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Abstract

Traditional clustering algorithms are deterministic in the sense that a given dataset

always leads to the same output partition. This paper modifies traditional clustering

algorithms whereby data is associated with a probability model, and clustering is car-

ried out on the stochastic model parameters rather than the data. This is done in

a principled way using a Bayesian approach which allows the assignment of posterior

probabilities to output partitions. In addition, the approach incorporates prior knowl-

edge of the output partitions using Bayesian melding. The methodology is applied to

two substantive problems; (1) a question of stylometry involving a simulated dataset

and (2) the assessment of potential champions of the 2010 FIFA World Cup.
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1 INTRODUCTION

Modern approaches to clustering/prediction such as neural networks (Bishop 1995) and tree

methodologies (Breiman et al. 1984, Ripley 1996) rely on a response variable and covari-

ates. These computationally intensive approaches are sometimes described as data mining

techniques where large datasets are often encountered.

In the absence of covariates, traditional clustering algorithms (Kaufman and Rousseeuw

1990) continue to be widely used and are available in most statistical software packages.

Traditional clustering algorithms consider data y1, . . . , yn with the intention of partitioning

the n data points into clusters based on “similarity” where similarity is determined by a

distance measure d(yi, yj) appropriately defined between data points. Traditional clustering

algorithms are either hierarchical or partitional. In agglomerative hierarchical clustering,

algorithms begin with each data point assigned to its own cluster, and in subsequent itera-

tions, clusters are merged based on similarity. In divisive hierarchical clustering, algorithms

begin with a single cluster consisting of all data points, and in subsequent iterations, clus-

ters are divided into smaller clusters based on similarity. Partitional algorithms determine

all clusters at once where subsequent iterations rearrange the cluster membership based on

similarity.

A drawback of the traditional clustering algorithms and all deterministic clustering al-

gorithms is that they do not take the variability of data into account. For example, suppose

that there is some (but insufficient) similarity for the clustering of the two data points yi

and yj. Whereas running a deterministic clustering algorithm again and again on the same

dataset always leads to different clusters for yi and yj, we prefer to express cluster uncertainty.

Our approach is Bayesian where we view the clustering problem somewhat differently. We

are not primarily interested in clustering the data, but rather, in clustering the populations

from which the data arise. And we argue that although the difference is subtle, the analysis
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of populations is often the problem of interest in many applications. For example, suppose

that we have product samples from various factories. Our interest is in the assessment and

categorization of the factories rather than the quality of the particular samples produced

by the factories. If we assume that datum yi arises from a population characterized by a

parameter θi, then traditional clustering algorithms may be applied to θ1, . . . , θn where the

variability of the θ’s is expressed via the posterior distribution. As the θ’s are stochastic, it

then follows that the clustering results are stochastic.

Related to this general philosophy of clustering are approaches based on latent class clus-

tering (Vermunt and Magidson 2002). In latent class clustering, a statistical model is also

imposed on the data. However, the model typically takes the form of a mixture distribu-

tion where the underlying component distributions define the cluster groups. Unknowns in

the model formulation include the parameters of the component distributions, the mixture

weights and possibly the number of mixture components. As with our approach, latent class

mixture modelling is probabilistic in the sense that there is a probability associated with

group membership. In other words, there is a latent variable structure where membership

in a particular group is unknown. There are many variations of latent class clustering mod-

els and we note that the methodology has been developed in both classical and Bayesian

settings.

We describe our proposed procedures in full detail in Section 2 where we note that the

approach is generally applicable to any of the traditional clustering algorithms. In addition,

a by-product of the approach is that missing distance measurements d(yi, yj) and repeated

distance measurements cause no additional problems. The idea of clustering on parameters

was initially proposed by Gill, Swartz and Treschow (2007). This paper extends the original

approach in a number of directions. Later in Section 2, we suggest that the proposed

default priors for the θ’s may not utilize full prior knowledge. In many applications, prior
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knowledge concerning cluster membership is available. We demonstrate how the Bayesian

melding technique of Poole and Raftery (2000) can be applied to impose a prior on the θ’s

based on our knowledge of the output partitions. The implementation of Bayesian melding

is simplified as we take advantage of the fact that the space of output partitions is a finite

discrete set.

In Section 3, we apply the proposed methodology to a problem of stylometry involving

a simulated dataset. We are interested whether texts cluster according to their respective

authors. In actual applications, authorship is typically unknown. With frequency data on

non-contextual keywords, the underlying data model is multinomial and this provides an

improvement upon standard stylometric analyses that rely on the multivariate normal dis-

tribution. Ward’s method (Ward 1963) is used as the clustering technique where algorithmic

stopping rules are designed for the given application.

