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Abstract

Recent computational advances have made it feasible to fit hierarchical models in
a wide range of serious applications. If one entertains a collection of such models for a
given data set, the problems of model adequacy and model choice arise. We focus on
the former.

While model checking usually addresses the entire model specification, model fail-
ures can occur at each hierarchical stage. Such failures include outliers, mean structure
errors, dispersion misspecification, and inappropriate exchangeabilities.

We propose another approach which is entirely simulation based. It only requires
the model specification and that, for a given data set, one be able to simulate draws
from the posterior under the model. By replicating a posterior of interest using data
obtained under the model we can “see” the extent of variability in such a posterior.
Then, we can compare the posterior obtained under the observed data with this medley
of posterior replicates to ascertain whether the former is in agreement with them and
accordingly, whether it is plausible that the observed data came from the proposed
model. This suggests the large scale use of Monte Carlo tests, each focusing on a
potential model failure. It thus suggests the possibility of examining not only the
overall adequacy of the hierarchical model but, using suitable posteriors, the adequacy

of each stage.



This raises the question of when individual stages are separable and checkable which
we explore in some detail. Finally, we develop this strategy in the context of generalized

linear mixed models and offer a simulation study to demonstrate its capabilities.
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1 Introduction

Recent computational advances have made it feasible to fit hierarchical models in a wide
range of serious applications. As one entertains a collection of such models for a given data
set, one needs to address the problem of model determination, i.e., model adequacy and model
selection. In this regard, it seems as though model choice has received the greater attention.
The scope of activity is revealed in recent work on Bayes factors by Kass and Raftery (1995)
and Raftery (1993); on cross validation by Pettit and Young (1990), Gelfand, Dey and Chang
(1992), Gelfand and Dey (1994) and Gelfand (1995); on intrinsic Bayes factors by Berger
and Pericchi (1993, 1995); and on posterior Bayes factors by Aitkin (1991). Related work on
choosing amongst a very large number of models has appeared from McCulloch and George
(1993) and from Madigan and Raftery (1993). Sampling based fitting of formal Bayesian
model choice which handles the change in dimensionality and interpretation of parameters
across models has been discussed by Carlin and Chib (1995), Green (1994) and Phillips and
Smith (1994).

For model adequacy much less has been said. Model checking typically addresses the
entire hierarchical specification. Model failures can occur at each hierarchical stage. Such
failures include outliers, mean structure errors, dispersion misspecifications and inappropri-
ate exchangeabilities. These failures are not necessarily distinct, e.g., is an extreme response
due to the fact that the provided stochastic mechanism permits inadequate dispersion or to
an inadequate elaboration of the mean structure under this mechanism! It seems safer to
attempt to identify the presence of a stagewise failure without attributing a unique explana-
tion to it. Moreover, in providing the probabilistic components of a hierarchical model, we
rarely believe that any of the distributions are correct. Indeed, those specifications further

removed from the data are often intentionally made less precise, not because we believe them



to be correct but in order to permit the data to drive the inference. However, what is true
is apart from model checking. If we undertake model criticism we must examine the ade-
quacy of what is specified. In this regard, it is apparent that we must assume proper priors
(or else the observed data could not have arisen under the model) and that very vaguely
specified hierarchical models will be difficult to criticize. Model choice criteria are required
to eliminate such models. Also, in examining high dimensional models, often having more
parameters than data points, it becomes silly to speak of adequacy. Such models must be
adequate unless prior specifications are sufficiently precise to permit conflict with the data.
In our work here we are interested in that middle range of models which are not so parsimo-
nious as to prevent useful hierarchical modeling but are not so high dimensional as to render
adequacy a nonissue. We attempt more formal clarification of this notion in section 3 but
suspect that in applications many modelers and data analysts find that such models strike

a sensible balance.

The formal Bayesian model adequacy criterion (as in Box, 1980) proposes that the
marginal density of the data be evaluated at the observations. Large values support the
model, small values do not. Assessment of the magnitude of this value could be facilitated
by standardizing, using the maximum value or an average value of this density (Berger, 1985).
In our view, such a checking procedure will be infeasible for the models we are interested
in. The required high dimensional density most likely will be difficult to estimate well and
hopeless to calibrate. In addition, with hierarchical models the procedure does not provide
feedback regarding the adequacy of the stagewise specifications. Alternative approaches for

model criticism are needed. We briefly review what has been proposed.

Chaloner and Brant (1988) and Chaloner (1994), focusing on outlier detection, suggest
what is ultimately posterior-prior comparison. A somewhat general version of their idea is
to identify random variables whose distribution, a priori, is a standard one. In particular,
they choose these variables to be so-called realized residuals. Given the data, the posterior

distribution of each such residual is obtained. Any posterior which differs considerably



from its associated prior is claimed to indicate an outlying observation. In particular, tail
area comparisons are proposed. This approach seems attractive since, if the entire model
specification is correct we don’t anticipate substantial prior-data disagreement whence the
posterior should be roughly centered where the prior is but more concentrated. However, as
we amplify in section 5, such comparisons will be successful on average but fail to recognize
the wvariability in the posterior when the model is correct. In section 2 we show that such

comparison can also be interpreted, using cross-validation, as a diagnostic for influence.

A second approach is often referred to as model expansion or elaboration. The idea is
that model failures can be captured by specifying a more complex model using mixtures.
This is well discussed in the case of outlier detection as in, e.g., Guttman, Dutter and
Freeman (1978), Freeman (1980), Pettit and Smith (1985) and Sharples (1990). Recent
work of Albert and Chib (1994) considers other model failures, in particular, exchangeability
in the direction of partial exchangeability. Regardless, the model of interest becomes a
reduced model nested within the expanded or full model so that formal or informal model
choice procedures can be used to criticize the adequacy of the reduced one. Model checking
is converted to model choice. Recent work of Miiller and Parmigiani (1995) and Carota,
Parmigiani and Polson (1993) combines elaboration with posterior-prior comparison using
the Kullback-Leibler distance between these two distributions for the elaboration parameter.
Implementation of this approach requires exact specification of the expanded model, i.e.,
exactly what sort of failure one is looking to detect. Even then, a variety of elaborations can
capture a particular type of failure so which one should we choose? It may be preferable to
discern whether the observed data, when the model of interest is fitted to it, can directly

reveal the presence of a failure of the model and its nature.

