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Abstract

This paper introduces the expected goals concept to limited overs cricket where

ideas are illustrated using the economy rate statistic. The approach is primarily

explored as a proof of concept since the detailed data that are required for full

adoption of the proposed methods are not currently widely available. The approach

is based on the estimation of batting outcome probabilities given detailed data on

each ball that is bowled in a match. Machine learning techniques are used for the

estimation procedure.
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1 INTRODUCTION

Expected goals (xG) is a concept that has gained rapid adoption in professional sport,

particularly in soccer. The statistic xG attempts to quantify what is most likely to

have happened in a match given the opportunities that occurred during the match. For

example, imagine that Team A drew with Team B with the scoreline 1-1 but the expected

goals for the match was 3.8 to 0.5 in favour of Team A. In this case, one would conclude

that Team A outplayed Team B, and that Team B was fortunate to achieve the draw.

Therefore, xG provides a measure of dominance in matches, and attempts to remove

what might be described as the “luck” element of sport. Not only does xG describe

match dominance, but xG is predictive of future results.

Although xG is intuitive, its calculation is viewed as a black-box procedure from the

point of view of the general public. For this reason, and for the technical underpinnings

used in the calculation of expected goals, xG falls under the category of advanced analyt-

ics. Further, the “black-boxness” of xG is magnified since there are many implementations

of xG, and these implementations are typically proprietary. In soccer and hockey, the basic

idea behind xG is that there are scoring opportunities on the field and the rink, respec-

tively. The scoring opportunities have associated goal scoring probabilities where goals

resulting from shots that are further away and taken from more extreme angles are less

probable. These probabilites are summed over the opportunities for each team, leading

to the team’s xG. The literature that does exist concerning xG is mostly found on blog

sites, Twitter feeds and conference proceedings. Some of the more detailed contributions

related to xG include Pollard, Ensum and Taylor (2004), Rudd (2011), Macdonald (2012),

Decroos et al. (2018) and Fernández, Bornn, and Cervonne (2019).

In this paper, we introduce the the concept of xG to limited overs cricket in the context

of the economy rate statistic. In limited overs cricket, the economy rate for a bowler is

defined as the average number of runs conceded per over where there are six balls per

over. The average is typically calculated over a match, a series, a year or a career. For

illustration, we consider economy rate based on a match in which case the economy rate

for a bowler is defined as 6*(the number of runs conceded in a match) divided by the

number of balls bowled by the bowler in the match. Smaller values of the economy rate

are indicative of good bowling.

The development of xER (expected economy rate) is conceptually simple. Based on

the characteristics of a ball that has been bowled, we estimate the probabilities of the 8
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batting outcomes: wicket, 0 runs, 1 run, 2 runs, 3 runs, 4 runs, 5 runs and 6 runs where

we note that there is negligible probability of scoring 3 runs and 5 runs. Using obvious

notation, we define the expected economy rate in a match for a bowler as

xER = (6/M)
M∑
i=1

(ei + pi(1) + 2pi(2) + 3pi(3) + 4pi(4) + 5pi(5) + 6pi(6)) (1)

where i corresponds to the ball number, ei is the actual number of extras accumulated on

the ith ball and M is the number of balls bowled by the bowler in the match. Analogous

to xG, xER represents the expected economy rate performance of the bowler in the match.

Whereas the pi’s in (1) have been estimated, we do not estimate extras. We consider the

observed extras ei as penalty terms that are directly attributable to the bowler and are

added to the expected economy rate formula. There is no luck aspect associated with

extras; bad balls are simply bad balls.

Now, xER will only be informative and useful provided that the estimated probabilities

pi in (1) are realistic. To motivate the approach, suppose that pi(4) = 0.5 and the actual

result of the bowled ball was a wicket. What might have happened in this scenario is

that the bowler’s delivery ought to have been exploited by the batsmen. Based on the

characteristics of how the ball was bowled, the probability of scoring four runs was high.

