical data has receivedconsiderable attention. A list of pertinent references includes Agresti (1984), Feltz and Dyk-stra (1985), Goodman (1985, 1986, 1991), Gilula and Haberman (1986, 1988), Gilula and Ritov(1990) and Ritov and Gilula (1991, 1993). As argued by Gilula and Ritov (1990), ordinal con-straints on categorical variables motivates the study of stochastic order between the distributionsof such variables.Let fFi : 1 � i � mg be a set of m distribution functions of categorical random variablesall having the same support f1; : : : ; kg. Such a set of distributions is said to be stochasticallyordered if Fi(t) � Fi+1(t) for all t and for all i such that 1 � i � m � 1. If we let pij denotethe probability of the response equaling j when the i-th distribution is true then this stochasticordering imposes the following convex constraints on these probabilities; namelypi1 � pi+1;1pi1 + pi2 � pi+1;1 + pi+1;2...pi1 + � � �+ pik � pi+1;1 + � � �+ pi+1;k (1)3



for i = 1; : : : ; m� 1. Of course the pij also satisfy the constraints pij � 0 and pi1+ : : :+ pik = 1for i = 1; : : : ; m. In this paper we are concerned with the situation where the pij are unknownand we have an independent sample from each of the Fi. We want to assess whether or not (1)holds and estimate the pij subject to (1).Classical statistical inference for stochastic order between the distributions Fi is usually car-ried out in one of two ways. One approach �ts a parametric model to the Fi where the orderamong the parameters determines the order between the distributions. Goodman's (1981) pop-ular RC model is one of many examples of such models. Ritov and Gilula (1991) provide asymp-totically e�cient estimation techniques together with the corresponding testing procedures forthe RC model when the parameters of the model are subject to relevant order constraints. Theother approach is the model-free method. Here, e�cient estimates (usually maximum likelihood)are obtained for the distributions Fi subject to a pre-speci�ed stochastic order. Then appro-priate goodness of �t tests are applied to test whether the data support such a pre-speci�edstochastic order. Relevant references for the model-free approach include Hanson et al. (1966),Grove (1980), Feltz and Dykstra (1985) and Kimeldorf et al. (1992) to name a few. Also seeRobertson, Wright and Dykstra (1988) for an extensive discussion of order restricted inferencemethods.In this paper we develop Bayesian methodology for assessing whether or not a particularstochastic order exists among the Fi. Further we compute Bayesian estimates of these distribu-tions when a stochastic order has been determined to hold. The estimation context can arise in4



two distinct ways. First, the results of the testing might indicate that such a restriction is appro-priate and second, we might be in a context where we are willing to assume (1) without testing.While this assumption may be somewhat unrealistic in general, there are examples, as pointedout in Feltz and Dykstra (1985), where this makes sense. For both situations the likelihood, asa function of the pij , takes the form of a product ofm independent multinomials with a possiblyrestricted domain, depending on whether or not we assume (1) holds. We feel that the Bayesianapproach has some advantages over the classical alternatives. For example, computing MLE'sin this context can be a very di�cult problem, see Feltz and Dykstra (1985). The Bayesianapproach that we adopt avoids di�cult optimization steps. Also Bayesian methodology doesnot require asymptotics for its justi�cation. In the case of at priors the Bayesian methods wedevelop are based on the form of the entire likelihood rather than just isolated characteristicssuch as a mode and curvature at the mode.In Section 2 we consider the testing problem. Each p(i) = (pi1; : : : ; pik)0 is free to vary onthe (k � 1)-dimensional simplex, and we assume that the prior for each p(i) follows a Dirichletdistribution and that these are independent. This speci�es the prior distribution for the full pa-rameter p = (p0(1); : : : ;p0(m)). The goal then is to assess whether or not (1) holds. Our approachgeneralizes that taken in Evans, Gilula and Guttman (1993) for the analysis of Goodman's RCmodel and can be seen as a natural generalization of the use of the posterior probability andthe Bayes factor for assessing the evidence in favour of a hypothesis. This methodology canbe applied to a much wider class of Bayesian hypothesis testing problems. In particular, the5