A third approach is taken up in Gelman, Meng and Stern (1995) who propose a posterior
predictive strategy. The authors avoid the posterior Bayes factor (Aitkin, 1991) which has
been effectively criticized (Lindley, 1991; Smith, 1991). Rather, they define a discrepancy

measure as a function of data and parameters treating both as unknown in one case, inserting



the observed data in the other. They then compare the resulting posterior distributions given
the observed data. Gelman et al argue that the posterior predictive distribution treats the
prior as an outmoded first guess whereas the prior predictive distribution treats the prior as
a true “population distribution”. While few would argue that the prior distribution is ever
correct, as noted above, model checking checks the acceptability of the model fitted to the
data. Furthermore, this posterior predictive approach can be criticized, as was the posterior
Bayes factor, for, in essence, using the data twice. The observed data, through the posterior,
suggests which values of the parameter are likely under the model. Then, to assess adequacy,
the observed data is checked against data generated using such parameter values apparently
making it difficult to criticize the model. We shall observe this in our example of section
5. In other words, the approach of Gelman et al is based upon the posterior distribution of
a discrepancy measure given both the model and the data. It may be preferable to study
the nature of the posterior distribution of this discrepancy given only the model and then
compare it with the posterior distribution of this discrepancy obtained under the observed

data.

A fourth approach is developed in recent work of Hodges (1994). He shows, in the case
where all hierarchical levels are Gaussian, how to reexpress linear hierarchical models as
standard linear models with simple covariance structure. He then suggests that familiar
linear models diagnostic tools be brought into play, e.g., residual plots, added variable plots,
transformations, collinearity checks, case influence, etc. There is a bit of adhockery in
tailoring some of these tools to the hierarchical structure. In addition, the restriction to

normal linear models is somewhat limiting.

We propose yet another approach which is entirely simulation based. Though more com-
putationally intensive than the foregoing approaches (which nowadays ought not be viewed
as an impediment), it is conceptually quite simple. It only requires the model specification
and that, for a given data set, one be able to simulate draws from the posterior under the

model. If the model can be fitted in this way to the observed data, then it is reasonable to



suppose that it can be thus fitted to data generated under the model. The strategy becomes
clear. By replicating a posterior of interest using data obtained under the model we can “see”
the extent of variability in such a posterior. Then, we can compare the posterior obtained
under the observed data with this medley of posterior replicates to ascertain whether the
former is in agreement with them and accordingly, whether it is plausible that the observed
data came from the proposed model. This suggests the large scale use of Monte Carlo tests,
each focusing on a potential model failure. It also suggests that not only may we examine
the overall adequacy of the hierarchical model but, using suitable posteriors, the adequacy
of each hierarchical stage. This raises the question of whether or not the hierarchical model

itself permits stagewise checking.

To reiterate, our approach compares posteriors arising under the data with associated
posteriors arising under the specified model. Since posteriors are the tool for inference such

comparison seems natural for model criticism.

The plan of the paper is thus the following. In section 2 we consider the family of gen-
eralized linear mixed models (Breslow and Clayton, 1993) introducing suitable discrepancy
functions for checking such models. In section 3 we examine the matter of stagewise checka-
bility of a model. In section 4 we detail the proposed simulation-based approach for carrying

out such checking. Finally, in section 5 we illustrate with a binomial regression model.

2  Hierarchical Models and Discrepancy Functions

Our simulation-based approach to model checking employs discrepancy measures. We elab-
orate such measures here confining ourselves to exemplification with a two stage hierar-
chical model, though all ideas extend directly to the case of more than two stages. Since
the methods of Gelman, Meng and Stern (1995) and Chaloner and Brant (1988) are also

discrepancy-based, we summarize them with pertinent comments.



Let y,n x 1, denote the data vector and let 8,p x 1 denote the first stage parameters,
i.e., the likelihood is f(y |#). Customarily, conditional independence is assumed in which
case f(y |6) :ili fi(y; |@). Subscripting by ¢ suggests a regression context where there is
a covariate vect;r x; associated with observation y;. Let 9,7 x 1, denote the second stage
parameters, i.e., the second stage model sets the distribution of 8 to be f(0| n). Here again,
some sort of conditional independence, often exchangeability is customarily assumed whence
we factor a portion of 8 say 8 = (B4,08,,...,8,,) into conditionally independent pieces.
Then f(B | n) =ji__n[1 fi(B; | m). Now the subscript j suggests, for a vector 3;, an associated

covariate matrix Z;. Lastly f(n) denotes the prior on the hyperparameters 7.

More specifically, we assume that the first stage model is captured through a GLM with
the first stage mean for y denoted by (X8 + Wa) where X is the design matrix associated
with the exchangeable effects B while o is a vector of “population” effects with W its
associated design matrix. With the possible addition of a first stage dispersion parameter,
¢, we would have 8= (83, o, ). The second stage model for the 3, is typically multivariate
normal or a mizture of multivariate normals such as a multivariate ¢. So too, for e. The
second stage specification for ¢, if present, is typically inverse Gamma. Hence, 1 denotes

the undetermined parameters of these distributions.

We let d denote a general discrepancy function. First stage discrepancies will be denoted
by d;(y,0). Examples can be at the individual level such as a raw residual y; — g(x7 B+w! a),
perhaps standardized, or possibly a deviance residual or a more global level such as the neg-
ative of the full first stage log likelihood, — log _f{l f(y: | xF B+w'a, @) or perhaps a portion
of this product, i.e., a product over a particu?ar subset of the #’s. Second stage discrep-
ancies denoted by d,(6,n) offer similar possibilities as do marginal discrepancies dap; (y,n)
associated with the marginal model f(y | n)f(n) obtained by integrating out 8. We clar-
ify the usefulness of marginal discrepancies and justify their notation in section 3. Overall
model discrepancies involve comparison of a new data vector, y,.,, predicted under the

model with the observed data vector y.;s and will be denoted by do(¥obs, Ynew). Such dy are



referred to as checking functions. Examples include y; ops — ¥inew and the indicator func-
tion 1iy, ., — ey ope +¢] (Yisnew) With full discussion appearing in Gelfand, Dey and Chang (1992).
Other discrepancies may be of interest such as loss functions but they may comment more

on the utility of the model than its adequacy.

