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Extended Voting Measures 21. INTRODUCTIONWith complex voting rules, it is not always the case that voting members have equal strength.As a result, a number of indices have been introduced to quantify relative voting power. Anincomplete list of such indices includes those proposed by Shapley and Shubik (1954), Banzhaf(1965), Deegan and Packel (1978), Johnston (1978) and Stra�n (1978). An appraisal of themerits of the �rst four of these indices is given by Felsenthal and Machover (1995).Whereas voting measures are widely used in the social sciences, their theoretical developmenthas arisen primarily from the game theory literature. Consequently, the various measures areformal. In other words, the various measures are based on counting arguments and ignorestatistical perspectives.In this paper, we consider the use of historical voting data to extend voting measures. Whenvoting members explicitly agree to vote in coalitions, the expressed relationships are used todetermine traditional voting power indices. For example, if two members always decide to votethe same, traditional methods consider the two members as a single member with a double vote.It seems natural then to use historic data to capture the stochastic coalitions and anti-coalitionsthat exist between voting members.The voting measures that we consider are the class of Banzhaf indices (Banzhaf (1965)) andthe class of satisfaction indices (Stra�n (1978)). These measures are most readily extendedto \empirical" versions through the consideration of historical voting data. Not only do ourempirical indices use the information available from historical voting data, but they also avoid



Extended Voting Measures 3an unrealistic assumption used in the calculation of the traditional Banzhaf and satisfactionindices. The traditional Banzhaf and satisfaction indices are calculated under the assumptionof equal probabilities for all voting combinations. Heard and Swartz (1997a) consider a simplestatistical model based on the Dirichlet distribution to provide empirical Banzhaf indices. Inthis paper, we consider a more complex model which expresses the random historical data interms of unknown voting probabilities. The proposed model permits historical data that mayinvolve only subsets of the eligible voting members. The computational challenge involves theestimation of the unknown voting probabilities. This translates to an integration problem whichmay possibly be high-dimensional.In Section 2, we describe the class of Banzhaf indices and the class of satisfaction indicesused to quantify voting power. Through the consideration of historical voting data, these mea-sures are extended to give empirical Banzhaf and empirical satisfaction indices. Although theBanzhaf indices have received greater attention in the social science literature, we argue thatthe satisfaction indices might be preferred. In Section 3, we describe the statistical model usedin the development of both the empirical Banzhaf and empirical satisfaction indices. We alsolook at the implications of the model. Gibbs sampling and importance sampling approaches areconsidered in Section 4 in an attempt to solve the associated integration problem. A criticalanalysis of the various integration methods is provided. In Section 5 we look at an examplebased on data arising from the Supreme Court of Canada.



Extended Voting Measures 42. BANZHAF AND SATISFACTION INDICESAlong with the Shapley-Shubik index, Banzhaf indices have enjoyed widespread use in thesocial sciences. Banzhaf indices have received particular attention in courts of law (see Johnson(1969) and Lucas (1982)) and in discussions involving Canada's constitutional amending formula(see Kilgour (1983), Levesque and Moore (1984) and Heard and Swartz (1997b)).The Banzhaf index for a voter can be de�ned as the probability that the voter's decision ispivotal in determining the voting outcome where it is assumed that each combination of \Yes"and \No" votes by the voting members is equally likely. For example, consider a referenduminvolving 3 voters where a majority (ie. 2 or more votes) is required for the referendum to pass.Then using obvious notation, the �rst voter's decision is pivotal in the outcomes (YYN), (YNY),(NNY) and (NYN) since a change by the �rst voter causes a reversal in the voting decision.Therefore the Banzhaf index for the �rst voter is 4(1=2)3 = :5.A variation of the Banzhaf index is the power to initiate index PII for an individual. It canbe de�ned as the conditional probability that the voter's decision is pivotal in determining thevoting outcome given that a negative decision has been reached where it is assumed that eachcombination of \Yes" and \No" votes by the voting members is equally likely. Using the exampleabove, the outcomes (NNN), (YNN), (NYN) and (NNY) each lead to a negative decision andthe �rst voter's decision is pivotal in the cases (NYN) and (NNY). Therefore the PII for the�rst voter is 2(1=2)3=4(1=2)3 = :5. Similarly, the power to prevent index (PPI) for an individualcan be de�ned as the conditional probability that the voter's decision is pivotal in determining



