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1 IntroductionRecent computational advances have made it feasible to �t hierarchical models in a widerange of serious applications. As one entertains a collection of such models for a given dataset, one needs to address the problem of model determination, i.e., model adequacy andmodelselection. In this regard, it seems as though model choice has received the greater attention.The scope of activity is revealed in recent work on Bayes factors by Kass and Raftery (1995)and Raftery (1993); on cross validation by Pettit and Young (1990), Gelfand, Dey and Chang(1992), Gelfand and Dey (1994) and Gelfand (1995); on intrinsic Bayes factors by Bergerand Pericchi (1993, 1995); and on posterior Bayes factors by Aitkin (1991). Related work onchoosing amongst a very large number of models has appeared from McCulloch and George(1993) and from Madigan and Raftery (1993). Sampling based �tting of formal Bayesianmodel choice which handles the change in dimensionality and interpretation of parametersacross models has been discussed by Carlin and Chib (1995), Green (1994) and Phillips andSmith (1994).For model adequacy much less has been said. Model checking typically addresses theentire hierarchical speci�cation. Model failures can occur at each hierarchical stage. Suchfailures include outliers, mean structure errors, dispersion misspeci�cations and inappropri-ate exchangeabilities. These failures are not necessarily distinct, e.g., is an extreme responsedue to the fact that the provided stochastic mechanism permits inadequate dispersion or toan inadequate elaboration of the mean structure under this mechanism! It seems safer toattempt to identify the presence of a stagewise failure without attributing a unique explana-tion to it. Moreover, in providing the probabilistic components of a hierarchical model, werarely believe that any of the distributions are correct. Indeed, those speci�cations furtherremoved from the data are often intentionally made less precise, not because we believe them3



to be correct but in order to permit the data to drive the inference. However, what is trueis apart from model checking. If we undertake model criticism we must examine the ade-quacy of what is speci�ed. In this regard, it is apparent that we must assume proper priors(or else the observed data could not have arisen under the model) and that very vaguelyspeci�ed hierarchical models will be di�cult to criticize. Model choice criteria are requiredto eliminate such models. Also, in examining high dimensional models, often having moreparameters than data points, it becomes silly to speak of adequacy. Such models must beadequate unless prior speci�cations are su�ciently precise to permit con
ict with the data.In our work here we are interested in that middle range of models which are not so parsimo-nious as to prevent useful hierarchical modeling but are not so high dimensional as to renderadequacy a nonissue. We attempt more formal clari�cation of this notion in section 3 butsuspect that in applications many modelers and data analysts �nd that such models strikea sensible balance.The formal Bayesian model adequacy criterion (as in Box, 1980) proposes that themarginal density of the data be evaluated at the observations. Large values support themodel, small values do not. Assessment of the magnitude of this value could be facilitatedby standardizing, using the maximum value or an average value of this density (Berger, 1985).In our view, such a checking procedure will be infeasible for the models we are interestedin. The required high dimensional density most likely will be di�cult to estimate well andhopeless to calibrate. In addition, with hierarchical models the procedure does not providefeedback regarding the adequacy of the stagewise speci�cations. Alternative approaches formodel criticism are needed. We brie
y review what has been proposed.Chaloner and Brant (1988) and Chaloner (1994), focusing on outlier detection, suggestwhat is ultimately posterior-prior comparison. A somewhat general version of their idea isto identify random variables whose distribution, a priori, is a standard one. In particular,they choose these variables to be so-called realized residuals. Given the data, the posteriordistribution of each such residual is obtained. Any posterior which di�ers considerably4