methodology handles the troublesome case where the null hypothesis is a lower dimensionalsubset of the parameter space. This results in prior and posterior probabilities equal to 0. Acommon recommendation in such a context is to modify the prior so that the null hypothesishas positive prior probability. Our approach avoids the need to do this.In Section 3 we consider the estimation of p. We consider two contexts for this. In the �rstsituation we do not assume that (1) holds and present several estimators. In the second contextwe suppose that we are willing to assume the existence of the stochastic ordering given by (1)and then estimate p. For this situation we take the prior to be as above but conditioned so that(1) holds.In section 4 we present some examples. In section 5 we make some concluding remarks.2. TESTING FOR STOCHASTIC ORDERSuppose that we have m independent samples, one from each of the populations, with sam-ple sizes N1; : : : ; Nm respectively. Let the number of reponses falling in the j�th cell for thei�th population be denoted by nij . Thus the data is n = (n11; : : : ; nmk)0. We then place aDirichlet(ai1; : : : ; aik) prior on the cell probabilities for each of the i = 1; : : : ; m populations andassume independence. The posterior distribution of p is then given byp(i) � Dirichlet(ni1 + ai1; : : : ; nik + aik) (2)and these are independent for i = 1; : : : ; m. Therefore it is easy to directly sample from the6



posterior and obtain Monte Carlo estimates of various quantities. For example, if we generatep1; : : : ;pN from the joint posterior we then estimate the posterior mean of pij by 1N (pij1 +: : :+ pijN ). See, for example, Devroye (1986) for a discussion of algorithms for generating fromDirichlet distributions.Our �rst concern is to decide whether or not the data support the hypothesis that theconstraints on the pij given by (1) hold. We denote the subset of p satisfying (1) by H0hereafter. One approach to this problem is to compute the posterior probability of H0 andreject if this probability is very low. Alternatively the Bayes factor, given by the ratio of theposterior odds to the prior odds in favour of H0, is computed with large values supporting H0.There is a signi�cant and well-known problem, however, with these approaches in general.This is easily seen by considering a context, as in Evans, Gilula and Guttman (1993), wherethe posterior probability of H0 is always zero irrespective of what data is obtained. In thiscase H0 will always be rejected when the posterior probability is used and the Bayes factoris not de�ned. This situation typically arises when H0 is a lower dimensional subset of theparameter space and so the prior probability of this set is 0 even though the prior density mayindicate a relatively high degree of belief for values in this set. One way of dealing with thisdi�culty is to modify the prior so that it assigns a positive probability to H0, as this ensures anonzero posterior probability for H0. While in many cases this produces an acceptable result,it is somewhat ad hoc as we may be required to change a perfectly reasonable prior for the fullparameter. Accordingly it would be useful to have available a method for assessing the evidence7



in favour of H0 that can handle hypotheses which are assigned zero prior probability withoutrequiring modi�cation of the prior.We follow an approach taken in Evans, Gilula and Guttman (1993). As we will see this isa natural generalization of the use of the posterior probability and the Bayes factor describedabove but handles the situation where the hypothesis has 0 prior probability without requiringmodi�cation of the prior. This approach is based on assessing the degree to which the posteriordistribution of p has increased its concentration about H0 when compared to the concentrationof the prior distribution of p about H0. Clearly this concentration is only partially reected,and sometimes not at all, in the prior and posterior probabilities of H0. Accordingly we requirethe speci�cation of a measure �2 = �2(p; H0) of the distance of p from H0. We then examinethe prior and posterior distributions of �2. If the posterior distribution of �2 is much moreconcentrated near 0 than the prior distribution of �2 then we have evidence indicating that thehypothesis holds and not otherwise.There are many possible choices for �2. A natural choice is based on least-squares; namely�2 = mXi=1 kXj=1(pij � xij)2 (3)where the pij are distributed according to (2), and for �xed pij , the xij = xij(p) minimize(3) subject to (1). The minimization of (3) for x satisfying (1), is a quadratic programmingproblem and can be solved exactly using, for example, the IMSL subroutine QPROG. To derive8