Extended Voting Measures 5the voting outcome given that a positive decision has been reached where it is again assumedthat each combination of \Yes" and \No" votes by the voting members is equally likely. ThePII and the PPI can be seen as re�nements of the Banzhaf index. They provide information onthe power of an individual to initiate and to block a voting decision. The Banzhaf index can beexpressed as 2(PII)(PPI)=(PII + PPI).Sometimes the Banzhaf index, the PII and the PPI are scaled such that the sum of each indexover all voting members is equal to 100. However, in these cases, the attractive probabilisticinterpretation is lost. The indices of Coleman (1971) are also seen to be proportional to theBanzhaf index.The class of satisfaction indices are voting measures used to describe how often the decisionof a voting member agrees with the group decision. The satisfaction index for a voter can bede�ned as the probability that the voter is satis�ed where it is assumed that each combinationof \Yes" and \No" votes by the voting members is equally likely. For example, consider againa referendum involving 3 voters where a majority is required for the referendum to pass. Thenthe �rst voter is satis�ed in the outcomes (YYY), (YNY), (YYN), (NNN), (NYN) and (NNY).Therefore the satisfaction index for the �rst voter is 6(1=2)3 = :75.Analogous to the PII and the PPI, we can de�ne the negatively-oriented and positively-oriented satisfaction indices. The negatively-oriented satisfaction index for a voter is the condi-tional probability that the voter is satis�ed given that the voting decision is negative. Similarly,the positively-oriented satisfaction index for a voter is the conditional probability that the voter



Extended Voting Measures 6is satis�ed given that the voting decision is positive. Both of these indices are calculated underthe assumption that each combination of \Yes" and \No" votes by the voting members is equallylikely.Now whether one uses the Banzhaf indices, the satisfaction indices or any of the scaledversions, all of these indices share the often unrealistic assumption of equal probability for allvoting combinations. This is equivalent to assuming independence amongst the voters and equalprobability (ie., 1/2) of a \Yes" and \No" vote for each voting member. We relax this assumptionallowing the possibility that certain voting members tend to align in their voting patterns.The idea is simple. We estimate the probabilities of each of the 2m voting combinations. Wethen calculate empirical versions of the Banzhaf and satisfaction indices by summing over theappropriate voting combinations. In Section 3, we describe the statistical model used to estimatethe voting probabilities.Although the satisfaction indices do not have as wide usage as the Banzhaf indices, theydo not su�er from a certain grouping paradox as described in Brams (1975). A di�culty withthe empirical Banzhaf indices is that they can sometimes mask power when members formcoalitions. For example, consider the case of 5 individuals where a majority vote is requiredfor a decision to pass. Suppose further that the �rst 4 members are of one mind and agree onalmost every issue. In this extreme situation, members 1-4 are omnipotent since their votingoutcome determines the decision regardless of the vote of member 5. With a huge numberof historical votes, we would have empirical probabilities Prob(Y Y Y Y Y ) + Prob(Y Y Y Y N) +



Extended Voting Measures 7Prob(NNNNN) + Prob(NNNNY ) � 1. Hence, individually, members 1-4 are rarely pivotalin the voting decision. Consequently, their empirical Banzhaf indices would be nearly zero eventhough they are extremely powerful.As mentioned by a referee, all of the traditional voting measures consider only the possi-bility of a \Yes" and \No" vote for each voting member and do not include the possibility ofabstentions. If a new measure could be developed which takes into account all 3m possibilities,it may also be possible to estimate these parameters and likewise construct empirical measures.3. THE MODELConsider a statistical model involving m voters. Let the subscript ij = 2 denote that memberj votes \Yes", let ij = 1 denote that member j votes \No" and let pi1���im be the correspondingprobability for all m voters. The calculation of the various voting measures from Section 2assumes that pi1���im = 1=2m for all voting combinations i1 � � � im. We develop a statistical modelwhereby historical voting data provides an estimate p̂i1���im of pi1���im . We then use the estimatedprobabilities to calculate the various \empirical" voting measures. This provides a frameworkfor informal coalitions that may exist between certain voting members. For example, consideragain the case of m = 3 voters where a majority vote is required to pass a referendum. Thenthe empirical Banzhaf index for the �rst voter is p̂221 + p̂212 + p̂112 + p̂121 and the empiricalsatisfaction index for the �rst voter is p̂222 + p̂212 + p̂221 + p̂111 + p̂121 + p̂112.The data consists of votes taken on n previous occasions. Let xi = (xi1; : : : ; xim) denote the