With a ball of this type, the bowler is typically punished. Instead, the bowler was “lucky”

in the sense that a wicket occurred. For example, perhaps a fabulous catch was made.

Therefore xER is an attempt to represent what the bowler would have achieved under

ordinary circumstances given the performance. The actual achievement is subject to both

performance and the luck/stochastic element of sport.

The utility of the xER statistic (1) occurs when a bowler’s actual economy rate differs

considerably from their xER statistic. For example, suppose that there is a relatively

young bowler whose actual economy rate is 8.4 but their xER = 6.6. This would signal

that the bowler has been unlucky, and that this is a player for whom team selectors should

give attention. This may be a promising bowler.

The elimination of “luck” from performance is a driving force in this research. Whereas

luck does not seem to have been addressed in cricket, luck has been investigated in other

sports analytics research. For example, luck has been explored in soccer (Sarkar and Ka-

math 2022), golf (Connolly and Rendleman 2008), baseball (Bailey, Loeppky and Swartz

2020), and hockey (Weissbock 2014).
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In this project the probability estimates pi in (1) are based on detailed ball-by-ball

data. Ball-by-ball data have been utilized in various research initiatives in cricket (Swartz

2017). In these projects, ball-by-ball results and covariates have been parsed from match

commentaries provided by www.cricinfo.com. However, the ball-by-ball data used in

these investigations are not sufficiently detailed for the current investigation. In this

project, Cricket Australia has provided us with even more detailed ball-by-ball data from

the Twenty20 (T20) format. However, such data are not widely available and do not

currently exist for competitions outside of the Australian context. For this reason, the

work presented here is explored as a proof of concept. We demonstrate that the approach is

feasible and informative, and is something that can be fully developed when detailed ball-

by-ball data become widespread. With the advent of player tracking data and analyses

across major sports (Gudmundsson and Horton 2017), we expect that the availability of

detailed data in cricket is only a matter of time.

Clearly, xER can be extended to applications over series, matches, years and careers.

Also, it is clear that other standard bowling statistics such as bowling average and bowling

strike rate have xG adaptations. With respect to batting, we might similarly define xG

statistics corresponding to batting average and the batting strike rate. Many statistics

have been developed for the sport of cricket; see Swartz (2017) for a review of various

measures of player evaluation.

In Section 2, we describe the detailed data that have been provided by Cricket Aus-

tralia. Subjective decisions on retaining and excluding variables are part of the feature

identification process. Whereas the focus of sports analytics research has typically in-

volved “big” sports that involve male participation, a feature of this work is that we also

analyze women’s T20 data. This has the added benefit of assessing differences in how T20

is played between the men’s and women’s game. In Section 3, we provide a description of

the random forest approach used to estimate the probabilities in (1). The procedure falls

under the topic of supervised learning. In Section 4, we investigate the quality of esti-

mation in various ways. For example, we examine the overall rate of correct predictions,

we examine the related confusion matrices and we qualitatively assess the variables of

importance. We also compare our random forest predictions against predictions made by

two other methods using Brier scores. We observe that the proposed estimation technique

is superior to the other methods. In Section 5, we apply the approach to datasets involv-

ing T20 cricket matches. Some insights are obtained which demonstrate the potential of

utilizing xER in player evaluation. Finally, a short discussion is provided in Section 6.

4



2 DATA

Detailed ball-by-ball data have been collected by Cricket Australia over the years 2007

through 2019. The data correspond to international matches involving the Australian

national teams (men and women) in Test, ODI and T20 formats. Data have also been

collected for Australian domestic matches such as the Big Bash competition. For illus-

tration, we have restricted our attention to T20 matches. There are 532 matches for the

men and 725 matches for the women. For a given match, there are an astounding 360

variables collected on every ball that is bowled. The data were coded manually by data

entry specialists who watch video broadcasts of matches. It is believed that the data have

a high level of accuracy. After some minor data management, our dataset of T20 matches

consist of 123,067 bowled balls (men) and 166,898 bowled balls (women) that occurred

during the first and second innings.