the posterior distribution of �2 we use simulation; i.e. we generate p from (2), solve (3) forx and repeat this process many times. The prior distribution of �2 is computed in the sameway. As another reasonable choice for �2 we could use Kullback-Liebler distance; i.e. for agiven generated p calculate the x minimizing Pmi=1Pkj=1 pij log(pij=xij) subject to (1). Unlessotherwise mentioned, however, our discussion will concern the least-squares distance measure.We denote the posterior distribution function of �2 by G(� j n) and the prior distributionfunction by G(� j 0). With this model and H0, both the prior and posterior distributions of�2 are mixtures of discrete and continuous components as �2 takes the value 0 with positiveprior and posterior probabilities. Thus in assessing the evidence for H0 we are looking not onlyat these probabilities but also at how closely the continuous component of these distributionsconcentrates near 0. We assess the change in concentration from a priori to a posteriori bycomparing G(t j n) and G(t j 0) at values of t close to 0. The concentration of the priordistribution aboutH0 represents our prior belief in H0 holding approximately. The change in thisconcentration from a priori to a posteriori indicates how our belief in H0 holding approximatelyhas changed given the data. Therefore G(� j 0) represents an appropriate standard by which toassess the concentration of the posterior distribution of �2. Note that G(t j n) is the posteriorprobability of Ht = fp : �2(p; H0) � tg; i.e. the posterior probability that the true value of p iswithin t 12 of some parameter value satisfying (1). Therefore our analysis generalizes the approachwhere one simply computes the posterior probability of the hypothesis H0 when assessing theevidence in its favour. If G(t j n) is high for small t then the model and data are assigning a high9



degree of posterior belief in H0 holding approximately. If G(t j n) is high relative to G(t j 0) forsmall t then the data has lead to a substantial increase in the degree of belief, from a priori toa posteriori, for H0 holding approximately.We can also generalize the Bayes factor approach to such problems by computing the Bayesfactor of Ht as a function of t; namelyBF(t) = G(t j n)=(1�G(t j n))G(t j 0)=(1�G(t j 0)) : (4)The value BF(0) is the usual Bayes factor in favour of H0 although for problems where thenumerator and denominator of (4) are both 0 this is not de�ned. We can, however, look atvalues of BF(t) for t close to 0 in all cases. As such this gives a uni�ed treatment for testinghypotheses in a Bayesian context using Bayes factors and a �xed, given prior; i.e. hypothesesthat have prior probability equal to 0 do not require special treatment. The interpretation ofBayes factors is somewhat less clear than posterior probabilities, however, and for that reasonwe prefer to assess the evidence in favour of a hypothesis by comparing G(� j n) to G(� j 0).Plotting these functions seems like the most informative way of carrying out this comparison.3. ESTIMATING THE STOCHASTICALLY ORDERED DISTRIBUTIONSIf, based on the preceding analysis, we decide that H0 approximately holds we might thenwant to compute estimates of p subject to (1). When H0 has positive posterior probability, asit does here, it makes some sense then to use the conditional posterior expectation of p given10