A specific structure which we will use in the sequel presumes conditionally independent
observations y;;, ¢ = 1,...,n, j = 1,...,m; from a GLM with mean g(Xg;- ;). The B3, are
conditionally independent, say multivariate normal, i.e., 3; ~ N(Z;6,Q). Hyperparameters
6 and 2 have a normal-inverse Wishart prior specification. At the first stage we use the
residuals y;; — p;; where p;; = g(a:z; ;) or the deviance residuals (McCullagh and Nelder,
1989), dev(yij, ttij). To study the entire first stage fit we can look at —log II f(v;; |0); to
study the consonance of population ¢ with the model, —log II f(vi; |6). ]ZF:]or the second
stage we use the residuals 3; — z,6. A discrepancy measure fZ)r the entire second stage is
—log T1 f(B; | m). For a marginal residual we use y;; — g(x};Z;6). A more appealing form is
Yij — é(pij | 6,Q) but, apart from the case of a Gaussian first stage, the expectation is not
available explicitly. Overall model fit could look at —log{II f(B; | n)- II f(yi; | )} as well
as the individual ¥;j obs — Yijnew- Since E(yijops — fij | YObs; = E(Yij,obs 12 Yijmew | Yobs) but,
via the Rao-Blackwell theorem var( Yijops — fij | Yobs) < Va7 (Yijobs — Yijmew | Yobs), MOTE
dispersed posteriors arise when examining overall residuals than first stage residuals though

they share a common center.

Note that all of the foregoing d’s are unobservable random variables. If d is to comment
upon the adequacy of the model for the observed data, we should examine a conditional
distribution, i.e., the posterior distribution of d given y. We have claimed that this is natural
since the posteriors are used for inference. Moreover, the unconditional or prior distribution
of d provides a less sensitive measure; indeed, the unconditional distribution of d»(6,7n) is

not affected by what we have observed.

Gelman, Meng and Stern (1995) also suggest the use of discrepancy measures within the

context of what they term Bayes goodness-of-fit testing. For say d;(¥os,0), they develop the



posterior f(di(Yops,0) | Yobs) and compare it with the posterior f(d;(Ynew,8) | Yobs). They do
so by looking at a sample 05, £ =1, ..., B from f(6| yos) and then for each 8} drawing y;
from f(y |67). Hence di(yobs,07) ~ f(di(¥obs,0) | Yobs) and di(¥7,07) ~ f(di(Ynew,8) | Yobs)-
Clearly, given ¢, di(yas,0;) and di(y;,0;) are dependent, but the pairs are independent
across £. Hence, scatter plots and other pairwise comparison methods can be used to compare
the associated posteriors. We are uncomfortable with such comparison since the generated
(y7,8;) depend upon y.s. This would appear to encourage y; too much like y,;, resulting
in model checking which is too optimistic (see section 5 for quantitative support). It seems
more appropriate to compare f(di(Yobs, @) | Yobs) With f(di(Ygen,0) | Ygen) Where y,en is a
vector of observations generated under the assumed model. Indeed, we would want to have
replications of this latter posterior to acquire a better sense of the range of typical posterior
distributions for d;(y,0) when the model is correct. Of course, such distributions depend
only upon the assumed model, not upon the actual y,,. These distributions could then be

compared with f(d:(Yobs,0) | Yobs) to determine if the latter seems likely under this model.

Lastly, suppose we consider a cross validation approach letting y(;y denote y with y;
deleted. Suppose that d;(y,f) depends upon y only through y;, as it would for a residual.
Consider then f(dy | yu)) = [ f(d1 |0,yw) - f(0] yu)). Generally, f(d; |0,y;)) does not
depend upon y(;) but often does not depend upon 6 as well. Examples include scale and
location regression models of the form a(y;, ) = b(x;;8) + o¢; where ¢; has a specified
distribution symmetric about 0. Here d;(y;,0) = o~ (a(y;; @) — b(x;; 8)). Also, included are
proportional hazards models (e.g., Cox and Oakes, 1984) which, in the most general case,
with time-varying covariates, specify a hazard function of the form a(¢; &) - b(x(t),3). Here

the integrated hazard d;(y;,0) = [¥* a(t; a)b(x;(t), B)dt is distributed as Fzp(1).

If f(di |6,y()) is free of y(;) and @ then f(d; | yu)) = f(di), the prior distribution of
di. Recall that Chaloner and Brant (1988) suggest posterior to prior comparison between
f(di | y) and f(d;) for outlier detection. In the instant case this is, in fact, a comparison

of f(dy | y) and f(di | y(;)) which suggests an interpretation as an influence diagnostic, i.e.,

10



as a measure of the influence of y; on the posterior. In fact the Kullback-Leibler divergence
between these two densities has been proposed to quantify estimative/predictive influence
in Geisser (1987) with more general ¢-divergences studied in Peng and Dey (1995). In any
event, with regard to model checking, examination solely of f(d:(y;,0) | y(;)) in such cases

can not be useful since this distribution is unaffected by the value of y ;.

3 Stagewise Model Checking

In section 2 we suggested both first and second stage discrepancy measures with the intent
of stagewise checking of model assumptions. This raises the obvious question of when the
individual stages of a hierarchical model can be separated and checked. That is, in principle
we can always examine the overall adequacy of a model but when can we examine it in

stages? In this section we attempt to illuminate this query.