In Section 4, we apply the proposed methodology to a topical problem involving the

2010 FIFA World Cup. Whereas many football analyses consider the ranking of teams, we

are interested in determining whether participant teams are amongst the elite teams that

stand a realistic chance of winning the World Cup. Posterior probabilities of membership to

this elite class (cluster) are provided. The underlying data model is an extension (Davidson

1970) of the Bradley-Terry model (Bradley and Terry 1952). The clustering algorithm is the

unweighted paired group method of averaging algorithm (UPGMA) proposed by Lance and

Williams (1966). Some surprising results are obtained. We conclude with a short discussion

in Section 5.
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2 METHODOLOGY

Consider the problem of clustering where we have data y1, . . . , yn which are typically multi-

variate. We require a statistical model

f(y | θ) =
n∏
i=1

f(yi | θi) (1)

where y = (y1, . . . , yn)′, θ = (θ1, . . . , θn)′, and θi is a continuous parameter that characterizes

the population from which yi arose. Note that the statistical model (1) is an ingredient

that is not required for traditional clustering methodologies (hierarchical and partitional).

However, its inclusion is often straightforward when we consider the stochastic manner in

which the data were generated, and its inclusion allows us to take the variability of the data

into account. Note also that (1) presumes conditional independence amongst the yi’s; this

is an unnecessary assumption which we relax in our second example.

In many situations, and in the examples that we consider, direct prior knowledge con-

cerning θ is unavailable, and therefore we suggest a vague default prior which we denote by

πθ(θ). This leads to the posterior density given by

π(θ | y) ∝ f(y | θ) πθ(θ). (2)

At this stage, we have a standard Bayesian application. However, our interest is in

clustering, and as previously argued, we cluster on the θ’s rather than cluster on the y’s.

The reason is that the θ’s represent the underlying populations of interest whereas the y’s are

simply observations from the populations. We therefore need to define a distance measure

d(θi, θj) on the parameters, and there often exist sensible metrics as demonstrated in the

two examples. Since the θ’s are typically of lower dimension than the y’s, this also aids in

the specification of distance measures. With the distance measure defined, we describe the
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clustering procedure via

θ → C(θ)→ φ (3)

where C = C(θ) denotes the clustering algorithm which may be any of the traditional clus-

tering algorithms (hierarchical and partitional) and φ denotes the output partition from

the clustering algorithm. For clarification, given a realization θ1, . . . , θn, the clustering algo-

rithm C produces a partition φ which is a division of the set {θ1, . . . , θn} into non-overlapping

components.

Therefore our clustering methodology readily presents itself via a sampling-based ap-

proach. We generate θ from the posterior distribution (2). We then provide θ as input to

the clustering procedure (3) which produces an output partition φ. Repeating the above

steps and averaging over a large number of simulations yields posterior probabilities with

respect to the output partitions. For example, the clustering of θi and θj may be of interest.

In this case, it is a simple matter to calculate the proportion of simulated output partitions

φ where θi and θj cluster together.

There are four comments which are relevant to the proposed clustering methodology.

First, there is flexibility in the simulation procedure. If possible, one may sample θ directly

from the posterior. Alternatively, schemes such as Markov chain methods or importance

sampling may be utilized. Second, we note that traditional clustering methodologies which

cluster data are unable to handle missing distances d(yi, yj). In our sampling-based ap-

proach, a complete vector (θ1, . . . , θn) is generated in every iteration of sampling. Hence,

we never encounter missing distances d(θi, θj). Third, traditional clustering methodologies

struggle with repeated measurements on the y’s. This causes no problem for our proposed

methodology since extra data are simply incorporated into the model (1). Fourth, we may

think of the clustering algorithm C in (3) as a black-box procedure. An input θ yields an

output φ after some complex operations. This is a useful way to think about things as our
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focus now shifts to the more interpretable parameter φ.

2.1 Implementing Priors on Partitions

In clustering as described by (3), the parameter φ has physical meaning since the output

partition directly addresses the inferential question of interest. It follows that more is gen-

erally known about the output parameter φ than the input parameter θ. It is therefore

conceivable that subjective prior opinion concerning φ may be available and expressed via

πφ(φ). A difficulty however is that πθ(θ) is typically incompatible with πφ(φ) and it is not

clear how a principled Bayesian approach ought to proceed. An immediate thought is to

ignore πθ(θ) and obtain an induced distribution on θ via πφ(φ). However, this is not possible

in our context as the space of output partitions corresponding to φ is a finite discrete set

and θ is a continuous and possibly multivariate parameter. There are a potentially infinite

number of θ’s that map to a particular φ.