H0 as the estimate. To do this via simulation we need to be able to generate from a productof independent Dirichlets speci�ed by (2), conditioned to H0. Similarly if we assume (1) holdsand take the prior to be a product of independent Dirichlets conditioned to H0 then we are leadagain to the same simulation problem. This problem is easily solved via the Gibbs samplingalgorithm presented below but �rst we note some unsatisfactory features of this approach ingeneral.We note that conditioning on H0 is equivalent to asserting the truth of H0 while in generalwe may only be willing to conclude that H0 holds approximately. Accordingly it would seemreasonable that the posterior probability mass not belonging to H0 also a�ect our estimate. Asanother di�culty suppose that H0 has prior probability 0 and thus has posterior probability 0as well. In such a case the conditional posterior of p given H0 is not de�ned. To do so requiresthe speci�cation of a function de�ned on the parameter space that has H0 as a preimage set andthis can be done in numerous ways when there is not a natural choice imposed by the problem.Several alternative estimators can be considered that avoid these problems. A natural esti-mate is to choose ĉ 2 H0 that minimizes E[jjp� cjj2] when p follows the posterior distributiongiven by (2). A simple calculation shows that ĉ minimizes jjE[p]� cjj2 and thus can be com-puted via quadratic programming. Recall that E[pij ] = (nij + aij)=Pmk=1(nik + aik). A problemwith this estimate, however, is that it will always lie on the boundary of H0 whenever E[p] isnot an element of H0. An alternative estimate that avoids all of these di�culties is given byp̂ = E[x(p)]. Notice that p̂ equals the conditional expectation of p given H0 when the posterior11



distribution is supported only on this set. Of course p̂ does not require the existence of theconditional distribution given H0 for it to be de�ned. Further when H0 is convex, as it is here,we have p̂ 2 H0. When H0 is not convex then some alternative characteristic of the posteriordistribution of x must be chosen; e.g. the mode. When H0 is a linear space then p̂ = ĉ. Numer-ically p̂ is computed by repeatedly generating p, solving (3) for x and averaging these values.As a measure of the accuracy of this estimate it makes sense to look at G(t j n). When thisdistribution is concentrated about 0 then we have evidence that p̂ is a good approximation tothe true value of p and not otherwise. The quantity p̂ is our recommended estimator when wedo not assume that (1) holds.We consider now the situation where we estimate p assuming that H0 holds. This couldbe due to actual physical constraints in the experiment or we have tested and decided that H0is reasonable. As discussed above we are required to sample from a product of independentDirichlets conditioned to H0. It does not seem possible to simulate exactly from this posteriordistribution. The Gibbs sampler, however, which we show can be easily implemented in this con-text, permits the almost sure estimation of posterior distribution characteristics. If p1; : : : ;pNconstitutes N iterations of the Gibbs sampler then we estimate the posterior mean of pij by1N (pij1 + : : :+ pijN ) where pijt is the tth generated value of pij . We denote these estimates ofthe posterior means of the pij by p�ij . For a review of the use of the Gibbs sampler and relatedissues, see Smith and Roberts (1993) and Gelfand, Hills, Racine-Poon and Smith (1990) for anillustration of Bayesian applications in normal models.12



The Gibbs sampler requires that we be able to sample from the conditional posterior distri-bution of each pij given H0 and all the remaining coordinates of p = (p11; : : : ; pmk)0. We observethat the posterior density of p is proportional tomYi=1 kYj=1 pijnij+aij�1 (5)where pij � 0; pi1 + : : : + pik = 1 for i = 1; : : : ; m and the constraints given by (1) are alsosatis�ed.Before writing down the conditional density of pij given H0 and the remaining coordinatesof p we need to introduce some notation. First we de�ne the distribution p0j for j = 1; : : : ; kby requiring p01 = 1 and also de�ne the distribution pm+1;j for j = 1; : : : ; k by requiringpm+1;k = 1. Note that these distributions will obey the stochastic ordering by the �rst indexas expressed in (1). Now let S(i)j;l = pij + pi;j+1 + � � � + pil for i = 0; : : : ; m + 1 and 1 �j � l � k and be equal to 0 otherwise. From the inequalities in (1) and pij � 0, pi1 +: : : + pik = 1 we obtain straightforwardly that this density is concentrated on [lij; uij ] wherelij = maxf0; S(i+1)1;j �S(i)1;j�1; S(i+1)1;j+1�S(i)1;j�1�S(i)j+1;j+1; : : : ; S(i+1)1;k�1�S(i)1;j�1�S(i)j+1;k�1g and uij =minfS(i�1)1;j � S(i)1;j�1; S(i�1)1;j+1 � S(i)1;j�1 � S(i)j+1;j+1; : : : ; S(i�1)1;k�1 � S(i)1;j�1 � S(i)j+1;k�1g: We have from(5) that the conditional posterior density of pij given H0 and all of the other cell probabilities isproportional to pijnij+aij�1(1� S(i)1;j�1 � S(i)j+1;k�1 � pij)nik+aik�1 for i = 1; : : :m, j = 1; : : :k� 1and pik = 1�Pk�1j=1 pij . Setting qij = S(i)1;j�1+S(i)j+1;k�1 it follows immediately that the conditional13