Clearly, such stagewise checkability is a property of the model specification. It has nothing
to do with the values of the observed data to which the model might be fitted! Again, the
remark in section 1 that we are interested in that middle range of model dimensionality
is pertinent. If the model has “too many” parameters, then it must have “too many”
parameters at some stage to permit checking of that stage. We take up two notions, the
information about the r** stage model specification in the r** stage discrepancy measure and
the role of inter-stage dependence of discrepancy functions. We define the former to be a
relative efficiency, I(d,) = var(d,)/E(var(d, | y)) > 1, 7 = 1,2 whence the larger I(d) is, the
more the model is capable of informing about d. I(dy1) is also useful to compute since, as
we clarify below, dy; can be used to check the second stage specification given that the first
is true. For the latter we compute E[corr(d;,dy | y)]. Note that both are model properties,
i.e., properties solely of the model specification. Two simple examples illustrating extreme

cases provide clarification.
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Example 1: Suppose y; given 6; are independent ~ N(6;,02),1=1,2,....,n and 6; given
p ~ N(u,7%). Assume o2 and 72 known and, for convenience, place a flat hyperprior on p.

By routine calculation we may demonstrate that

P = 0: 1) = N((1 = A) (i = 9), (1= A)(5 +77))

f(6i = n|y) = N(Aly: - 9), A(0” + 7))

flyi—nly) =Ny -7, =)

F (Uirobs — Yimew | Yobs) = N((1 = A) (Ui obs — Tops ), (1 — A)(Z +72) + 02)

and
cou(yi — 0;,0; — p |y) = —(1 - ;) Ao’
CO’U(yl azay] 0j | Y) = (1 - A)%Z
cov(0; — 1, 0; — p | y) = A%

cov(y; — 91,9] ply) =A%

where A = ﬁ, the usual shrinkage factor.

The information about the first stage model specification contained in the residual d; =
yi — 0; is I(dy) = (02 + 72)/(%2 + 72). If 72 is large relative to o2, this relative efficiency
is approximately 1 whence the data provides little information to criticize the first stage
specification. Also, as n — oo, I(d;) tends to 1 + :—2 so that the information or learning
about the first stage is bounded. Of course, with one observation per parameter at the first

stage it is not surprising that the first stage assumption is difficult to check.

The information about the second stage model specification in the residual dy = 6; — p is
I(dy) = (o? +72)/(02+%). Now, when 72 is large relative to o2 this efficiency is approximately
n, i.e., the data can criticize the second stage model better than the first. Again, with “n
observations” for one parameter at the second stage this seems reasonable. Of course, as
n — oo, I(dy) tends to 14 Z5 1nd1cat1ng that even with an infinite amount of data we can’t

check the second stage perfectly because we only observe y; and not 6;.

Next, note that the marginal density f(y; | #) = N(u, 0% + 72) is identifiable in the prior
f(6; | u) = N(u,7%) given f(y; | 6;) = N(6;,0?), as in Teicher (1963). Hence, checking

12



the marginal model is equivalent to checking the second stage given the first is true, hence,
clarifying the subscripting for marginal discrepancies. Also, I(dy1) = n so we can check
the second stage arbitrarily well given the first stage is true using dy;. Again, with only
one observation per population perhaps we must assume that the first stage specification is

correct.

Turning to the correlation structure, we find Efcorr(y; — 6;,0; — u | y)] =

—(1 - %)/\/(1 + T;'—Tzz)(l + %) When n is large this correlation tends to —1. But then, the
model does not permit stagewise checking. If, say y; is extreme relative to the other y’s it
will be difficult to discern whether to view y; as an outlying observation or ; as an outlying
population. As might be anticipated, the other expected correlations are much weaker. In

2

fact, Elcorr(y; — 6;,y; — 6; | y)] = s75r — 0 asn — oo, Elcorr(0; — p,0; — p | y)] =

2

r— — 0asn— ooand Elcorr(y; —0;,0; —p | ¥)] = {(n+ %) (n+ ;—z)}_% — 0 asn — oo.

no2-+4r2

Example 2: Suppose y; given 6 are independent N(0,0%), 1 = 1,2,...,n, 0 given u ~
N(u,72). (This model is not really hierarchical!) Again, assume o2 and 72 known and a flat

prior on y. By routine calculation, we have
f(yi—9|Y)=N(yi—?72—z)

f(0—ply)=N(0,7%)
f(yi,obs — Yinew | YObs) = N(yi,abs - yobsﬂ %2 + 02)

and
cov(y; — 0,0 —puly)=0
0.2
cov(y; —0,y; — 0 |y) =%
The information about the first stage model specification contained in d; = y; — 6 is

I(d;) = n. Hence, we can check the first stage arbitrarily well, not surprising with n data
points and one first stage parameter. For the second stage the posterior for dy = 6 — u is
the same as the prior, i.e., I(dy) = 1. The data contains no information about 6 — p so we
can’t learn about the second stage distribution using dy. Again, this is expected given “one

observation” for one parameter at the second stage. Interestingly, I(d,;) = (024—72)/(%24—72)
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so we can learn something about the adequacy of the second stage given the first is true.

With regard to correlation structure, Efcorr(y; — 6,0 — p | y)] = 0 which might be
expected because the second stage model does not involve :. Combined with insight gleaned
from example 1 we suggest that low inter-stage correlation is only a necessary but not
sufficient condition for stagewise checkability. If inter-stage correlation is high, the model
will be difficult to check stagewise. Note that corr(y; — 6,y; — 6 | y) = 1 (and hence so
is its expectation). That is, up to centering, there is only one first stage residual posterior

distribution. But, of course, the centering can indicate whether a particular y; is outlying.

These two examples, as well as intuition, suggest that the number of first stage observa-
tions relative to the number of first stage parameters affects the checkability of the first stage.
Similarly, the number of second stage observations relative to the number of hyperparame-
ters affects the checkability of the second stage. One might assert that, without first stage
replications, we can not expect to check the first stage, without second stage exchangeability
of some sort we can not expect to check the second stage. In particular, recalling the specific
structure of section 2, at the first stage we would need m; to be large relative to the dimen-
sion of B, though we make this statement qualitatively rather than quantitatively. Similarly,
at the second stage we would need n, the number of 3,’s, large relative to r, the number
of hyperparameters in the distributional specification for 3;. In this regard, examples 1 and
2 present extreme first and second stage cases. In example 1, m; = 1 and dim §; = 1; in
example 2, m; = n and dimgB; = 1. In example 1, n = m and r = 1; in example 2, n = 1 and
r = 1. In the simulated illustration of section 5 we move away from these extremes. We set

m; = 20 and dim 3; = 2 and set n = 20 and r = 4.