from its associated prior is claimed to indicate an outlying observation. In particular, tailarea comparisons are proposed. This approach seems attractive since, if the entire modelspeci�cation is correct we don't anticipate substantial prior-data disagreement whence theposterior should be roughly centered where the prior is but more concentrated. However, aswe amplify in section 5, such comparisons will be successful on average but fail to recognizethe variability in the posterior when the model is correct. In section 2 we show that suchcomparison can also be interpreted, using cross-validation, as a diagnostic for in
uence.A second approach is often referred to as model expansion or elaboration. The idea isthat model failures can be captured by specifying a more complex model using mixtures.This is well discussed in the case of outlier detection as in, e.g., Guttman, Dutter andFreeman (1978), Freeman (1980), Pettit and Smith (1985) and Sharples (1990). Recentwork of Albert and Chib (1994) considers other model failures, in particular, exchangeabilityin the direction of partial exchangeability. Regardless, the model of interest becomes areduced model nested within the expanded or full model so that formal or informal modelchoice procedures can be used to criticize the adequacy of the reduced one. Model checkingis converted to model choice. Recent work of M�uller and Parmigiani (1995) and Carota,Parmigiani and Polson (1993) combines elaboration with posterior-prior comparison usingthe Kullback-Leibler distance between these two distributions for the elaboration parameter.Implementation of this approach requires exact speci�cation of the expanded model, i.e.,exactly what sort of failure one is looking to detect. Even then, a variety of elaborations cancapture a particular type of failure so which one should we choose? It may be preferable todiscern whether the observed data, when the model of interest is �tted to it, can directlyreveal the presence of a failure of the model and its nature.A third approach is taken up in Gelman, Meng and Stern (1995) who propose a posteriorpredictive strategy. The authors avoid the posterior Bayes factor (Aitkin, 1991) which hasbeen e�ectively criticized (Lindley, 1991; Smith, 1991). Rather, they de�ne a discrepancymeasure as a function of data and parameters treating both as unknown in one case, inserting5



the observed data in the other. They then compare the resulting posterior distributions giventhe observed data. Gelman et al argue that the posterior predictive distribution treats theprior as an outmoded �rst guess whereas the prior predictive distribution treats the prior asa true \population distribution". While few would argue that the prior distribution is evercorrect, as noted above, model checking checks the acceptability of the model �tted to thedata. Furthermore, this posterior predictive approach can be criticized, as was the posteriorBayes factor, for, in essence, using the data twice. The observed data, through the posterior,suggests which values of the parameter are likely under the model. Then, to assess adequacy,the observed data is checked against data generated using such parameter values apparentlymaking it di�cult to criticize the model. We shall observe this in our example of section5. In other words, the approach of Gelman et al is based upon the posterior distribution ofa discrepancy measure given both the model and the data. It may be preferable to studythe nature of the posterior distribution of this discrepancy given only the model and thencompare it with the posterior distribution of this discrepancy obtained under the observeddata.A fourth approach is developed in recent work of Hodges (1994). He shows, in the casewhere all hierarchical levels are Gaussian, how to reexpress linear hierarchical models asstandard linear models with simple covariance structure. He then suggests that familiarlinear models diagnostic tools be brought into play, e.g., residual plots, added variable plots,transformations, collinearity checks, case in
uence, etc. There is a bit of adhockery intailoring some of these tools to the hierarchical structure. In addition, the restriction tonormal linear models is somewhat limiting.We propose yet another approach which is entirely simulation based. Though more com-putationally intensive than the foregoing approaches (which nowadays ought not be viewedas an impediment), it is conceptually quite simple. It only requires the model speci�cationand that, for a given data set, one be able to simulate draws from the posterior under themodel. If the model can be �tted in this way to the observed data, then it is reasonable to6