The general problem of reconciling prior opinion on inputs and outputs is an impor-

tant topic which is fundamental to the discipline of computer experiments. Two prominent

approaches have been considered. Raftery, Givens and Zeh (1995) proposed the Bayesian

synthesis technique which introduced a marginal “postmodel” distribution for θ that takes

into account the relationship between the input parameter θ and the output parameter φ.

The distribution was later observed to suffer from the Borel paradox (Wolpert 1995). The

Borel paradox concerns an ill-defined conditional probability with respect to the choice of

parametrization and occurs when conditioning on an event of probability zero.

Poole and Raftery (2000) subsequently proposed the Bayesian melding approach which

combines πθ(θ) and πφ(φ) using logarithmic pooling. In logarithmic pooling applied to our

clustering context, a combined prior on the output parameter φ is proportional to

π∗θ(φ)απφ(φ)1−α (4)
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where π∗θ(φ) is the induced probability mass function corresponding to πθ(θ) on the φ-space

and 0 ≤ α ≤ 1 is the pooling weight where larger values of α assign more emphasis to π∗θ(φ)

relative to πφ(φ). The term “logarithmic” is understood in the sense that the logarithm of (4)

is additive in its components. However, for our application, we require a density defined on

the continuous input parameter θ rather than the discrete output parameter φ. Accordingly,

what does (4) say about the probability distribution associated with θ? Since the mapping

from φ → θ is not 1:1, the standard change-of-variable formula (which requires a jacobian)

cannot be applied to (4); for a given φ0, there are an infinite number of θ’s that map to φ0.

Referring to (4), Poole and Raftery (2000) proposed a density which is proportional to

π∗θ(C(θ))απφ(C(θ))1−α
(

πθ(θ)

π∗θ(C(θ))

)
(5)

and is based on the rationale that all θ’s mapped to the same φ = C(θ) ought to have

densities proportional to πθ(θ).

We utilize the Bayesian melding approach where features of our clustering problem lead to

simplifications. In particular, our implementation does not require the use of the sampling-

importance-resampling algorithm (Rubin 1988) nor the use of nonparametric density esti-

mation techniques which often face difficulties in high dimensional problems (Liu, Lafferty

and Wasserman 2007).

Our first attempt at an alternative prior for θ corresponds to α = 0 in (5) using logarith-

mic pooling. The prior is given by

p(θ) =

(
πθ(θ)

π∗θ(C(θ))

)
πφ(C(θ)). (6)

From (6), we observe that the output prior πφ is the prominent component since all θ’s that

map to C(θ) have the common factor πφ(C(θ)). For values of θ that share a common C(θ),

their relative contributions are distributed according to the first factor in (6). Since πθ(θ) is
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often a vague default prior, this suggests that the output prior πφ is of overriding importance

in determining p(θ).

Is (6) a proper density? The answer is yes provided that πθ is proper. To see that this is

the case, consider a partition of the θ-space {A1, . . . , Am} where C(θ) = Ci if θ ∈ Ai. Note

that the partition is finite since the number of output partitions is necessarily finite. Then∫
p(θ)dθ =

m∑
i=1

πφ(Ci)

π∗θ(Ci)

∫
Ai

πθ(θ)dθ =
m∑
i=1

πφ(Ci)

π∗θ(Ci)
π∗θ(Ci) =

m∑
i=1

πφ(Ci) = 1.

A difficulty with (6) lies in the specification of the subjective prior πφ(φ). If the clustering

problem has input parameters θ1, . . . , θn corresponding to n underlying populations, then the

number of possible output partitions m is the Bell number Bn (Rota 1964). The Bell number

Bn is the number of ways that a set of n elements can be partitioned into nonempty subsets.

For example, B1 = 1, B2 = 2 and B3 = 5 where B3 corresponds to the five partitions

{{θ1}, {θ2}, {θ3}}, {{θ1, θ2}, {θ3}}, {{θ1, θ3}, {θ2}}, {{θ2, θ3}, {θ1}} and {{θ1, θ2, θ3}}. In

even a small application with n = 10 populations, the specification of a subjective prior

becomes unwieldy as B10 = 115975.