posterior distribution function Fij of pij given H0 and the other coordinates of p is given byB(pij=(1� qij); nij + aij � 1; nik + aij � 1)� B(lij=(1� qij); nij + aij � 1; nik + aij � 1)B(uij=(1� qij); nij + aij � 1; nik + aij � 1)�B(lij=(1� qij); nij + aij � 1; nik + aij � 1) (6)where B(y; a; b) is the probability that a Beta(a; b) variate is less than y. Therefore, givena variate u � Uniform(0; 1), and a subroutine for calculating the distribution function of Betarandom variables, we could use bisection to generate from (6) via Fij(pij) = u. Alternatively, wecan generate from (6) using the adaptive rejection sampling algorithm for log-concave densities,as developed in Gilks and Wild (1992), as the doubly truncated Beta density is log-concave.This algorithm is by far the more e�cient method for generating from these distributions.For both Monte Carlo methods described in this paper convergence was assessed by com-paring estimates of posterior distribution characteristics for increasing Monte Carlo sample size.While this is not foolproof there is currently no method of assessing convergence which is muchmore reliable than this. Of course this is a characteristic of virtually all iterative numericalprocedures. As we will see in our examples the techniques described here produced meaningfulaccuracies within reasonable computation times.4. EXAMPLESExample 1. We consider a dataset taken from Srole, Langner, Michael, Opler and Rennie(1962) which investigates the relationship between an individual's mental health status (m = 4)and the socioeconomic status of the parents (k = 6). The data is displayed in Table 1. This14



example was also examined in Goodman (1985), Gilula (1986) and Evans, Gilula and Guttman(1993). For the prior we use a uniform prior; i.e. p(i) � Dirichlet(1; : : : ; 1) and these areindependent for i = 1; : : : ; m.Sampling directly from the appropriate distribution in (2) we compute G(� j n), G(� j 0), theestimate p̂ and the posterior standard deviations of the xij . A Monte Carlo sample of size 10,000is used and provides 3 decimal places of accuracy. These computations require approximately 3minutes of computing time on a Sun Sparcstation.In Figure 1 we plot G(� j n) and in Figure 2 we plot G(� j 0) together with G(� j n). InTable 2 we give some quantiles of these distribution functions. Further the posterior mean of�2 is .0004 while the prior mean is .1520. It seems clear from the plots and the table that theposterior distribution of �2 is highly concentrated near 0 relative to the prior distribution of �2and we conclude that the data strongly support the stochastic ordering given by (1). Notice thatin Figure 2 the posterior distribution function of �2 is virtually a vertical and then horizontalline indicating that relatively all the posterior probability is distributed near 0 when comparedto the prior distribution.We also have G(0 j n) = :1596 and G(0 j 0) = :0002. Thus there is a large increase in theprobability allocated to the submodel of stochastic ordering when we take the data into account.Still, the posterior probability by itself is not very convincing evidence in favour of the hypothesis.The Bayes factor is BF(0) = 949 and this seemingly provides strong support for the hypothesis.Also values of BF(t) for t close to 0 give strong support to the hypothesis; e.g. BF(.005) =15