Extended Voting Measures 8voting result on occasion i wherexij = 8>>>>>>><>>>>>>>: 0 if individual j did not vote on occasion i1 if individual j voted \No" on occasion i2 if individual j voted \Yes" on occasion i :We therefore allow historical data to include occasions where all members vote and occasionswhere only a subset of the members vote. The provision for the latter situation typically resultsin the consideration of much larger data sets. For example, we consider occasions where certainmembers are unable to vote and also occasions where members intentionally abstain from voting.We also consider situations where the voting body changes over time. For example, we may beginwithm1 voting members who vote over a period of time. After a while, m2 of the voting membersleave and are replaced by an additional m3 voting members who then vote over a period of time.In this case, m = m1 +m3 as the m2 voters are still considered in the analysis.Since the 2m voting probabilities pi1���im are de�ned on the simplex, it is natural to assigna Dirichlet(1; : : : ; 1) distribution for the prior density [p]. This at proper prior describes ourapriori view of the distribution of voting probabilities. It is a widely accepted reference priorand is often used to express ignorance (see Berger (1985)). Note that the use of the prior meansp̂i1���im = E(pi1���im) = 1=2m for all i1 � � � im provide estimates that give the original assumptionsused in the calculation of the traditional Banzhaf and satisfaction indices.



Extended Voting Measures 9The conditional distribution of the data x given p (known as the likelihood) is given by[x j p] / nYi=1 XSi py (1)where Si = fy = (y1; : : : ; ym) : yj = 1; 2 8j where yj = xij if xij 6= 0g.To better understand the speci�cation of the likelihood, observe �rst that the product in(1) is taken over the n voting occasions. In the case of complete data (ie. all members alwaysvote) the likelihood reduces to [x j p] / Qni=1 pxi which is simply a multinomial probability.For incomplete data (ie. some of the xij = 0) we have modelled the outcome of the ith votingoccasion as the marginal probability of the actual voting members by summing over the indicesof the members who did not vote.Although seemingly intuitive, the speci�cation of the likelihood (1) has interesting conse-quences. To simplify the presentation, consider the case ofm = 2 voters although the discussionreadily extends to the general case. We �rst emphasize that pij is the joint probability thatmember 1 votes i and member 2 votes j where members 1 and 2 are possibly sitting in the sameroom and are possibly exerting some inuence on one another. Using the notation pi� and p�jwe refer to the probabilities that member 1 votes i and member 2 votes j respectively where thevoting decisions are made in privacy. We therefore think of the subscript � as an indicator ofabsence from the voting table. Under independence (ie. pij = pi�p�j), it is immediate that theprobability of a vote made in privacy is equal to the sum of the relevant joint probabilities (for



Extended Voting Measures 10example, pi� = pi1 + pi2). Therefore, in the case of members who vote separately or in the caseof truly independent thinkers, there is no di�culty with the speci�cation of the likelihood (1).When members exert inuence on one another, the modelling assumptions pi� = pi1 + pi2 andp�j = p1j + p2j serve as an approximation.Given the likelihood [x j p] in (1) and the prior density [p] / 1, the Bayesian paradigmstates that the posterior density is given by[p j x] / nYi=1 XSi py (2)where p is de�ned on the simplex of dimension 2m � 1. From the posterior distribution, wethen obtain the posterior means p̂i1���im = E(pi1���im j x) to calculate the various empirical votingmeasures. Note that in the case of complete data, the posterior reduces to a Dirichlet distributionand it follows that p̂i1���im = 1 +Pnj=1 Ii1���im(xj)2m + nwhere Ii1���im is an indicator function. Note further that in the absence of historical data, wehave n = 0 and therefore pi1���im = 1=2m which corresponds to the values used in the traditionalcalculations.More generally, the posterior distribution (2) is a mixture of Dirichlets. Letting vi denote thenumber of missing voters on the ith voting occasion, the mixture distribution consists of 2Pni=1 vi