suppose that it can be thus �tted to data generated under the model. The strategy becomesclear. By replicating a posterior of interest using data obtained under the model we can \see"the extent of variability in such a posterior. Then, we can compare the posterior obtainedunder the observed data with this medley of posterior replicates to ascertain whether theformer is in agreement with them and accordingly, whether it is plausible that the observeddata came from the proposed model. This suggests the large scale use of Monte Carlo tests,each focusing on a potential model failure. It also suggests that not only may we examinethe overall adequacy of the hierarchical model but, using suitable posteriors, the adequacyof each hierarchical stage. This raises the question of whether or not the hierarchical modelitself permits stagewise checking.To reiterate, our approach compares posteriors arising under the data with associatedposteriors arising under the speci�ed model. Since posteriors are the tool for inference suchcomparison seems natural for model criticism.The plan of the paper is thus the following. In section 2 we consider the family of gen-eralized linear mixed models (Breslow and Clayton, 1993) introducing suitable discrepancyfunctions for checking such models. In section 3 we examine the matter of stagewise checka-bility of a model. In section 4 we detail the proposed simulation-based approach for carryingout such checking. Finally, in section 5 we illustrate with a binomial regression model.2 Hierarchical Models and Discrepancy FunctionsOur simulation-based approach to model checking employs discrepancy measures. We elab-orate such measures here con�ning ourselves to exempli�cation with a two stage hierar-chical model, though all ideas extend directly to the case of more than two stages. Sincethe methods of Gelman, Meng and Stern (1995) and Chaloner and Brant (1988) are alsodiscrepancy-based, we summarize them with pertinent comments.7



Let y; n � 1; denote the data vector and let �; p � 1 denote the �rst stage parameters,i.e., the likelihood is f(y j�): Customarily, conditional independence is assumed in whichcase f(y j�) = n�i=1 fi(yi j�): Subscripting by i suggests a regression context where there isa covariate vector xi associated with observation yi. Let �; r � 1; denote the second stageparameters, i.e., the second stage model sets the distribution of � to be f(�j �). Here again,some sort of conditional independence, often exchangeability is customarily assumed whencewe factor a portion of � say � = (�1;�2; :::;�m) into conditionally independent pieces.Then f(� j �) = m�j=1 fj(�j j �): Now the subscript j suggests, for a vector �j; an associatedcovariate matrix Zj: Lastly f(�) denotes the prior on the hyperparameters �:More speci�cally, we assume that the �rst stage model is captured through a GLM withthe �rst stage mean for y denoted by g(X�+W�) where X is the design matrix associatedwith the exchangeable e�ects � while � is a vector of \population" e�ects with W itsassociated design matrix. With the possible addition of a �rst stage dispersion parameter,�, we would have �= (�;�; �): The second stage model for the �j is typically multivariatenormal or a mixture of multivariate normals such as a multivariate t. So too, for �: Thesecond stage speci�cation for �, if present, is typically inverse Gamma. Hence, � denotesthe undetermined parameters of these distributions.We let d denote a general discrepancy function. First stage discrepancies will be denotedby d1(y;�). Examples can be at the individual level such as a raw residual yi�g(xTi �+wTi �);perhaps standardized, or possibly a deviance residual or a more global level such as the neg-ative of the full �rst stage log likelihood, � log n�i=1 f(yi j xTi �+wTi �; �) or perhaps a portionof this product, i.e., a product over a particular subset of the i's. Second stage discrep-ancies denoted by d2(�,�) o�er similar possibilities as do marginal discrepancies d2j1(y;�)associated with the marginal model f(y j �)f(�) obtained by integrating out �: We clar-ify the usefulness of marginal discrepancies and justify their notation in section 3. Overallmodel discrepancies involve comparison of a new data vector, ynew, predicted under themodel with the observed data vector yobs and will be denoted by d0(yobs;ynew): Such d0 are8