592501. We note, however, that the comparison of G(� j n) and G(� j 0) is overwhelminglyconvincing that the posterior distribution of p provides support for the hypothesis given by (1).As such there seems to be little need to make use of these Bayes factors here.In Table 3 we give the values of p̂ij ; i.e. the posterior means of the xij . In Table 4 we give theposterior standard deviations of the xij . The standard errors of these estimates are all boundedby :0002. It is a simple matter to obtain the marginal posterior distribution of any xij just aswe did for �2.As discussed in Section 3 Gibbs sampling can be used to compute the conditional posteriormeans of the pij given that we are willing to assume that (1) holds; i.e. compute the value of p�.Table 5 gives the results from 50,000 iterations of the Gibbs sampling process and again it is feltthat these are accurate to 3 decimal places. Of some note is the striking similarity between theestimates in Tables 3 and 5. This provides further support for our belief that a stochasticallyordered model is correct.Of some interest is the method used to generate from the distributions given by (6). Togenerate the 50,000 iterates using the bisection algorithm, where the equation Fij(pij) = u issolved to a tolerance of .000001, requires 7 hours and 51 minutes of computing time. This isthe inversion method of generating random variables. However, the adaptive rejection algorithmmethod of Gilks and Wild (1992) reduces the computing time to only 24 minutes. This representsan improvement by a factor of about 20.Example 2. Using the same data and model as in Example 1 we replace the least-squares16



measure of concentration by that based on the Kullback-Liebler distance measure. The resultsof the analysis are very similar. Once again comparing G(� j n) and G(� j 0) leads overwhelminglyto the conclusion that H0 holds. For example, the posterior mean of �2 is .0014 compared tothe prior mean of .4404. Also the p̂ij are almost identical with those recorded in Table 3.Example 3. In this example we investigate the sensitivity of our testing approach via a sim-ulation study. Table 6 contains the population parameters for m = 3 populations and k = 5categories. The �rst 2 populations are stochastically ordered but the stochastic ordering failsin the penultimate cell for the last population. We carry out the test for stochastic order usingsimulated data from these populations for samples of sizes N1 = N2 = N3 = 50; 100; 500. Weuse the least-squares distance measure and a uniform prior. In Table 7 we present the prior andposterior probabilities for H0 and some prior and posterior quantiles for the distributions of �2for the simulated data sets based on Monte Carlo samples of size 10,000. We see from this thatour method is better at detecting lack of stochastic order as the sample size grows. Note thatthe posterior probability should decrease with Ni and the quantiles should increase. Of course,due to sampling variation, this will not strictly hold for every simulated data set.Example 4. Throughout the paper and the previous examples we have always assumed thatthere is a speci�c stochastic ordering that we wish to check for. In many contexts, however, wemay feel that some stochastic ordering exists but do not have a clear a priori idea of what itmight be. In such a situation it makes sense to examine all possible stochastic orderings anddetermine which are the most plausible. Of course there are m! di�erent possible stochastic17