In our investigation of xER, we are interested in bowling performance. Hence we seek

variables that relate bowling performance to the batting outcome. The beauty of sport

is that domain knowledge is often high, and feature selection may be assisted by this

subjective knowledge. In Table 1, we list k = 25 covariates (features) that we believe

are predictive of the batting outcome. We have taken the point of view to err on the

generous side and include all variables that may have a chance of improving supervised

learning; machine learning algorithms have been designed to detect the most important

variables. Note that the variables are categorized as either bowling variables or batting

variables. A bowling variable is one that is entirely due to the bowler or the conditions of

the match. For example, the ball speed variable is a bowling variable. As another example,

the wickets lost variable is a bowling variable. A batting variable concerns something that

the batsman did. For example, batsman handedness is a bowling variable (because this is

a condition of the match) whereas hit angle of the batted ball is a batting variable.

In Table 1, we have added two variables that were not included in the Cricket Aus-

tralia database which we believe are predictive of the batting outcome. The first is the

resources remaining variable (Duckworth and Lewis 1998) adapted for T20. The resources

remaining at the time that a ball is bowled provides an indication of how aggressive a

batsman may bat. To also account for batting aggression, we include the deficit variable

which is the number of runs by which the batting team is trailing in the second innings

(i.e. deficit = target score less current batting score). In the first innings, we define deficit

as the average runs scored in the first innings of a T20 match less the current score. In

5



men’s T20 cricket, the average first innings score is 160 runs whereas in women’s T20

cricket, the average first innings score is 131 runs.

In Table 1, we observe some redundancies in the variables. For example, the D/L

resources remaining variable is a function of wickets lost and overs. In theory, the spec-

ification of redundant variables is unnecessary since machine learning techniques are

“smart” and are able to detect functional relationships. However, in our experience,

over-specification of variables is sometimes useful to assist the performance of algorithms.

We also note that the hit angle variable has been standardized to account for lefthanded

and righthanded batsmen. There were some very minor data management issues such as

correcting entries with 10, 11 or 12 wickets lost. These are obvious coding errors where

the correct values can be imputed by looking at the data corresponding to adjacent balls.

3 RANDOM FORESTS

Recall that our problem involves the estimation of the batting outcome probabilities

pi(1), . . . , pi(6) in (1). These probabilities are estimated in a supervised learning context

the batting outcomes and the features (Table 1) are known for each ball in our massive

dataset.

A rationale for machine learning methods in prediction is that complex phenomenon

are often difficult to model explicitly. Here, we have a categorical response variable y with

8 categories, and a moderate-dimensional explanatory vector x = (x1, x2, . . . , xk), with

k = 25. We have little apriori knowledge about the relationship between y and x. For

example, the relationship may only involve a subset of the variables x, the components

of x may be correlated, and most importantly, the relationship y ≈ f(x) involves an

unknown and possibly complex function f . In addition, the stochastic aspect of the rela-

tionship is typically unknown and big data sets may introduce computational challenges.

Miraculously, machine algorithms provide black box predictions based on the features of

interest.

For this application, we use random forests as the chosen machine learning algorithm.

Random forests (Genuer and Poggi 2020) are particularly easy to implement using the

randomForest package (Liaw and Wiener 2002) in the R programming language. The basic

idea is that a random forest is a collection of many decision trees where prediction results

are aggregrated over trees. The use of multiple trees improves prediction and makes

inference less reliant on a single tree. The splits in the trees accommodate non-linear
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relationships and terminal nodes provide the estimated probabilities pi(1), . . . , pi(6).

In choosing the tuning parameters, we have a preference for simpler models (i.e. smaller

trees). For example, if a more expansive tree has similar prediction accuracy to a modest

tree, we choose the modest tree. To assess accuracy (Section 4), the data were randomly

divided where 20% of the observations were used for training and the remaining 80% of

the observations were used for validation and prediction. The 20/80 ratio is a little low

compared to many applications. However, we want a large validation (prediction) set so

that there are enough balls to reliably estimate xER for many of the bowlers.