referred to as checking functions. Examples include yi;obs � yi;new and the indicator func-tion 1[yiobs��;yi;obs+�](yi;new) with full discussion appearing in Gelfand, Dey and Chang (1992).Other discrepancies may be of interest such as loss functions but they may comment moreon the utility of the model than its adequacy.A speci�c structure which we will use in the sequel presumes conditionally independentobservations yij; i = 1; :::; n, j = 1; :::;mi from a GLM with mean g(xTij�i). The �i areconditionally independent, say multivariate normal, i.e., �i � N(Zi�;
): Hyperparameters� and 
 have a normal-inverse Wishart prior speci�cation. At the �rst stage we use theresiduals yij � �ij where �ij = g(xTij�i) or the deviance residuals (McCullagh and Nelder,1989), dev(yij ; �ij): To study the entire �rst stage �t we can look at � log �i;j f(yij j�); tostudy the consonance of population i with the model, � log �j f(yij j�). For the secondstage we use the residuals �i` � zTi`�: A discrepancy measure for the entire second stage is� log �i f(�i j �): For a marginal residual we use yij � g(xTijZi�): A more appealing form isyij � E(�ij j �;
) but, apart from the case of a Gaussian �rst stage, the expectation is notavailable explicitly. Overall model �t could look at � logf�i f(�i j �)� �i;j f(yij j �)g as wellas the individual yij;obs � yij;new: Since E(yij;obs � �ij j yobs) = E(yij;obs � yij;new j yobs) but,via the Rao-Blackwell theorem var( yij;obs � �ij j yobs) � var(yij;obs � yij;new j yobs); moredispersed posteriors arise when examining overall residuals than �rst stage residuals thoughthey share a common center.Note that all of the foregoing d's are unobservable random variables. If d is to commentupon the adequacy of the model for the observed data, we should examine a conditionaldistribution, i.e., the posterior distribution of d given y: We have claimed that this is naturalsince the posteriors are used for inference. Moreover, the unconditional or prior distributionof d provides a less sensitive measure; indeed, the unconditional distribution of d2(�;�) isnot a�ected by what we have observed.Gelman, Meng and Stern (1995) also suggest the use of discrepancy measures within thecontext of what they term Bayes goodness-of-�t testing. For say d1(yobs;�); they develop the9



posterior f(d1(yobs;�) j yobs) and compare it with the posterior f(d1(ynew;�) j yobs): They doso by looking at a sample ��̀; ` = 1; :::; B from f(�j yobs) and then for each ��̀ drawing y�̀from f(y j��̀): Hence d1(yobs;��̀) � f(d1(yobs;�) j yobs) and d1(y�̀;��̀) � f(d1(ynew;�) j yobs):Clearly, given `; d1(yobs;��̀) and d1(y�̀;��̀) are dependent, but the pairs are independentacross `: Hence, scatter plots and other pairwise comparison methods can be used to comparethe associated posteriors. We are uncomfortable with such comparison since the generated(y�̀;��̀) depend upon yobs: This would appear to encourage y�̀ too much like yobs resultingin model checking which is too optimistic (see section 5 for quantitative support). It seemsmore appropriate to compare f(d1(yobs;�) j yobs) with f(d1(ygen;�) j ygen) where ygen is avector of observations generated under the assumed model. Indeed, we would want to havereplications of this latter posterior to acquire a better sense of the range of typical posteriordistributions for d1(y;�) when the model is correct. Of course, such distributions dependonly upon the assumed model, not upon the actual yobs: These distributions could then becompared with f(d1(yobs;�) j yobs) to determine if the latter seems likely under this model.Lastly, suppose we consider a cross validation approach letting y(i) denote y with yideleted. Suppose that d1(y;�) depends upon y only through yi; as it would for a residual.Consider then f(d1 j y(i)) = R f(d1 j�;y(i)) � f(�j y(i)): Generally, f(d1 j�,y(i)) does notdepend upon y(i) but often does not depend upon � as well. Examples include scale andlocation regression models of the form a(yi;�) = b(xi;�) + ��i where �i has a speci�eddistribution symmetric about 0. Here d1(yi;�) = ��1(a(yi;�)� b(xi;�)). Also, included areproportional hazards models (e.g., Cox and Oakes, 1984) which, in the most general case,with time-varying covariates, specify a hazard function of the form a(t;�) � b(x(t);�): Herethe integrated hazard d1(yi;�) = R yi0 a(t;�)b(xi(t);�)dt is distributed as Exp(1):If f(d1 j�;y(i)) is free of y(i) and � then f(d1 j y(i)) = f(d1), the prior distribution ofd1: Recall that Chaloner and Brant (1988) suggest posterior to prior comparison betweenf(d1 j y) and f(d1) for outlier detection. In the instant case this is, in fact, a comparisonof f(d1 j y) and f(d1 j y(i)) which suggests an interpretation as an in
uence diagnostic, i.e.,10