The following argument adds more formal support and clarification. Consider the joint
distribution of all first stage and all second stage residuals. These can be usual deviations
or deviance residuals. We illustrate with deviations. Employing, as in section 2, a GLM first

stage with Gaussian second stage, we suppress a and assume that X has full column rank,
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as it usually does in hierarchical modeling. Then we claim that

fly—9(XB), B-261y)=f(y—9(XB)|y) - f(B-26]|B). (1)

The proof is straightforward. We factor the left hand side of (1) as

Fy—9(XB) | y)-f(B— 26|y —g(XB),y).

But, conditioning on y — g(X3) and X is equivalent to conditioning on y,3 and X. (The
fact that X is full column rank and that g is strictly increasing justifies this.) Finally the
hierarchical structure implies that f(8 — Z6 |y,B8,X) = f(B— Z6 | B).

Expression (1) provides an attractive factorization of the joint distribution on the left
hand side. The first term on the right hand side is the usual posterior but the second term
is also a usual posterior for the model where 3 is viewed as the “data”. Extension to more
than two hierarchical stages is obvious. The importance of (1) is to argue conceptually
that, using residuals, the posterior for a hierarchical model can be factored into a product
of posteriors for one stage models. Thus, the potential to check stagewise can be connected
to the “amount of data” at a given stage relative to the number of parameters introduced

at that stage.

We next turn to the asymptotic behavior of general I(d), again using the specific structure
of section 2. There are three distinct limiting cases of interest : (i) n — oo, all m; fixed, (ii)
all m; — oo, n fixed, (iii) all m; — oo and n — oo. Assuming usual regularity conditions,
e.g., those which insure an appropriate Bayesian central limit theorem, under (i) (7 | ¥obs)
becomes degenerate, under (ii) f(B; | Yobs) becomes degenerate for each i and under (iii)
f(n | ¥obs) and the f(B; | Yobs) become degenerate. In appendix 1 we argue that, as a result,
under (i) I(dy1) — oo while I(d;) and I(dy) remain bounded, under (ii) /(d;) — oo while
I(d;) and I(dy)1) remain bounded and under (iii) I(d;), I(dz) and I(dy1) — oo.

The emergent conclusions agree with the foregoing intuition: we can effectively check the

first stage model using the d;’s provided that m; are large. Turning to dy;, as in example
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1, if f(yi; | m) is identifiable in f(u;; | n) given f(yi; | pij) where p;; denotes the first stage
mean of y;; then the dy); residual based upon y;; checks the adequacy of f(pi; | ). Hence,
we need the identifiability of an exponential family mixture in its mean. Discussion and
conditions appear in Teicher (1961) and in Tallis and Chesson (1982). But then, if we accept
the correctness of the first stage, the dy; can effectively check the second stage specification
given n is large. The dy’s in such cases will generally be less effective in checking the second

stage since, in addition, they require large m;.

Examples where m; = 1 occur frequently. In particular,in many models by data reduction
the first stage specification takes the form f(¢; | 6;) with ¢; and 6; one dimensional. As in
Efron (1995), inference proceeds from the likelihood as a function of 6; given t; with no
other reference to the original data which gave these likelihoods. But then, such reduction
suggests that the first stage is assumed and thus, under identifiability, the second stage can
be checked marginally using the dy’s.

To illustrate the above discussion consider a Poisson model, y; ~ Fy(6;), i = 1,2,...,n,
with v; = log6; ~ N(8z;,a) and Xz; =0, (n — 1) !'Xz? = 1. Finally, 8 ~ N(1,b). We study
I(d) for dy = y; — 6;, dy = v; — Bz; and dopp = y; — € for the choices n = 10,40, 100 with
a=.1,b=.1and a =1, b =.1. The results, displayed in Table 1, support our theoretical
work showing, in addition, that with a tighter prior on the «; it will be easier to criticize
the model. In practice, for any given model we can compute, using simulation, the I(d)’s to

assess their diagnostic promise with regard to model adequacy.

Turning to the association between stagewise d’s we ask when the necessary condition of
low interstage correlation obtains. For the Gaussian hierarchical linear model with known
covariances, we may study posterior association between residuals explicitly. Since all poste-
rior associations are free of y, we can drop the expectation over y when studying interstage
dependence. In particular, let y | 8 ~ N(XB3,C;) and let B | 6 ~ N(Z6,C5) where C;
and Cy are assumed known and we take a flat prior on 8. Typically C; = ¢*I and O, is

block diagonal. Examples 1 and 2 are special cases. Let r{ =y — X3, 1, = 8 — 79,
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F = XT(C, + XC,XT) 'X and B = (XTC;'X + C, ') . From appendix 2 we have the
following posterior covariances:
Y(r, |y)=X[B+ BC,'Z(ZTFZ) ' Z*C, ' B]XT
X(ry|y) =B+ BC, ' Z(Z'FZ) '\ ZTCy' B+ Z(ZTFZ) ' ZT — 2BC, ' Z(ZTFZ) 1 ZT
S(ry, 1y | y) = —X[B+ BC, ' Z(ZTFZ) ' Z7C, ' Bl + XBC, ' Z(ZTF ) ZT.

For component r{; of r; and component rs; of ry the posterior correlation is

corr (715,72 | y) = (E(11,T2) | y)st/\/(E(rl | ¥))ss(B(r2 [ ¥7))se - (2)

Calculations, again in appendix 2, enable us to study the behavior of (2) as we let the
second stage precision grow small or as we let the first stage precision grow small. Setting
Cy = XCy, and letting Ay grow large allows second stage precision to tend to 0 while
retaining the same correlation structure. A similar comment holds for the first stage if we
set C; = X\C1o. We find (2) to be O()\z_%) as Ay — oo while (2) is O(1) as A\; — oc.