With 20% of the data restricted to training, this still provides a large enough dataset

to obtain a good model. When modifying the training set from 20% to 50% of the

observations, we found little change in predictions. In the training component, 10-fold

cross-validation was utilized, and this is what allowed us to set tuning parameters. For

example, the number of variables randomly selected at each split was set at mtry = 10

to maximize accuracy. We specified 500 trees in the random forest which is the default

value. We also used default values for tree depth and the maximum number of nodes.

For missing values in our dataset (of which there are few - see Table 1), we chose the

argument na.roughfix which involves a simple imputation scheme.

4 MODEL VALIDATION

This section investigates the quality of estimation in various ways.

Their are four analyses that are of interest. First, we have the T20 data divided into

the men’s game and the women’s game. And then, within each of these two formats, we

consider an analysis A based only on both bowling and batting features (see Table 1).

And then we consider an analysis B based only on bowling features (see Table 1). The

appeal of Analysis A is that it includes the variables hit angle and hit length. One might

presume that these are very predictive features, which provide more accurate probabili-

ties pi(1), . . . , pi(6), and hence, better estimates of xER. The appeal of analysis B is that

it removes the quality of the opposition from the analysis. For example, suppose you

have a bowler who only competes against inferior opponents. Then this bowler’s observed

economy rate would be lower than if the bowler competed against more challenging com-

petition. But this would not be a problem for xER (under Analysis B) since only the

characteristics of the bowled ball and the state of the match are considered; the quality

of the opposition is eliminated from the evaluation of xER.
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4.1 Confusion Matrices

Once a model is trained (fitted), we consider each ball from the validation set. The

features of the ball are fed to the model and the batting probabilities are estimated. The

batting outcome with the maximum probability is considered the predicted outcome.

For each ball in the validation set, we compare the actual batting outcome with the

predicted outcome, and summarize the results in a confusion matrix. The entry (i, j)

in the confusion matrix records the number of times an actual batting outcome j was

predicted as outcome i.

Tables 2, 3, 4 and 5 provide the confusion matrices for Analysis A (Men), Analysis

B (Men), Analysis A (Women) and Analysis B (Women), respectively. The first thing

that can be calculated from the confusion matrices is that the overall percentage rates

of accuracy for the four analyses are 76%, 45%, 78%, and 47%, respectively. Therefore,

as anticipated, the batting features angle and hit length greatly assist in the accuracy of

the predictions. In Analysis B, one prediction that is particularly poor concerns wickets.

Although the wicket calculation does not directly appear in the xER formula (1), its

underestimation impacts the other batting outcomes. For example, in Table 3, only 124

wickets were predicted in the roughly 5000 cases where wickets actually occurred. The

prediction of wickets is much improved in Table 2 (Analysis A). The same comment also

applies to the women’s game. In all analyses, we observe that 3’s and 5’s are almost never

predicted. In fact, this is sensible, as they almost always result from some sort of fielding

error.

One of the important observations distinguishing Tables 1 and 2 (men) from Ta-

bles 3 and 4 (women) is the rate at which 6’s occur and are predicted. In the men’s

game, 6’s occur 4123/98450→ 4.2% of the time whereas in the women’s game, 6’s occur

1654/133515→ 1.2% of the time. This is a reminder that there are significant differences

between the two formats of cricket and that they should be studied separately.

4.2 Features of Importance

One of the informative outputs from the randomForest package (Liaw and Wiener 2002)

are importance plots of the model features. Features are listed from top to bottom

according to their impact on prediction.

We provide importance plots for the men’s game (Figure 1) and for the women’s

game (Figure 2). For each format, importance plots are provided for Analysis A (bowling
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and batting features) and Analysis B (bowling features only). As expected, we observe

that the variables hit length and hit angle are the most influential as they describe the

characteristics of the batted ball. For example, balls that are hit far are most likely to

result in runs scored.