as a measure of the in
uence of yi on the posterior. In fact the Kullback-Leibler divergencebetween these two densities has been proposed to quantify estimative/predictive in
uencein Geisser (1987) with more general �-divergences studied in Peng and Dey (1995). In anyevent, with regard to model checking, examination solely of f(d1(yi;�) j y(i)) in such casescan not be useful since this distribution is una�ected by the value of y(i):3 Stagewise Model CheckingIn section 2 we suggested both �rst and second stage discrepancy measures with the intentof stagewise checking of model assumptions. This raises the obvious question of when theindividual stages of a hierarchical model can be separated and checked. That is, in principlewe can always examine the overall adequacy of a model but when can we examine it instages? In this section we attempt to illuminate this query.Clearly, such stagewise checkability is a property of the model speci�cation. It has nothingto do with the values of the observed data to which the model might be �tted! Again, theremark in section 1 that we are interested in that middle range of model dimensionalityis pertinent. If the model has \too many" parameters, then it must have \too many"parameters at some stage to permit checking of that stage. We take up two notions, theinformation about the rth stage model speci�cation in the rth stage discrepancy measure andthe role of inter-stage dependence of discrepancy functions. We de�ne the former to be arelative e�ciency, I(dr) = var(dr)=E(var(dr j y)) � 1; r = 1; 2 whence the larger I(d) is, themore the model is capable of informing about d: I(d2j1) is also useful to compute since, aswe clarify below, d2j1 can be used to check the second stage speci�cation given that the �rstis true: For the latter we compute E[corr(d1; d2 j y)]: Note that both are model properties,i.e., properties solely of the model speci�cation. Two simple examples illustrating extremecases provide clari�cation. 11



Example 1: Suppose yi given �i are independent � N(�i; �2); i = 1; 2; :::; n and �i given� � N(�; � 2): Assume �2 and � 2 known and, for convenience, place a 
at hyperprior on �:By routine calculation we may demonstrate thatf(yi � �i j y) = N((1� A)(yi� y); (1� A)(�2n + � 2))f(�i � � j y) = N(A(yi � y); A(�2 + �2n ))f(yi � � j y) = N(yi � y; �2+�2n )f(yi;obs � yi;new j yobs) = N((1� A)(yi;obs � yobs); (1� A)(�2n + � 2) + �2)and cov(yi � �i; �i � � j y) = �(1� 1n)A�2cov(yi � �i; yj � �j j y) = (1� A)�2ncov(�i � �; �j � � j y) = A �2ncov(yi � �i; �j � � j y) = A�2nwhere A = �2(�2+�2) ; the usual shrinkage factor.The information about the �rst stage model speci�cation contained in the residual d1 =yi � �i is I(d1) = (�2 + � 2)=(�2n + � 2): If � 2 is large relative to �2, this relative e�ciencyis approximately 1 whence the data provides little information to criticize the �rst stagespeci�cation. Also, as n ! 1, I(d1) tends to 1 + �2�2 so that the information or learningabout the �rst stage is bounded. Of course, with one observation per parameter at the �rststage it is not surprising that the �rst stage assumption is di�cult to check.The information about the second stage model speci�cation in the residual d2 = �i�� isI(d2) = (�2+� 2)=(�2+ �2n ):Now, when � 2 is large relative to �2 this e�ciency is approximatelyn, i.e., the data can criticize the second stage model better than the �rst. Again, with \nobservations" for one parameter at the second stage this seems reasonable. Of course, asn!1; I(d2) tends to 1+ �2�2 indicating that even with an in�nite amount of data we can'tcheck the second stage perfectly because we only observe yi and not �i:Next, note that the marginal density f(yi j �) = N(�; �2 + � 2) is identi�able in the priorf(�i j �) = N(�; � 2) given f(yi j �i) = N(�i; �2); as in Teicher (1963). Hence, checking12