Hence, presuming that second stage variability is large compared to that of the first stage

encourages necessary weak inter-stage association.

In practice C; and Cy would not be known and would be modeled as random using a prior
specification. But commonly, second stage exchangeabilities are modeled with less precision
than first stage errors again encouraging weak inter-stage association, facilitating stagewise
checking. Also, once we leave the Gaussian first stage, analytic investigation of correlation
structure is intractable. However, using simulation we can compute any desired expected

posterior correlations.

With very vague prior specification at each stage, it is clear that it will be hard to criticize
other aspects of the model. Such specification implicitly assumes that model checking is
not of much interest. A model adequacy investigation will be more illuminating when well-
considered, informative prior specifications are employed. As a related point, under imprecise
priors, using Markov chain Monte Carlo fitting of hierarchical models, problems with drifting
of chains typically occurs and convergence is hard to achieve. More precise priors tend to

eliminate these difficulties.
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4 Simulation Based Model Checking

The foregoing discussion supports examination of the posterior distributions of various dis-
crepancy measures to carry out model checking. More explicitly, for our observed data set
and a given model which has been fitted to the data, we can obtain a collection of posterior
distributions associated with first stage, second stage, marginal and overall discrepancies.
How may we use these to assess whether the model is adequate for the data? We assert that,
considered by themselves, it will be difficult to provide a satisfactory answer. What would be
appealing is comparison of these posteriors respectively with corresponding posteriors arising
from data obtained under the presumed model. Thus, a simulation based approach to model
checking is suggested. Under the model, generate a data set analogous to the observed one
and calculate the corresponding posteriors. Posterior vs posterior comparison would indicate
whether that obtained from the observed data is similar to that obtained with data actually

generated under the model.

But why generate only a single set of data under the model? More effective posterior-
posterior comparison is achievable if we replicate, say R data sets, obtaining for each set the
collection of posteriors of interest. Then, for any particular discrepancy function, we would
have R posteriors against which to compare the one calculated from the observed data.
If the latter appears consonant with the other R, then we would conclude that, for this
discrepancy, the observed data does not criticize the model. Again, the benefit in replication
is the opportunity to appreciate the variability in posteriors in order to better assess where

the one for the observed data fits in.

In this regard, suppose y is generated under the model and consider the posterior proba-
bility that d is at most ¢, Pr(d < ¢ | y). Then, averaging over y, E(Pr(d < ¢ |y)) =Pr(d <
¢), the prior probability. In other words, the collection of R posteriors obtained for d vary
about the prior, f(d). But we do not advocate comparing f(d | y.s) with f(d), which would
return us to the approach of Chaloner and Brant (1988). Rather, we recognize that f(d | y)
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will vary about f(d) and use replication to learn how much variation we can expect when

the model is correct.

In order to simulate data under the presumed model, in general we would draw 7, then 6
given 7, and lastly y given 6. Thus, all prior specifications be proper. This is not restrictive
since otherwise how could the observed data have arisen under the presumed model? In
practice we think improper priors are rarely needed or justified. Improper priors risk the
possibility of improper posteriors, which may be hard to check for some hierarchical models.
Moreover, as we noted in the previous section, improper priors often cause difficulties in

using Markov chain Monte Carlo methods to fit hierarchical models.

Extending our earlier notation, let y(") denote the data set generated at the 7t* replication
and, for convenience, let y(*) denote the observed data. Then for a given discrepancy d we
seek to compare f(d | y(®) with the set f(d | y™), r = 1,2,..., R. How shall we make
this comparison? In this regard, note that, as a result of anticipated sampling based fitting
required for the hierarchical model, rather than obtaining f(d | y") we will have obtained
a sample dz(r), {=1,2,...,B from this distribution. Hence, practically, what is required is
comparison of R samples of size B with a single sample of size B obtained using the observed

data.

Also note that, from section 2, we expect to study many d’s, i.e., di’s, dy’s, dg;’s. In fact,
inclusion of additional discrepancy diagnostics adds little to the computational cost. The
only concern is sufficient memory space. For instance, in the example of section 5 we have
a model with y;;, ¢ =1,...,20, y = 1,...,20 and B; a 2 x 1 vector leading, as we shall see,
to 420 d;’s, 40 dy’s and 400 dy;’s. Hence, we would have 860 sets of R + 1 replicates each
of sample size B. With R and B typically in the range of 500 to (preferably) 1000, storage
requires delicacy, bookkeeping requires care. As we indicated at the outset, such simulation

based model checking is very computationally demanding!

Since specification of a distribution, in general, would be viewed as an infinite dimen-
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sional problem, formal comparison of a given density with a set of R densities is an infinite
dimensional problem as well. (Were we to insist that all densities belong to a particular
parametric family, we could simplify matters but such an assumption seems inappropriate.)
We could attempt informal graphical comparison, plotting the R densities, f(d | y") and
overlaying f(d | y(O)). We suspect such a display would be hard to grasp visually and diffi-
cult to interpret. Moreover, while we might attempt such a plot for a particular discrepancy
function d, it is clearly infeasible for say 860 different d’s. What is needed is an automatable

comparison procedure.

In this regard, Monte Carlo tests (Barnard 1963; Besag and Clifford, 1989) are standard
procedures for comparing values generated under a given model with an observed value.
But, Monte Carlo tests are univariate in nature since values must be ordered to determine
whether an observed value is extreme relative to the generated values. They can not be
directly applied to the R+ 1 B-dimensional data vectors which we have for each discrepancy
function d. To implement such a test necessitates reducing each B-dimensional vector to a
point, after which a customary Monte Carlo test could be conducted on the resulting R + 1

points.

Obviously there is no unique reduction of a sample from a distribution to a single sum-
mary number for that distribution. Moreover, a sample of B points, apparently different
from R other samples, need no longer look so when reduced to a single point. Hence, we may
wish to run Monte Carlo tests on several different reductions. In fact, in the development
of this work, we have experimented with several choices employing the following one in our

illustrative example.