Our solution to the combinatorial problem is to provide a non-negative score S(C(θ)) to

each output partition C(θ). The idea is that an output partition C(θ) can be assessed by

various criteria and we can easily assign a numerical score which describes our relative belief

in C(θ). We keep the number of possible scores modest, much smaller than the associated

Bell number. In the two substantive examples, we propose S-scores that are driven by prior

knowledge. With a non-negative score S(C(θ)) defined on output partitions, this suggests

an alternative prior on the input parameter θ given by

p(θ) ∝
(

πθ(θ)

π∗θ(S(C(θ)))

)
S(C(θ)) (7)

where π∗θ(S(C(θ))) is the induced probability mass function corresponding to πθ(θ) on the

S-space.
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To help clarify the proposed methodology, we consider a toy example where (7) can

be obtained analytically. Consider a data model (1) where there are n = 2 underlying

population parameters θ1 and θ2. The inferential problem concerns the potential clustering

of these input parameters. A uniform prior πθ(θ) = πθ(θ1, θ2) = 1 for θ1, θ2 ∈ (0, 1) is chosen

and we note that a clustering algorithm C applied to a realization of θ leads to one of the

m = 2 output partitions φ1 = {{θ1}, {θ2}} and φ2 = {θ1, θ2}. Suppose that the clustering

algorithm C(θ) merges θ1 and θ2 (i.e. yields partition φ2) when | θ1 − θ2 |< 0.5. Assume

further that we have prior knowledge on the output partitions expressed via an S-score

where S(φ1) = 1.0 and S(φ2) = 4.0. Equivalently, the S-score implies πφ(φ1) = 0.2 and

πφ(φ2) = 0.8. Then referring to (7), πθ∗(S(φ2)) =
∫ ∫

I(| θ1 − θ2 |< 0.5) dθ1dθ2 = 0.75 and

its complement probability πθ∗(S(φ1)) = 0.25. One then obtains

p(θ) ∝


(

1
0.25

)
(1.0) | θ1 − θ2 |≥ 0.5(

1
0.75

)
(4.0) | θ1 − θ2 |< 0.5

which leads to

p(θ) =

 0.800 | θ1 − θ2 |≥ 0.5

1.067 | θ1 − θ2 |< 0.5
. (8)

We therefore observe the effect of the S-scores in (8) as the initial uniform probability on

(θ1, θ2) corresponding to πθ is modified to give more probability to the region | θ1−θ2 |< 0.5.

If we had chosen a more severe S-score, say S(φ1) = 1.0 and S(φ2) = 9.0, then p(θ) in (8)

is even more greatly affected resulting in p(θ) = 0.4 for | θ1 − θ2 |≥ 0.5 and p(θ) = 1.2 for

| θ1 − θ2 |< 0.5.

Now suppose that we are interested in the posterior probability of an event A defined

on output partitions. For example, A could be the event that θi and θj cluster together.

As another example, A could be the event that θi is a singleton such that it clusters into a
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group of its own. Using the preferred prior (7), the posterior probability of the event A is

expressed by the ratio of integrals

I(A) =

∫
I(C(θ) ∈ A)f(y | θ)p(θ)dθ∫

f(y | θ)p(θ)dθ
. (9)

As (9) is generally intractable, we consider an approximation based on importance sam-

pling. Let θ(1), . . . , θ(N) be a sample from an importance sampler with density h(θ). Then

(9) can be approximated by

Î(A) =

∑N
i=1 I(C(θ(i)) ∈ A)f(y | θ(i))πθ(θ

(i))S(C(θ(i)))/(h(θ(i))π∗θ(S(C(θ(i)))))∑N
i=1 f(y | θ(i))πθ(θ(i))S(C(θ(i)))/(h(θ(i))π∗θ(S(C(θ(i)))))

. (10)

where the choice of the importance sampler is based on the particular application. In the ex-

ample of Section 3, we note that (10) simplifies according to h(θ) ∝ f(y | θ). Simplifications

to (10) also occur if h(θ) = πθ(θ) or if πθ(θ) ∝ 1.

A potential challenge in the approximation of (9) via (10) is the term π∗θ(S(C(θ(i)))).

However, we are reminded that the number of S-scores is not large, say s, and it may therefore

be possible to estimate π∗θ(S1), . . . , π
∗
θ(Ss) using the same set of importance sampling variates

θ(1), . . . , θ(N) where

π̂∗θ(Sj) =
1

N

N∑
i=1

I(S(C(θ(i))) = Sj)πθ(θ
(i))/h(θ(i)). (11)

3 EXAMPLE: STYLOMETRY

Given texts of unknown origin, the essential problem of stylometry concerns inference relating

to authorship where linguistic style is taken into account. Stylometry may therefore be

viewed as a clustering problem where texts are partitioned into groups sharing a common

author. Whereas many approaches to stylometry have been proposed (Holmes 1999), we

specifically refer to two Bayesian approaches; (1) Mosteller and Wallace (1963, 1984) in the
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study of the Federalist papers, and (2) Gill, Treschow and Swartz (2007) in the study of

texts associated with the reign of King Alfred.