the marginal model is equivalent to checking the second stage given the �rst is true, hence,clarifying the subscripting for marginal discrepancies. Also, I(d2j1) = n so we can checkthe second stage arbitrarily well given the �rst stage is true using d2j1: Again, with onlyone observation per population perhaps we must assume that the �rst stage speci�cation iscorrect.Turning to the correlation structure, we �nd E[corr(yi � �i; �i � � j y)] =�(1 � 1n)=q(1 + �2n�2 )(1 + �2n�2 ): When n is large this correlation tends to �1: But then, themodel does not permit stagewise checking. If, say yi is extreme relative to the other y's itwill be di�cult to discern whether to view yi as an outlying observation or �i as an outlyingpopulation. As might be anticipated, the other expected correlations are much weaker. Infact, E[corr(yi � �i; yj � �j j y)] = �2�2+n�2 ! 0 as n ! 1; E[corr(�i � �; �j � � j y)] =�2n�2+�2 ! 0 as n!1 and E[corr(yi��i; �j�� j y)] = f(n+ �2�2 )(n+ �2�2 )g� 12 ! 0 as n!1:Example 2: Suppose yi given � are independent N(�; �2); i = 1; 2; :::; n, � given � �N(�; � 2): (This model is not really hierarchical!) Again, assume �2 and � 2 known and a 
atprior on �: By routine calculation, we havef(yi � � j y) = N(yi � y; �2n )f(� � � j y) = N(0; � 2)f(yi;obs � yi;new j yobs) = N(yi;obs � yobs; �2n + �2)and cov(yi � �; � � � j y) = 0cov(yi � �; yj � � j y) = �2n :The information about the �rst stage model speci�cation contained in d1 = yi � � isI(d1) = n: Hence, we can check the �rst stage arbitrarily well, not surprising with n datapoints and one �rst stage parameter. For the second stage the posterior for d2 = � � � isthe same as the prior, i.e., I(d2) = 1. The data contains no information about � � � so wecan't learn about the second stage distribution using d2. Again, this is expected given \oneobservation" for one parameter at the second stage. Interestingly, I(d2j1) = (�2+� 2)=(�2n +� 2)13



so we can learn something about the adequacy of the second stage given the �rst is true.With regard to correlation structure, E[corr(yi � �; � � � j y)] = 0 which might beexpected because the second stage model does not involve i. Combined with insight gleanedfrom example 1 we suggest that low inter-stage correlation is only a necessary but notsu�cient condition for stagewise checkability. If inter-stage correlation is high, the modelwill be di�cult to check stagewise. Note that corr(yi � �; yj � � j y) = 1 (and hence sois its expectation). That is, up to centering, there is only one �rst stage residual posteriordistribution. But, of course, the centering can indicate whether a particular yi is outlying.These two examples, as well as intuition, suggest that the number of �rst stage observa-tions relative to the number of �rst stage parameters a�ects the checkability of the �rst stage.Similarly, the number of second stage observations relative to the number of hyperparame-ters a�ects the checkability of the second stage. One might assert that, without �rst stagereplications, we can not expect to check the �rst stage, without second stage exchangeabilityof some sort we can not expect to check the second stage. In particular, recalling the speci�cstructure of section 2, at the �rst stage we would need mi to be large relative to the dimen-sion of �i though we make this statement qualitatively rather than quantitatively. Similarly,at the second stage we would need n, the number of �i's, large relative to r, the numberof hyperparameters in the distributional speci�cation for �i: In this regard, examples 1 and2 present extreme �rst and second stage cases. In example 1, mi = 1 and dim �i = 1; inexample 2, mi = n and dim�i = 1: In example 1, n = m and r = 1; in example 2, n = 1 andr = 1: In the simulated illustration of section 5 we move away from these extremes. We setmi = 20 and dim �i = 2 and set n = 20 and r = 4:The following argument adds more formal support and clari�cation. Consider the jointdistribution of all �rst stage and all second stage residuals. These can be usual deviationsor deviance residuals. We illustrate with deviations. Employing, as in section 2, a GLM �rststage with Gaussian second stage, we suppress � and assume that X has full column rank,14