For any continuous discrepancy we use the B observations at replicate  to obtain five
quantiles, say qF(]Tg, qF;"Q,, ng), q(;g and q(grg which we write as a vector q("). Next we obtain the
average of each of these quantilesover r, r =1,2,..., R, G o5, G o5, G5, G.75, and q g5, Which we
also write as a vector q. (Following the earlier discussion these latter quantiles approximate

those of the prior distribution for the discrepancy.) For each r, r = 0,1, ..., R we compute
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the Euclidean distance between q(" and q. For the resulting set of r + 1 distances, we run a
one-sided upper tail level .05 Monte Carlo test. We recognize that, because q is computed
from the ("), these distances are not independent. We choose not to be concerned about
this since actual correlation between distances is very small, since our choice of reduction
is arbitrary and since our use for these Monte Carlo tests is as an informal model criticism

diagnostic.

We also ignore entirely the issue of simultaneous inference. That is, a Monte Carlo test
will be run for each discrepancy of interest (860 in our example of section 5). Again, from
a diagnostic perspective we do not care about the simultaneous correctness of all of these
dependent tests. Our only calibration is the expected one-in-twenty rejection rate if the

model specification is correct.

In the case of a discrete discrepancy, for instance a dy when y is discrete such as binomial
or Poisson, we replace the five quantiles for replicate » with bin frequencies calculated after
creating five bins for the possible values of dy. The bin frequencies sum to B. Analogously,
average bin frequencies can be calculated and thus, a Euclidean distance for each r from this
vector of averages. Again, we run a one-sided Monte Carlo test on the resultant set of R+ 1

distances.

Lastly, we want to compare our adequacy approach to that of Gelman, Meng and Stern
(1995) which, as noted in section 2, can be applied to certain discrepancy functions. As
opposed to our foregoing Monte Carlo tests, the latter results in pairwise comparisons to
compute a so-called Bayesian p-value, hence to determine rejection or acceptance. In our
setting the method of Gelman et al is not applicable to the dy’s since d must involve y.
For the d;’s and the dy;’s the implementation is as follows. For d; we seek the one-sided
p-value P(di(y,0) > di(Yobs; 0) | Yobs)- From section 2, if we can calculate P(d;(y,6;) >
d1(Yobs, 07) | 67) for each £ we can average these values to obtain a Monte Carlo integration
for the p-value. If not, then we must generate the y;’s and compute the proportion of times

di(y;,0;) exceeded di(yobs,0;). For the dy;’s, apart from the Gaussian case, to calculate
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P(dyj1(y,m) > doji (YobssM) | Yobs) will always require the latter comparisons. In the case
where d is a residual of the form y,;; — () all of the above events reduce to P(y;jnew >
Yijobs | Yobs). Hence, using the approach of Gelman et al, d; does not check the first stage
and dy; does not check the second stage but rather we have a dy checking the entire model

specification.

5 An Example

We consider an illustrative hierarchical binomial regression model of the following form.

The first stage has Y;; ~ Bin(n;;,pi;), ¢ = 1,...,20 populations, j = 1,...,m; with m; = 20

eXiThizi; i—u(j . [
and all n;; = 20 where p;; = p(a;,5;) = W and z;; = 306()])’ p(7) :El j/mi, and
N m; . \\9 L o ~ Yo ‘rci 0
o(j) = \/jZI (7 — p1(3))%/(m; —1). The second stage assumes (ﬁi) N ((Hﬂ) : < f Té)) :

i = 1,...,20 with the illustrative informative priors, 72 ~ IG(c,d) such that E(r?) = 10,
Var(Tfl) =3, ’rg ~ IG(e, f) such that E(Tﬂz) =1, VCLT(TﬂZ) — 1 and (Z;) ~ N ((g) , (10 0)) .

0 1

Sampling based fitting of this model is accomplished using Metropolis steps within the Gibbs
sampler. Table 2 summarizes the checkability of this model in terms of the I(d) and the
interstage correlations using 1000 replications each providing 1000 posterior samples. We see
that associations are weak, that dy; should be very effective, d; less so with the dy’s offering

little promise.

We next obtained 3 observed data sets y(®) arising under the following 3 models.

(1)

1]

(2)

(r) _ ke%ithizi
ij j

YT 1tkeitPi%i

Case 1: Y;; = ;Bin(ni;,p;;’) + 3Bin(ni;,p;;’) where p with k; = 1 and

ko = e, a first stage failure of the distributional specification with the second stage correct.

editThizi;

_ e2taithizi;
1+e“i+ﬂimij I .7 -

Case 2: p;; = 1,...,10 and p;; = W’] = 11,...,20, a first stage

failure of the mean specification with the second stage correct.

Case 3: First stage correct with (ZZ) ~ N((““) , <T§‘ T02)>, 1 =1,..,10 and (g:) ~

Mg A
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N ((_":ﬁ) , (T(;i %)) ,2 =11, ..., 20, a second stage failure in the form of partial exchangeability.

Though artificial in practice, here, using known model failures is advantageous in enabling

us to determine how well we can handle each type of violation.

Table 3 summarizes the findings. In Case 1, we (DGSV) accurately diagnose where the
failure lies while Gelman et al (GMS) do not criticize the model. In Case 2, we again find
the correct failure and now GMS do find failure with the entire model. In Case 3, we clearly
find the second stage failure using dy; as well as dy = 81 — ug with the suggestion of an

erroneous first stage failure. Again, GMS do not criticize the model.
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APPENDICES

Appendix 1: Asymptotic Behavior of I(d)

Following section 3 and assuming appropriate regularity conditions, in case (i) n — oo,
m; fixed implies f(n | yos) becomes degenerate but the f(3; | yos) do not. In case (ii) all
m; — oo, n fixed implies the f(B; | yos) become degenerate but f(n | yos) does not. In

case (iii) all m; — oo and n — oo implies the f(3; | yos) become degenerate and so does

f(”l | YObS)'

For case (i) it is convenient to write I(d) =

var(d) (Al)

Eyc’bs E[r"yabs Ul"'IB ‘lr’ (d‘YObS ’n))+Eyabs varnlyabs Elallr’abs (d‘yObs ’Ir’)) .

obs

The variance in the second term in the denominator tends to 0, hence, the term itself
does. For d; and dy the first term in the denominator does not approach 0. Hence, I(d;)
and I(dy) remain bounded. For dy1 the variance in the first term is 0, hence the term is as

well, so I(dy1) — oo.