To assess our methodology in a general stylometric setting, we considered a dataset where

authorship is “known”. Accordingly, we generated data

yi = (yi1, . . . , yiK)′ ∼ Multinomial(mi, θi1, . . . , θiK) (12)

where yik is the frequency count corresponding to the k-th keyword of the i-th text, k =

1, . . . , K−1, yiK is the frequency count corresponding to non-keywords and mi is the number

of words in the i-th text, i = 1, . . . , n. The intention is that keywords are non-contextual

and are used unreflectively by authors such that keyword frequency is constant over texts for

a given author. Hence, differential rates of usage of keywords form word-prints for authors.

Keywords are typically prepositions, conjunctions, articles and common verbs. Clearly, the

choice of keywords ought to be determined by a subject matter expert.

We considered n = 7 texts each consisting of mi = 1000 words where the words were

classified according to K−1 = 5 keywords. Furthermore, the data were generated according

to the usage rate parameters θ1 = θ2 = θ3 = (0.02, 0.02, 0.02, 0.02, 0.02, 0.9)′, θ4 = θ5 =

(0.09, 0.03, 0.01, 0.01, 0.01, 0.85)′ and θ6 = θ7 = (0.01, 0.01, 0.01, 0.03, 0.09, 0.85)′. Therefore,

the seven texts correspond to three authors, and we emphasize that the number of clusters

(authors) is unknown in advance. In this problem, a given stylometric procedure takes the

keyword frequency data y corresponding to the 7 texts, and clusters the texts according to

their authorship parameters θ1, . . . , θ7. Therefore, the goal of our stylometric procedure is

to obtain the “true” partition {{θ1, θ2, θ3}, {θ4, θ5}, {θ6, θ7}} with high posterior probability.

Of course, the data are generated according to (12) and not every simulated dataset provides

strong evidence in favour of the true partition.

The multinomial model (12) used for data generation also serves as the statistical model

from which the likelihood (1) is formed. The multinomial model represents an improvement
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over more tractable normal models that are typically used in stylometric problems (Holmes

and Forsyth 1995). A difficulty with normal models is that they fail to account for the

negative correlations between frequency counts when diagonal variance-covariance matrices

are assumed.

In this application, we demonstrate the use of Ward’s method (Ward 1963) as the tradi-

tional clustering algorithm. Needing a distance measure to differentiate the θ’s, we defined

d(θi, θj) =
K∑
k=1

(θik − θjk) log(θik/θjk) (13)

which is sometimes referred to as Jeffreys divergence (Jeffreys 1946). We note that the

distance measure (13) is a natural choice since it takes into account the fact that θi forms

a probability distribution corresponding to a categorical random variable. Ward’s method

uses (13) to calculate the increase in the “sum of squares” when merging two clusters. We

also note that clustering on the θ’s rather than data better addresses the inferential question

of interest. The θ’s represent the characteristics of authors, and it is the authors whom we

attempt to distinguish.

We invoked a stopping rule in the clustering algorithm which considers the within-author

variability. This is done by first dividing the texts into blocks of roughly the same size, and

then initializing Ward’s algorithm by placing each of the blocks of the i-th text into the i-th

cluster, i = 1, . . . , 7. For our dataset, we divided each text of 1000 words into 10 blocks

of 100 words. The idea is that the variation between blocks by an author is similar to the

variation between texts by the same author. We therefore stopped the clustering algorithm

when a proposed merge between two clusters is such that the cluster distance exceeds the

α-quantiles of the two within-cluster distances. We have chosen α = 0.80 but have found

that results do not differ greatly for small changes in α.

To complete the model specification, we require the prior p(θ) in (7) which incorporates

knowledge on inputs and outputs. For this, it is tempting to define πθ according to a flat
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Dirichlet prior. This is consistent with our claim that we don’t know a great deal about

the inputs (i.e. the keyword frequencies). The flat Dirichlet also has the advantage that it

is proper and is conjugate to the multinomial distribution (12). However, it is important

to remember that a flat “non-informative” distribution for a parameter does not imply a

flat distribution on a transformation of the parameter. This is the case in this application

as a flat distribution πθ induces an informative distribution on φ whereby Ward’s algorithm

yields a single cluster with high probability with respect to πθ. Alternatively, we consider a

prior πθ that is more in line with the observed data. For this, we set πθ as the product of

Dirichlet(ai1, . . . , aiK) densities where aik = λyik + 1. The Dirichlet provides the conjugacy

which is desirable for importance sampling and we chose λ = 1.0. Our procedure may

therefore be described as empirical Bayes.