orderings so this technique is only feasible for relatively small m.In Table 8 we present the data from a survey of car dealers measuring satisfaction levels withhow the manufacturer handles spare parts. We restrict our analysis to Japanese cars groupedby maker where Other stands for Mitsubishi, Mazda and Isuzu. Satisfaction levels range from5 (very satis�ed) to 1 (very dissatis�ed). Looking at all 24 possible stochastic orderings usingour aproach the four most plausible stochastic orderings are recorded in Table 9. Clearly thereis strong evidence for the ordering (Honda, Toyota, Other, Nissan) and thus Honda providessuperior satisfaction. 5. CONCLUSIONSWe have examined the Bayesian analysis of stochastic ordering among a set of categoricalvariables. To assess the evidence in favour of a hypothesis, as summarized by a posteriordistribution, we have introduced a measure of concentration of the posterior distribution aboutthe hypothesis. Our approach is a natural generalization of the method where evidence isassessed by the use of the posterior probability of the hypothesis. Further, as shown for examplein Evans, Gilula and Guttman (1993), our method handles the situation where the hypothesisalways has posterior probability zero. The methodology clearly has applications in a wide varietyof Bayesian hypothesis testing problems.Of course there are di�erent measures of concentration that can be chosen and we haveused the intuitively reasonable measure of least-squares. Other than the need to implement a18
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Table 1: Cross-classi�cation of subjects by mental health status and socioeconomic status of theparents in Example 1. Parents' Socioeconomic StatusMental Health Status A B C D E FWell 64 57 57 72 36 21Mild Symptoms 94 94 105 141 97 71Moderate Symptoms 58 54 65 77 54 54Impaired 46 40 60 94 78 71
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Figure 1: Posterior distribution function of �2 in Example 1.

24



Figure 2: Posterior ... and prior | distribution functions of �2 in Example 1.
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Table 2: Quantiles corresponding to posterior and prior probability distributions of �2 in Ex-ample 1. p Posterior Prior.05 0.0000 0.0270.10 0.0000 0.0430.25 0.0000 0.0795.50 0.0002 0.1332.75 0.0006 0.2049.90 0.0013 0.2840.95 0.0018 0.3383
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Table 3: The estimates p̂ij in Example 1.j=1 j=2 j=3 j=4 j=5 j=6i=1 0.208 0.185 0.185 0.233 0.118 0.071i=2 0.163 0.158 0.175 0.231 0.158 0.115i=3 0.153 0.148 0.179 0.215 0.153 0.152i=4 0.119 0.104 0.154 0.240 0.200 0.183
27



Table 4: Posterior standard deviations of the xij in Example 1.j=1 j=2 j=3 j=4 j=5 j=6i=1 0.022 0.022 0.022 0.024 0.018 0.014i=2 0.013 0.014 0.014 0.016 0.014 0.013i=3 0.014 0.017 0.019 0.020 0.017 0.016i=4 0.016 0.015 0.018 0.021 0.020 0.019
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Table 5: The estimates p�ij in Example 1.j=1 j=2 j=3 j=4 j=5 j=6i=1 0.210 0.185 0.185 0.233 0.118 0.069i=2 0.166 0.159 0.175 0.229 0.157 0.115i=3 0.147 0.145 0.178 0.219 0.157 0.154i=4 0.116 0.103 0.154 0.240 0.200 0.187
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Table 6: The population parameters pij in Example 3.i j=1 j=2 j=3 j=4 j=51 .20 .20 .20 .20 .202 .15 .12 .11 .10 .523 .14 .11 .11 .20 .44
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Table 7: The prior and posterior probability of H0 and some prior and posterior quantiles ofthe posterior distribution of �2 in Example 3.Probability of H0 .01 quantile .05 quantilePrior .0121 .0000 .0003Posterior Ni = 50 .0620 .0000 .0000Posterior Ni = 100 .0007 .0013 .0046Posterior Ni = 500 .0000 .0054 .0080
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Table 8: Data for Japanese Car Manufacturer Satisfaction Study where 5 is very satis�ed and1 is very dissatis�ed in Example 4.Satisfaction level 5 4 3 2 1Honda 85 64 18 6 5Toyota 67 44 27 12 4Nissan 34 38 36 18 26Other 82 83 74 28 24
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Table 9: Prior and posterior quantities for the most plausible stochastic orderings where H =Honda, T = Toyota, N = Nissan and O = Other in Example 4.Order G(0 j 0) G(0 j n) Prior mean of �2 Posterior mean of �2 BF(.0005)HTON .0004 .3125 .1840 .0004 3858.8THON .0004 .0020 .1840 .0070 23.3HTNO .0004 .0000 .1840 .0096 2.5THNO .0004 .0000 .1840 .0163 0.0
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