In both Analysis A and Analysis B, we observe that the landing location of the bowling

delivery (pitchx and pitchy) impact the batting outcome prediction. The same is true

for (batsmanx and batsmany) which describe the landing location of the ball relative

to the batsman. For example, if the ball is too close to the batsman, the batsman is

unable to apply full torque on the batted ball, and is less likely to generate 4’s and

6’s. Our introduced variables deficit and resources remaining which together describe

the urgency and aggressiveness of batting are also variables which help the prediction of

batting outcomes.

Comparing Figure 1 and Figure 2, we do not observe many meaningful differences

between the men’s game and the women’s game. It appears that the features that are

influential in predicting batting outcomes are similar between the two formats.

4.3 Brier Scores

As mentioned previously, the utility of xER is only as good as the reliability of the

estimates of the probabilities pi in (1). To assess the estimates, we calculate Brier scores

(Brier 1950) based on three forecasts.

The first forecast is naive and is not expected to be accurate. However, it does provide

a sense of the magnitude of differences with respect to Brier scores. We refer to the first

forecast as Uniform Discrete where the associated probabilities are given in Table 6. Here,

we set all of the six non-neglible probabilites in (1) equal to 1/6. We emphasize that the

probabilities are the same for every ball that is bowled.

The second forecast which we refer to as T20 Proportions is based on the observed

proportions of T20 batting outcomes from a much larger dataset. It includes more than

500,000 balls from international men’s T20 matches from 2015-2020. Again, we assign zero

probability to the rare batting events corresponding to 3 and 5 runs. The probabilities

are given in Table 6. Since these probabilities are associated with the men’s game, our

Brier score analysis will only consider batting predictions for men.

Now, for every ball i = 1, . . . , N that is bowled in the dataset, we define oi(j) = 1 if

event j occurred and oi(j) = 0 if event j did not occur where the event j takes on the
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values w, 0, . . . , 6. With event probabilites pi(j) corresponding to a particular forecasting

method, the Brier score is then given by

B =
1

N

N∑
i=1

∑
j=w,0,...,6

(pi(j)− oi(j))
2 . (2)

For the men’s game, we calculate Brier scores using (2) for the Uniform Discrete

forecast, the T20 Proportions forecast and the random forests forecast (Analysis A), We

obtain Brier scores of 0.84, 0.73 and 0.33, respectively. The results suggest that the

random forests algorithm (Analysis A) predicts the batting outcome much better than

the other two methods that do not consider the circumstances of the match and the

characteristics of the ball that was bowled. In turn, and most importantly, this suggests

that xER informs us about what might reasonably have happened in matches involving

economy rate had the batting outcomes proceeded as expected.

5 RESULTS - xER in T20 Cricket

For a given bowler, we are interested in the comparison of xER with their career economy

rate. Career economy rates in T20 were obtained from the stats.espncricinfo.com website.

For this analysis, we are only interested in bowlers who have bowled sufficiently in

our validation (prediction) dataset. We therefore restricted our attention to bowlers who

have bowled at least 500 balls in the validation set. From these bowlers (57 men and 89

women), we randomly selected 10 men and 10 women and calculated their corresponding

xER. The calculation was based on the estimates pi(1), . . . , pi(6) in (1) for each ball i that

was bowled in the validation set. The xER statistic in (1) was calculated two ways; using

Analysis A which relied on bowling and batting features, and Analysis B which only used

bowling features. The results are presented in Table 7 (men) and Table 8 (women).