As for the S-scores, we note that with n = 7 texts, there are B7 = 877 possible output

partitions. This number appears too large to elicit a subjective prior on C(θ). Instead, we

assigned points to partitions C(θ) based on various desirable characteristics. Specifically, we

began with S(C(θ)) = 0. If the total number of output clusters in the final partition is T , we

modified S according to S(C(θ))← S(C(θ))+8−T . This has the effect of assigning greater

scores when the resultant numbers of clusters is small. This is in keeping with a subjective

belief that there are few authors who had the capability of producing the texts in question.

We increased S by an additional point for each pair of the texts 1, 2 and 3 clustered in

the output partition, and by another point for each of texts 4, 5 and 6 when they were not

clustered with any of texts 1, 2 or 3. Finally, an extra point was given if text 4 was clustered

with text 5. These additional points are simply illustrative of potential prior beliefs that

one might hold concerning the texts. Under the given point scheme, a little analysis shows

that S(C(θ)) takes on the values S = 4, . . . , 11 which is more manageable yet still reflects

subjective beliefs on the output partitions.
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For the importance sampler h(θ) in (10), we took advantage of the conjugacy mentioned

earlier whereby h(θ) ∼ f(y | θ)πθ(θ) gives a Dirichlet importance sampler. In the case of

(11), we used the flat Dirichlet h(θ) = πθ(θ) as the importance sampler. Both of these

choices lead to simplications in the estimators (10) and (11).

There may be various inferential questions that are of interest to us, and the complexity

of the questions poses no additional difficulties. For example, we may be interested in the

probability that texts 1, 2 and 3 have a common author and that texts 4, 5 and 6 each have

authors that are different from the authors of texts 1, 2 and 3. This event corresponds to

the way in which the data were generated, and we hope that the posterior probability of the

event is appreciable. The posterior probability that texts clustered in this manner is 0.47.

To check the sensitivity of the empirical Bayes prior πθ, we obtained the posterior probability

0.49 when changing λ = 1.0 to λ = 0.9. This suggests a lack of sensitivity with respect to

the prior on the input parameter θ for which we typically do not have interpretable beliefs.

The probabilities reported above were based on N = 50000 simulations which required

approximately 12.0 minutes of computation on a Sun Workstation. The probabilities can

be regarded as accurate to the second decimal place. To investigate the effect of the output

prior on φ described by S-scores, we modified the S-score to a prior given by S(C(θ)) = 20.0

if the true partition is obtained and S(C(θ)) = 1.0 otherwise. With the stronger prior, one

would expect the posterior probability of the event described above to increase. In this case,

the posterior probability increased to 0.98 when λ = 1.0. This suggests a sensitivity with

respect to the output parameter φ for which we typically have interpretable beliefs.
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4 EXAMPLE: 2010 FIFA WORLD CUP

The FIFA World Cup is a month-long international football (soccer) competition that is

held once every four years. With over 200 international football nations governed by FIFA

(Fédération Internationale de Football Association), only the host country South Africa and

31 qualifying nations competed in the prestigious 2010 edition of the FIFA World Cup. In

the final match, Spain defeated the Netherlands 1-0 in extra time, giving Spain their first

world title.

With the eyes of the world on South Africa, a lot of attention was given to the participant

teams. In particular, teams were ranked, betting odds for matches were established, etc. Our

focus was slightly different. Prior to the World Cup tournament, we wanted to know which of

the 32 teams had a realistic chance of becoming World Cup champions. There is considerable

uncertainty in the outcome of high-level football matches as the “best” teams do not always

win. Reasons for the uncertainty include the dearth of good scoring opportunities, and the

unpredictability of influential events such as offsides, red cards and hand balls. We wanted

to take the uncertainty into account and restrict the field to only those teams that were

capable of becoming champions.

The dataset which we considered involved all of the matches played between 41 teams

of interest during the years 2008 and 2009 prior to the World Cup. This was an important

time frame as as the teams were often competing in World Cup qualifying matches and were

participating in important tournaments. Consequently, of the 216 matches, only 98 games

were friendlies where teams may not have played to their upmost capabilities. Also, we

chose not to go back further in time than two years since we wanted the dataset to reflect

the current abilities of teams. The 41 teams under consideration consisted of the 32 World

Cup qualifying nations plus the following 9 additional teams: Bahrain, Bosnia-Herzegovina,

Costa Rica, Egypt, Gabon, Republic of Ireland, Russia, Tunisia and Ukraine. The 9 extra
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teams were added to augment the dataset. The additional teams were all strong sides that

were involved in the qualification process right until the very end, and therefore these teams

were involved in meaningful matches. In addition, the extra teams provided additional

crossover information. For example, since Asian teams rarely play South American teams,

it was useful to include teams that play both Asian and South American teams.