as it usually does in hierarchical modeling. Then we claim thatf(y � g(X�); � � Z� j y) = f(y� g(X�) j y) � f(� � Z� j �): (1)The proof is straightforward. We factor the left hand side of (1) asf(y � g(X�) j y) � f(� � Z� j y � g(X�);y):But, conditioning on y � g(X�) and X is equivalent to conditioning on y;� and X. (Thefact that X is full column rank and that g is strictly increasing justi�es this.) Finally thehierarchical structure implies that f(� � Z� j y;�; X) = f(� � Z� j �):Expression (1) provides an attractive factorization of the joint distribution on the lefthand side. The �rst term on the right hand side is the usual posterior but the second termis also a usual posterior for the model where � is viewed as the \data". Extension to morethan two hierarchical stages is obvious. The importance of (1) is to argue conceptuallythat, using residuals, the posterior for a hierarchical model can be factored into a productof posteriors for one stage models. Thus, the potential to check stagewise can be connectedto the \amount of data" at a given stage relative to the number of parameters introducedat that stage.We next turn to the asymptotic behavior of general I(d); again using the speci�c structureof section 2. There are three distinct limiting cases of interest : (i) n!1; all mi �xed, (ii)all mi ! 1; n �xed, (iii) all mi ! 1 and n ! 1: Assuming usual regularity conditions,e.g., those which insure an appropriate Bayesian central limit theorem, under (i) f(� j yobs)becomes degenerate, under (ii) f(�i j yobs) becomes degenerate for each i and under (iii)f(� j yobs) and the f(�i j yobs) become degenerate. In appendix 1 we argue that, as a result,under (i) I(d2j1) ! 1 while I(d1) and I(d2) remain bounded, under (ii) I(d1) ! 1 whileI(d2) and I(d2j1) remain bounded and under (iii) I(d1); I(d2) and I(d2j1)!1:The emergent conclusions agree with the foregoing intuition: we can e�ectively check the�rst stage model using the d1's provided that mi are large. Turning to d2j1, as in example15



1, if f(yij j �) is identi�able in f(�ij j �) given f(yij j �ij) where �ij denotes the �rst stagemean of yij then the d2j1 residual based upon yij checks the adequacy of f(�ij j �). Hence,we need the identi�ability of an exponential family mixture in its mean. Discussion andconditions appear in Teicher (1961) and in Tallis and Chesson (1982). But then, if we acceptthe correctness of the �rst stage, the d2j1 can e�ectively check the second stage speci�cationgiven n is large. The d2's in such cases will generally be less e�ective in checking the secondstage since, in addition, they require large mi:Examples wheremi = 1 occur frequently. In particular, in many models by data reductionthe �rst stage speci�cation takes the form f(ti j �i) with ti and �i one dimensional. As inEfron (1995), inference proceeds from the likelihood as a function of �i given ti with noother reference to the original data which gave these likelihoods. But then, such reductionsuggests that the �rst stage is assumed and thus, under identi�ability, the second stage canbe checked marginally using the d2j1's.To illustrate the above discussion consider a Poisson model, yi � P0(�i); i = 1; 2; :::; n;with 
i = log �i � N(�xi; a) and �xi = 0; (n� 1)�1�x2i = 1: Finally, � � N(1; b): We studyI(d) for d1 = yi � �i, d2 = 
i � �xi and d2j1 = yi � e�xi for the choices n = 10; 40; 100 witha = :1; b = :1 and a = 1; b = :1: The results, displayed in Table 1, support our theoreticalwork showing, in addition, that with a tighter prior on the 
i it will be easier to criticizethe model. In practice, for any given model we can compute, using simulation, the I(d)'s toassess their diagnostic promise with regard to model adequacy.Turning to the association between stagewise d's we ask when the necessary condition oflow interstage correlation obtains. For the Gaussian hierarchical linear model with knowncovariances, we may study posterior association between residuals explicitly. Since all poste-rior associations are free of y, we can drop the expectation over y when studying interstagedependence. In particular, let y j � � N(X�; C1) and let � j � � N(Z�; C2) where C1and C2 are assumed known and we take a 
at prior on �: Typically C1 = �2I and C2 isblock diagonal. Examples 1 and 2 are special cases. Let r1 = y � X�; r2 = � � Z�;16