Our initial observation is that the expected economy rates xER are in line with the

career economy rates. Sometimes the xER statistic is smaller (the bowler has been slightly

unlucky in actual matches) and sometimes the xER statistic is larger (the bowler has been

slightly lucky in actual matches). We have argued up to this point that Analysis A is most

likely better than Analysis B since Analysis A has more accurate predictions. Perhaps

the most interesting bowler according to Analysis A is Renee Chappel from Table 8. Her

xER (Analysis A) is a full 2.81 runs lower than her career economy rate. This is a large
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difference which suggests that she is a better bowler than her record indicates. She is an

experienced bowler, 38 years of age and having made her international debut in 2013. In

2016-17, Chappel received the Karen Read Medal as the best player in WACA Female A

Grade and T20 competitions. It appears that her excellence as highlighted by the xER

statistic has been appreciated.

We also observe that the men bowlers tend to have higher economy rates on average

than the women bowlers. This could be related to the observation from Section 4.1 where

we observed that the men score 6’s more frequently than the women.

6 DISCUSSION

This paper introduces expected economy rate xER to the sport of cricket. The idea

borrows on the expected goals concept which has become especially popular in soccer.

As xER attempts to reduce the luck element from bowling, xER may be a diagnostic

that informs us of the true quality of a bowler, perhaps a more trustworthy statistic than

the actual economy rate. This may be particularly valuable in the context of unproven

bowlers who have not established a clear reputation. For example, xER could alert team

selectors to promising bowlers whose results have not yet matched their quality.

This paper is intended to be a proof of concept of a potentially valuable statistic.

Naturally, the statistic could improve with better data. For example, the positioning of

fielders surely has an impact on batting outcomes. We suggest that the availability of

such data is not far down the road as player tracking data becomes more widely available.

Of course, different models and prediction schemes could also be investigated. This

is a possible avenue for future research. Another point of reference for future research in

cricket analytics is a call for more work on the women’s game. This research has pointed

out that there are differences between the men’s and women’s games.
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Figure 1: Importance plots of the features for the men’s game corresponding to Analysis
A and Analysis B.
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Figure 2: Importance plots of the features for the women’s game corresponding to Analysis
A and Analysis B.
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Feature (Data Details) Bowling Batting Percent Missing
Variable Variable Observations

bowling team venue (home, neutral, road) Y N 0.00
innings (1, 2) Y N 0.00
time of day (hour using 24 hour clock) Y N 0.00
batsman handedness (L, R) Y N 0.00
bowler handedness (L, R) Y N 0.00
bowler’s style (pace, spin) Y N 0.00
bowler’s spell (1, 2, 3, 4) Y N 0.00
bowler’s speed (fast, medium, slow) Y N 0.00
powerplay (Y, N) Y N 0.00
over (1, ..., 20) Y N 0.00
ball in over (1, ..., 6) Y N 0.00
wickets lost (0, ..., 9) Y N 0.00
resources remaining (0.0 to 100.0) Y N 0.00
deficit (integer) Y N 0.00
ball speed (continuous in km/hr) Y N 69%
ball rpm (continuous) Y N 99%
pitchx (horizontal ball landing rel to wicket) Y N 0.00
pitchy (vertical ball landing rel to wicket) Y N 0.00
batsmanx (horizontal ball landing rel to batsman) Y N 0.00
batsmany (vertical ball landing rel to batsman) Y N 0.00
hit angle (angle ball hit by batsman) N Y 0.00
hit length (distance ball stopped after hit) N Y 0.00
temperature (cold, moderate, hot) Y N 2%
humidity (dry, moderate, humid) Y N 2%
cloud cover (light, medium, heavy) Y N 2%

Table 1: Selected features (covariates) and related information used in the estimation of
batting outcomes.
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Prediction Actual Outcome
Wicket 0 1 2 3 4 5 6

Wicket 1232 123 44 23 0 6 0 0
0 1377 27361 5483 83 4 4 11 0
1 2368 3873 31693 7182 410 305 4 12
2 146 3 543 1042 265 102 0 3
3 1 0 1 8 10 0 0 0
4 44 0 112 195 100 9923 3 96
5 0 0 0 0 0 0 0 0
6 35 1 66 79 15 44 1 4015

Table 2: Confusion matrix corresponding to Analysis A (bowling and batting features)
for men based on a validation set of 98,450 observations.