For cases (ii) and (iii) it is more convenient to write I(d) =

BY 4 B (@3 U;i(;) B (4B yone)” (42)
Y obs ﬁlyabs varnlﬁvyobs Yobs Yobs Uarﬁ‘yobs n‘ﬁlyobs Y obs
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For case (ii), using similar argumentation, for d;, both terms in the denominator tend to
0, so I(d;) — oo. For dy’s and dy1’s, the first term in the denominator does not tend to 0,
so I(dy) and I(dy)1) remain bounded. For case (iii) for each of dy, dy and dypr, both terms in
the denominator tend to 0, so I(d;), I(dy) and I(dy1) tend to oco.

Appendix 2: Derivation of Posterior Covariances

We assume y | 3 ~ N(XB,C1), B | 6 ~ N(Z6,C;) and 6 has a noninformative prior
7(8) = 1. It follows immediately that y | § ~ N(XZé, D) where D = C; + XC,XT. Now,
using Lindley and Smith (1972) it follows that 6 |y ~ N((ZTFZ) ' Z* X" Dy, (ZTFZ)™")
where F = XTD!'X. Furthermore, 3 | 6,y ~ N(B(XTC,'y + C,'Z6), B) where B =
(XTCT'X + Cy 1)L Now,

S(Bly)=E[X(B|6,y)]+Z[EB|6y)=B+BC, Z(Z"FZ) 'Z"Cy ' B. (A3)

Similarly,

S(8,6 | y) = BC; ' Z(ZTFZ) 1. (A4)

Now, defining residual vectors at the two stages asri =y — X@ and ry = 3 — 746, it
follows from (A3) that

S(ry |y) = X2 g, X" =X[B+BC, Z(Z"FZ)"'Z"C; ' BIX".

Further, we have, using (A4)

Y(ry |y) =B+ BC, ' Z(Z¥F2) '\ ZC, ' BT + (2T Fz) 2T — 2BC, ' Z(ZTF2) 1 47,

Finally,

Y(ry,rs |y) = —-Z(B+ BC;'Z(Z'FZ) ' Z'Cy'B) + XBCy ' Z(Z"FZ) ' Z7.
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(a, b) (0.1,0.1) (1.0,0.1)
n 10 40 100 10 40 100
dy | 1.83x 100 254 x 107 4.09x 10" | 627  1.65x10° 6.80 x 10°
oy | 2.61 x 100 3.36 x 107 5.95 x 10" | 1.55 x 10> 1.59 x 10* 3.05 x 107
dy 5.18 5.62 5.92 5.60 6.20 9.43

Table 1: I(d)’s for Poisson Simulation (section 3)

1(d)

di =Y;; — mp(oy, B;) 3.378206
doj1 = Yij — mp(fha, fig) 41.162387
dy = o — pig 1.628587
dy = B — pig 1.209362

Correlations
Corr(Yi1 — mp(aq, B1), a1 — fo) -0.043967
Corr(Y11 — mp(as, B1), 61 — ps) 0.130122
Corr(Yi1 — mp(aq, B1), a2 — fo) 0.005247
Corr(Y11 — mp(aq, B1), B2 — pg) -0.032818

Table 2: Checkability of the binomial regression model
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popu-
lation

DGSV
di = Yi; — mp(ai, B)
(# failures out of 20)

DGSV GMS
dojy = Yij — mp(pa, pg) dy & dyp & d,
(# failures out of 20)  (# failures out of 20)

dZ =0 — lo
# of failures

dy = B; — 27}
# of failures
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Table 3.1: Case 1 - First stage violation, no second stage violation
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DGSV

DGSV

GMS

popu- | di =Y — mp(a;, B;)  dop = Yi; — mp(pa, pa) dy & dyp & d, dy =0; — po dy =0 — g
lation | (# failures out of 20)  (# failures out of 20)  (F# failures out of 20) # of failures # of failures

1 2 0 0 0 1

2 9 1 3 0 0

3 4 2 1 0 0

4 5 4 0 0 0

5 6 0 5 0 0

6 1 2 4 0 0

7 7 0 1 0 0

8 3 0 0 0 0

9 2 4 4 0 0

10 1 0 6 0 0

11 7 3 1 0 0

12 1 4 3 0 0

13 3 0 1 0 0

14 2 0 2 0 0

15 2 1 2 0 0

16 2 0 2 0 0

17 4 3 2 0 0

18 0 0 5 0 0

19 4 0 0 0 0

20 0 1 0 1 0

Total 65 25 42 1 1

Expected
Total 20 20 20 1 1

Table 3.2: Case 2 - First stage violation, no second stage violation
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DGSV

DGSV

GMS

popu- | dy = Yi; —mp(ay, Bi)  dapn = Yij — mp(pa, ) dy & dypy & d, dy =0; —pia dy =0 — g
lation | (# failures out of 20)  (# failures out of 20)  (# failures out of 20) # of failures # of failures

1 1 6 0 0 0

2 2 2 1 0 0

3 0 0 6 0 0

4 1 0 0 0 0

5 1 5 3 0 0

6 1 0 0 0 0

7 3 0 0 0 0

8 3 1 2 0 0

9 2 2 1 0 0

10 3 0 1 0 0

11 1 6 1 0 1

12 1 5 0 0 1

13 1 5 3 0 1

14 0 3 3 0 1

15 3 5 0 0 1

16 1 4 1 0 1

17 0 5 1 0 1

18 2 5 0 0 1

19 4 6 4 0 0

20 2 4 1 0 1

Total 32 64 28 0 9

Expected
Total 20 20 20 1 1

Table 3.3: Case 3 - No first stage violation, second stage violation
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