The statistical model which we implemented is due to Davidson (1970) and is an extension

of the popular Bradley-Terry model (Bradley and Terry 1952). The model takes into account

three outcomes; wins, losses and draws. We decided against models that take goal differential

into account as results are sometimes distorted. For example, when a team is losing by a

goal late in a match, the team often presses and ends up losing by two goals. Also, a

bad loss by three goals may not be qualitatively much different than a loss by five goals.

In the Bradley-Terry setup, the parameter θi is used to represent the strength of the i-th

team. Therefore the θ’s are population parameters, and this fits in line with our clustering

philosophy. Following Davidson (1970), we have

Prob(i defeats j) =
exp{θi + β}

exp{θi + β}+ exp{θj}+ exp{α + (θi + θj + β)/2}

Prob(j defeats i) =
exp{θj}

exp{θi + β}+ exp{θj}+ exp{α + (θi + θj + β)/2}

Prob(draw) = 1− Prob(i defeats j)− Prob(j defeats i).

(14)

In (14), β is the home field parameter where β = 0 if the match was played on a neutral

site, β = γ if the match was played on i’s home field and β = −γ if the match was played on

j’s home field. Therefore a home field advantage is conferred when γ > 0. The parameter α

affects the probability of drawn matches where larger values of α increase the frequency of

draws. It may also be possible to include a covariate that distinguishes between friendly and
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non-friendly matches. However, we made no distinction as we take the view of the sporting

maxim “you are what your record says you are”. We also note that our dataset consisted

of a majority of non-friendly matches and that it is difficult to assign relative weights to

friendlies and non-friendlies.

The likelihood in this application deviates from the structure in (1) as it was formed from

the product of the appropriate probabilities in (14) over the 216 matches. The likelihood

is similar to that used by Hallinan (2005) in the ranking of football teams. To simplify

the analysis, the nuisance parameters α and γ were set to the values obtained through

maximization of the likelihood function.

The traditional clustering algorithm that was implemented is the popular UPGMA al-

gorithm proposed by Lance and Williams (1966). For comparing two teams, the distance

measure

d(θi, θj) = | Prob(i defeats j)− Prob(j defeats i) | (15)

with home field parameter β = 0 is a natural choice. When calculating distances between

clusters, the distance measure (15) is averaged over all distances between component θ’s in

one cluster to the other. We invoked a stopping rule in the clustering algorithm whenever

the minimum cluster distance exceeded 0.5. The stopping rule stipulates that a team is not

of the same quality as teams in another cluster when its probability of winning matches

against such teams is less than 0.25. Likewise, a team is not of the same quality as teams

in another cluster when its probability of winning matches against such teams exceeds 0.75.

For a team in a lower cluster to win four consecutive matches against teams in the highest

cluster (as might be needed in the knockout stage to win the World Cup), this probability

would be less than (0.25)4 = 0.004.

The model specification requires the prior p(θ) in (7) which incorporates knowledge on in-

puts and outputs. For this, we considered an empirical Bayes approach where diffuse normal
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probabilites are assigned to πθ. Specifically, let xi be the points assigned to the i-th team in

the November 2009 FIFA Coca-Cola World Rankings (www.fifa.com/worldfootball/ranking).

The World Rankings are based on four years of data with decreasing weight assigned to

matches over successive years. In addition, the World Rankings are based on points awarded

to matches where points depend on the match result, the importance of the match and the

strength of the opposition. The mean of the normal distribution for the i-th team is then

given by log(xi/
∑41
j=1 xj). Although the FIFA Coca-Cola points are based on seemingly sen-

sible criteria, there is no interpretation associated with the complex point scheme other than

the obvious rank ordering of the teams. It is therefore sensible that the normal variances

should be large (σ = 3.0) to reflect our uncertainty concerning the θ’s. With σ = 3.0, the

prior probabilities in (14) cover the range of all realistic possibilities. The sole exception

is θ1 which we fix according to θ1 = log(x1/
∑41
j=1 xj) since there is a nonidentifiability as-

sociated with (14). As for the S-scores, we have a much better prior understanding of the

relative rankings of the teams. We assigned S(C(θ)) where a greater S-score, S = 1, . . . , 10,

corresponds to a less varied permutation of the output partition C(θ) when compared to the

FIFA Coca-Cola rankings. More specifically, we first obtain the average number of FIFA

Coca-Cola points for teams within each cluster corresponding to the output partition C(θ).