Prediction Actual Outcome
Wicket 0 1 2 3 4 5 6

Wicket 124 100 183 64 2 34 0 31
0 1697 16007 9594 2079 344 4174 10 885
1 3313 14820 27714 6294 429 5693 9 3056
2 31 51 121 65 4 38 0 29
3 0 0 1 0 0 1 0 0
4 30 375 309 100 25 432 0 104
5 0 0 0 1 0 0 0 0
6 8 8 20 9 0 12 0 21

Table 3: Confusion matrix corresponding to Analysis B (bowling features only) for men
based on a validation set of 98,450 observations.

Prediction Actual Outcome
Wicket 0 1 2 3 4 5 6

Wicket 1610 170 32 8 0 0 0 0
0 2683 46023 9924 162 11 4 11 1
1 2267 4687 38943 7879 412 4 7 7
2 143 7 915 1772 324 34 0 2
3 0 0 6 24 26 0 0 0
4 5 0 33 28 10 13564 1 70
5 0 0 0 0 0 0 0 0
6 9 1 40 32 9 41 0 1574

Table 4: Confusion matrix corresponding to Analysis A (bowling and batting features)
for women based on a validation set of 133,515 observations.
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Prediction Actual Outcome
Wicket 0 1 2 3 4 5 6

Wicket 34 49 61 4 1 10 1 34
0 2765 31533 18581 3576 373 6598 11 2765
1 3897 19141 31017 6255 414 6865 7 3897
2 14 44 71 19 3 26 0 14
3 0 2 1 1 0 1 0 0
4 7 118 158 47 1 144 1 7
5 0 0 0 0 0 0 0 0
6 0 1 4 3 0 3 0 0

Table 5: Confusion matrix corresponding to Analysis B (bowling features only) for women
based on a validation set of 133,515 observations.

Forecast p(wicket) p(0) p(1) p(2) p(3) p(4) p(5) p(6)
Uniform Discrete 0.166 0.166 0.166 0.166 0.000 0.166 0.000 0.166
T20 Proportions 0.056 0.305 0.404 0.071 0.000 0.112 0.000 0.048

Table 6: Probability estimates associated with two competing forecasts.

Bowler Country Balls Bowled in Career xER (Analysis A) xER (Analysis B)
Validation Set Economy Rate

Steketee, Mark Australia 595 8.90 8.37 7.53
Lyon, Nathan Michael Australia 620 7.21 7.28 7.74
Abbott, Sean Australia 1185 8.54 8.54 7.82
Hauritz, Nathan Australia 533 7.56 7.75 7.79
Archer, Jofra England 512 7.65 7.43 7.70
Maxwell, Glenn Australia 802 7.71 7.68 7.36
Ahmed, Fawad Australia 933 6.96 6.88 8.13
Zampa, Adam Australia 1306 7.29 6.76 7.94
McKay, Clinton Australia 950 8.07 8.41 7.46
Boyce, Cameron Australia 1109 7.65 7.72 7.96

Table 7: The expected economy rate statistic xER for 10 randomly selected men bowlers.
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Bowler Country Balls Bowled in Career xER (Analysis A) xER (Analysis B)
Validation Set Economy Rate

Pike, Kirsten Australia 708 7.34 5.93 5.67
Hepburn, Brooke Australia 1454 6.97 6.70 6.15
King, Emma Australia 1379 6.41 6.06 6.30
Birkett, Haidee Australia 553 6.75 6.67 6.28
Kearney, Emma Australia 657 6.22 6.33 5.73
Chappell, Renee Australia 634 8.28 5.47 6.45
Elwiss, Georgia England 604 5.92 6.90 6.55
Biss, Emma Australia 521 5.22 6.01 6.08
Elliott, Sarah Australia 921 6.20 5.72 6.24
Coyte, Sarah Australia 2521 6.10 6.25 6.12

Table 8: The expected economy rate statistic xER for 10 randomly selected women
bowlers.
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