Extended Voting Measures 11mixture components. Although the mean vector for a mixture of Dirichlets can be calculatedanalytically, in many cases the number of mixture components would be too great for even acomputer to handle. We therefore turn to approximate solutions to the integration problem.These are taken up in Section 4.Note that rather than calculating posterior means, one may instead prefer to estimate votingprobabilities using posterior modes. With the at Dirichlet prior, this is equivalent to maximumlikelihood estimation. Note that in the case of complete data, maximum likelihood estimationresults in voting probabilities that are given by proportions of votes in the respective votingdirections. This in turn reduces empirical satisfaction indices to the proportion of time thatindividuals are satis�ed.In some problems, the nature of the voting issues may suggest a modi�cation to the statisticalmodel. In particular, we may want to impose the following restriction on the voting probabilities:pi1���im = pi01���i0m where i0j = 8>>><>>>: 2 ij = 11 ij = 2 j = 1; : : : ; m: (3)In assumption (3), note that i1 � � � im and i01 � � � i0m have the same alignment (ie. a speci�edsubset of voting members agree and the complementary subset disagree). This is a reasonableassumption from the point of view that voting issues are random. For if issue A is random,then so is A, and we would require that pi1���im(A) = pi1���im(A) for all i1 � � � im which in turnimplies (3). Assumption (3) has the e�ect of reducing the dimension of the parameter space



Extended Voting Measures 12by half. With the restriction, the posterior distribution retains the same form in (2) exceptthat P p2i2���im = 1=2 where the summation is taken over ij = 1; 2, and j = 2; : : : ; m. Theonly time when we do not impose assumption (3) is when the voting outcomes \Yes" and \No"have directional meaning. For example, a vote of \Yes" might always be a vote in favour ofconservatism.Therefore we have developed a method to adapt the traditional Banzhaf and satisfactionindices to empirical indices. Furthermore, our methods permit historical voting data that includecases where only subsets of the voters participate.4. COMPUTATIONSWe now consider the calculation of the mean vector of the posterior distribution (2). It is well-known that high-dimensional integration can su�er from many pitfalls. We therefore considervarious integration techniques as this provides a check on the accuracy of computations.The technique of importance sampling proceeds by expressing an integral I(v) asI(v) = ZS v(p)[p j x] dp = ZS v(p)[p j x]g(p) g(p) dpwhere S is the simplex of dimension 2m � 1, v = v(p) denotes a posterior characteristic ofinterest and g(p) is an importance sampling density. We then generate independent variates



Extended Voting Measures 13p(1); : : : ;p(N) from g(p) and estimate I(v) byÎ(v) = 1N NXi=1 v(p(i))[p(i) j x]g(p(i)) :It is clear that Î(v) is an unbiased and consistent estimate of I(v) provided that the integralRS v(p)[p j x]2=g(p) dp is �nite. The strategy in importance sampling is to �nd an importancesampling density g(p) which mimics [p j x] and allows e�cient generation of variates. Thereason that we want g(p) to mimic [p j x] is so that the variance of Î(v) is not too large andconvergence to I(v) is rapid. We then estimate the mean vector of the posterior distribution byÎ(p)=Î(1).We consider 3 importance sampling schemes. The simplest uses the at Dirichlet prior[p] / 1 as the importance sampler. Whereas generation from the Dirichlet distribution isstraightforward and the approach works well in low dimensions (ie. small m), we have foundthat the method is unreliable in higher dimensions. For example, importance sampling fromthe prior gave incorrect results in the example of Section 5 where m = 9 and the dimension is2m�1 � 1 = 255. The problem is that the prior does not mimic the posterior surface very well,and as a result, too much sampling is done in regions of low posterior probability. This is acommon problem when using priors as importance samplers.Our second importance sampler is more sophisticated in that more of the posterior is ab-sorbed into the importance sampler. That is, we use a Dirichlet importance sampler where the