We then create a secondary partition which has the same cluster sizes as C(θ) and whose

cluster members are determined according to the FIFA Coca-Cola rankings. For example,

if the first cluster in the output partition C(θ) has five members, then the first cluster in

the secondary partition has the five teams with the lowest Coca-Cola rankings. Then, for

each team in the secondary partition, we calculate the absolute difference between its points

and the average number of points for the corresponding cluster in the output partition. The

absolute differences are summed over all teams where large totals indicate a greater deviation

from the FIFA Coca-Cola rankings, for which lower S-scores are assigned.
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For the importance sampler h(θ) in (10), we used independent normals for the θ’s. The

means of the normals were obtained by maximizing the likelihood function and the variances

were set according to σ = 1.0. For importance sampling in the calcuation of (11), we

used h(θ) = πθ(θ) as the importance sampler. Various issues associated with the choice of

importance samplers are discussed in Evans and Swartz (1995).

In Table 1, we present the results of the clustering methodology. Estimates of the form

(10) were based on N = 20000 simulations which required approximately one hour of com-

putation on a Sun Workstation. The table entries can be regarded as accurate to within one

digit in the second decimal place. For each team, we calculated the posterior probability

of inclusion in the highest ranking cluster. For teams with less than 10% probability, we

designated these teams as non-contenders. There is no surprise that Brazil and Spain were

designated as the most highly probable contenders as their form prior to the World Cup had

been exceptional and this is consistent with the prior p(θ) derived from the FIFA Coca-Cola

rankings. Traditional powers Argentina, England, Germany, the Netherlands and Italy also

made our contenders list. What is somewhat surprising was the exclusion of 2006 World

Cup finalist France and highly-ranked Portugal from the contenders list. In both cases, al-

though the prior p(θ) supported their inclusion, the recent form of both France and Portugal

expressed through the likelihood had not been up to standard. Perhaps the most surprising

contender in Table 1 is Algeria. Algeria had the fewest matches (four) amongst the 41 teams

in the dataset. In these matches, Algeria won three games, two against Egypt (one home

match and one at a neutral site) and one against Uruguay at home. Their lone defeat was an

away match versus Egypt. Although Egypt and Uruguay had respectable records, it might

be argued that a stronger prior ought to have been placed on Algeria. A similar comment

concerns the unexpectedly high probability assigned to North Korea. In their 6 matches,

North Korea had one away loss (to South Korea) and five draws (four to South Korea and
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one to Japan).

In Table 1, we also provide a summary of the 2010 World Cup results. We observe that

10 of our 14 contenders qualified to the knockout stage. Moreover, all four semifinalists were

included in our list of contenders.

5 DISCUSSION

The clustering approach presented in this paper has a number of key features. The method-

ology is based on hierarchical and partitional algorithms and therefore retains many of

the appealing features of these traditional clustering algorithms. However, the approach is

Bayesian which permits the quantification of the uncertainty in output partitions. Clustering

is carried out on population characteristics rather than data, and this typically addresses

the inferential question of interest in a more direct manner. As a by-product, one does not

need to worry about missing data nor repeated measurements. In addition, the approach

proposes a principled approach for combining prior information on inputs and outputs to

the clustering algorithm.

As in any clustering algorithm, a user needs to specify a distance measure which describes

closeness between populations. In the applications that we have studied, the θ’s are primary

parameters for which intuition is available and distance measures present themselves. A user

does need to think carefully about the prior p(θ) in (7). Typically knowledge on the input

component θ is vague although subjective knowledge exists on the output partitions φ. It is

a matter of quantifying the subjective knowledge via S-scores. It is also necessary to think

carefully about the choice of the importance sampler h(θ).
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Contenders Non-Contenders Knockout Stage

Team Probability Team Probability Teams

Brazil 0.97 Denmark 0.09 Spain(1)

Spain 0.87 North Korea 0.09 Netherlands(2)

Algeria 0.50 Paraguay 0.06 Germany(4)

Argentina 0.48 Cameroon 0.06 Uruguay(4)

England 0.36 United States 0.06 Paraguay(8)

Chile 0.34 Japan 0.05 Argentina(8)

Australia 0.29 Honduras 0.05 Ghana(8)

Germany 0.27 Greece 0.03 Brazil(8)

Uruguay 0.23 Nigeria 0.02 Portugal(16)

Netherlands 0.14 Cote d’Ivoire 0.02 Japan(16)

Mexico 0.14 France 0.02 Chile(16)

Switzerland 0.11 Portugal 0.01 Slovakia(16)

Italy 0.10 Slovakia 0.00 Mexico(16)

South Korea 0.10 Serbia 0.00 England(16)

Ghana 0.00 United States(16)

Slovenia 0.00 South Korea(16)

New Zealand 0.00
South Africa 0.00

Table 1: Posterior probabilities of inclusion for teams that were deemed potential 2010 FIFA

World Cup champions. For comparison, the 16 teams that advanced to the knockout stage

are listed where the superscript (i) denotes that a team advanced to the group of size i.
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