Extended Voting Measures 14Dirichlet parameter corresponding to pi1���im is 1+Pnj=1 Ii1���im(xj). Therefore, when most of then historical voting occasions involve no absentee voters, the importance sampler will provide agood match to the posterior. Although this importance sampler performs better than the �rst,it may still su�er from sampling too frequently in regions of low posterior probability.As as third attempt, we try the standard importance sampling approach based on the mul-tivariate Student distribution. To use Student importance sampling or any of its variants (seeEvans and Swartz (1995)), we must �rst transform the integral to R2m�1. There are a numberof ways of doing this including the method described by Evans, Gilula and Guttman (1989). Re-gardless of the transformation, one will be left with integrals of the form RR2m�1 f(x) dx wheref(x) may be an enormously complex (and expensive to evaluate) function. To begin Studentimportance sampling, the calculation of the Hessian matrix of f(x) is �rst required. Since thesecond derivatives of f(x) are typically too di�cult to express in closed form, it is customary toobtain approximations using �rst and second di�erences. This alone requires 0(22m+1) calls ofthe function f(x). It is because of this problem, the di�culty of high-dimensional optimizationin determining the mode of f(x) and the problem of numerical inversion of large covariance ma-trices that Student importance sampling is generally considered infeasible for high-dimensionalproblems. In fact, Student importance sampling fails to work on the example presented inSection 5.We make a �nal comment on the various importance sampling techniques which is relevantto the problem at hand. Although the following observation is known to those working in



Extended Voting Measures 15numerical integration, to our knowledge, it has not been explicitly reported in the literature.The question arises as to when the estimate Î(p)=Î(1) is close enough to the posterior meanI(p)=I(1). A naive approach would involve periodically looking at the value Î(p)=Î(1), andthen stopping the simulation when the quantity has stabilized. For this problem, it turns outthat such an approach can be misleading. As reported earlier, our importance samplers maysample too frequently in regions of low posterior probability. The result of this is a poor estimateÎ(p)=Î(1), but moreover, this estimate may appear to converge. The reason for this is that eventhough some generated p(i) give atypical values of Î(p) and Î(1), the ratio of Î(p) to Î(1) tendsto cancel and provide typical values. As a diagnostic, it is better to look at the quantities Î(p)and Î(1) individually. This is roughly equivalent to the widely recommended method of lookingat the importance sampling weights (see Evans and Swartz (1995)).We now consider the approximation of the posterior mean vector via Gibbs sampling withdata augmentation. Recall that the vector xi expresses the outcome for each voting member onthe ith voting occasion. In cases where certain members do not vote, we complete the votingrecord with the latent vector zi wherezij = 8>>>>>>><>>>>>>>: 0 if individual j actually voted on occasion i1 if individual j would have voted \No" on occasion i2 if individual j would have voted \Yes"on occasion i :Therefore the vector xi + zi gives the complete voting record for all members on occasion i



Extended Voting Measures 16whether or not they had actually voted. The introduction of the latent vector zi in Gibbssampling is known as data augmentation (see Tanner and Wong (1987) and Gelfand and Smith(1990)).To obtain the relevant conditional distributions for Gibbs sampling, we write[x; z;p] / [x; z j p][p] / nYi=1 pxi+zi / Yi1���im pPnj=1 Ii1 ���im (xj+zj)i1���im : (4)Using (4), the conditional density [p j x; z] is Dirichlet where the Dirichlet parameter correspond-ing to pi1���im is 1 +Pnj=1 Ii1���im(xj + zj). The remaining conditional densities [zi j p;x; z(i)],i = 1; : : : ; n are discrete where z(i) denotes all vectors z1; : : : ; zn except zi. Speci�cally,Prob[zi = (zi1; : : : ; zim) j p;x; z(i)] = pzi1 ���zimPSi pywhere zij = xij if xij 6= 0 and Si = fy = (y1; : : : ; ym) : yj = 1; 2 8j where yj = xij if xij 6= 0g.Then beginning with starting values p(0); z(0)1 ; : : : ; z(0)n , Gibbs sampling proceeds by iterativelysampling from the conditional distributions. After a su�cient period of time, the generated p(i)values are averaged to estimate the posterior mean vector. To obtain the posterior standarddeviations of the empirical indices, a little more computation is required. At each iteration, weneed to calculate the indices based on the generated p(i) values. We then obtain the average ofthe indices Ê(I) and the average of the squares of the indices Ê(I2). The posterior standarddeviations are then approximated by (Ê(I2)� Ê(I))1=2.



Extended Voting Measures 17The method of Gibbs sampling with data augmentation proves to be the most successful ofthe integration methods considered in this paper. In particular, it is easy to sample from theconditional distributions and the approach gives correct answers for the example presented inSection 5. We are con�dent in the Gibbs sampling solutions due to the agreement of resultsbased on di�erent starting values for the Gibbs sampling algorithm. We also note the agreementof the Gibbs sampling solutions with those obtained by importance sampling approaches in lowerdimensional problems. 5. AN EXAMPLEWe now turn to an example concerning the m = 9 judges who currently sit on the SupremeCourt of Canada. For a decision to pass, a majority of the judges must vote in favour of the issue.Formally, each judge has equal voting power, and all traditional voting indices highlight thisfact. However, it is possible that some judges may be particularly inuential and it is possiblethat informal coalitions may exist between certain judges. From a political science perspective,these are topics of great interest. We gain some insight on these questions using the empiricalvoting measures developed in this paper.Data has been collected on the n = 421 Supreme Court decisions rendered in the period1993 to 1996 where only 169 of the decisions involve complete data (ie. no absentee judges). Itis interesting to note that amongst the 421 decisions, 298 of these involve a consensus decision.This indicates an extreme departure from the traditional assumption of equal probability for allvoting combinations. The data is readily available from the authors upon request.



Extended Voting Measures 18We impose restriction (3) as a \Yes" vote has no directional meaning. This requires thecalculation of integrals of dimension 2m�1 � 1 = 255. We note that for the special structureinherent in this problem (ie. m odd and a positive decision requiring majority), the symmetryis such that the satisfaction index, the positively-oriented satisfaction index and the negatively-oriented satisfaction index are all equal. Gibbs sampling is successfully carried out using 10; 000iterations.In Table 1, we compare various measures associated with the Supreme Court data. Weobserve that although each judge has the same formal power (expressed by the satisfactionindex), the reality is that di�erent judges have varying degrees of satisfaction. In particular, itis noteworthy that the 2 female judges, C. L'Heurex-Dub�e and B. McLachlin, have the lowestempirical probabilities of satisfaction. That is, they are in agreement with Supreme Courtdecisions less often than the other 7 judges. We also observe that the empirical satisfactionindices have the same ordering as the proportion of time that each judge votes in the majority.In fact, the empirical satisfaction index can be viewed as a compromise between using no data(ie. the standard satisfaction index) and relying completely on the data (ie. the proportionof time that each judge votes according to the majority). Finally, we note that consensusdecisions increase the values of the empirical satisfaction indices. When these \easy" decisionsare removed, and the analysis repeated on the 126 non-unanimous decisions, we see that thenew empirical indices become smaller but retain their order. A more detailed analysis of thedataset is under preparation in a companion paper.
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Extended Voting Measures 22
Table 1: Satisfaction indices (S), empirical satisfaction indices (ES), the proportion of decisionssatis�ed (PS) and empirical satisfaction indices based on the restricted data set of 126 non-unanimous decisions (ESR) for the 9 Supreme Court judges. Posterior standard deviations aregiven in parentheses.Judge S ES PS ESRA. Lamer .637 .812 (.016) .933 .670 (.026)G. La Forest .637 .812 (.016) .929 .669 (.025)C. L'Heureux-Dub�e .637 .750 (.018) .807 .572 (.026)J. Sopinka .637 .807 (.016) .915 .657 (.025)C. Gonthier .637 .808 (.016) .923 .659 (.025)P. Cory .637 .837 (.015) .964 .711 (.024)B. McLachlin .637 .774 (.017) .873 .600 (.027)F. Iacobucci .637 .833 (.015) .955 .702 (.025)J. Major .637 .802 (.016) .903 .650 (.026)