F = XT (C1 + XC2XT )�1X and B = (XTC�11 X + C�12 )�1: From appendix 2 we have thefollowing posterior covariances:�(r1 j y) = X[B + BC�12 Z(ZTFZ)�1ZTC�12 B]XT�(r2 j y) = B +BC�12 Z(ZTFZ)�1ZTC�12 B + Z(ZTFZ)�1ZT � 2BC�12 Z(ZTFZ)�1ZT�(r1; r2 j y) = �X[B +BC�12 Z(ZTFZ)�1ZTC�12 B] +XBC�12 Z(ZTFZ)�1ZT :For component r1s of r1 and component r2t of r2 the posterior correlation iscorr(r1s; r2t j y) = (�(r1; r2) j y)st=q(�(r1 j y))ss(�(r2 j y))tt . (2)Calculations, again in appendix 2, enable us to study the behavior of (2) as we let thesecond stage precision grow small or as we let the �rst stage precision grow small. SettingC2 = �2C2;0; and letting �2 grow large allows second stage precision to tend to 0 whileretaining the same correlation structure. A similar comment holds for the �rst stage if weset C1 = �1C1;0. We �nd (2) to be O(�� 122 ) as �2 ! 1 while (2) is O(1) as �1 ! 1.Hence, presuming that second stage variability is large compared to that of the �rst stageencourages necessary weak inter-stage association.In practiceC1 and C2 would not be known and would be modeled as random using a priorspeci�cation. But commonly, second stage exchangeabilities are modeled with less precisionthan �rst stage errors again encouraging weak inter-stage association, facilitating stagewisechecking. Also, once we leave the Gaussian �rst stage, analytic investigation of correlationstructure is intractable. However, using simulation we can compute any desired expectedposterior correlations.With very vague prior speci�cation at each stage, it is clear that it will be hard to criticizeother aspects of the model. Such speci�cation implicitly assumes that model checking isnot of much interest. A model adequacy investigation will be more illuminating when well-considered, informative prior speci�cations are employed. As a related point, under imprecisepriors, using Markov chain Monte Carlo �tting of hierarchical models, problems with driftingof chains typically occurs and convergence is hard to achieve. More precise priors tend toeliminate these di�culties. 17



4 Simulation Based Model CheckingThe foregoing discussion supports examination of the posterior distributions of various dis-crepancy measures to carry out model checking. More explicitly, for our observed data setand a given model which has been �tted to the data, we can obtain a collection of posteriordistributions associated with �rst stage, second stage, marginal and overall discrepancies.How may we use these to assess whether the model is adequate for the data? We assert that,considered by themselves, it will be di�cult to provide a satisfactory answer. What would beappealing is comparison of these posteriors respectively with corresponding posteriors arisingfrom data obtained under the presumed model. Thus, a simulation based approach to modelchecking is suggested. Under the model, generate a data set analogous to the observed oneand calculate the corresponding posteriors. Posterior vs posterior comparison would indicatewhether that obtained from the observed data is similar to that obtained with data actuallygenerated under the model.But why generate only a single set of data under the model? More e�ective posterior-posterior comparison is achievable if we replicate, say R data sets, obtaining for each set thecollection of posteriors of interest. Then, for any particular discrepancy function, we wouldhave R posteriors against which to compare the one calculated from the observed data.If the latter appears consonant with the other R, then we would conclude that, for thisdiscrepancy, the observed data does not criticize the model. Again, the bene�t in replicationis the opportunity to appreciate the variability in posteriors in order to better assess wherethe one for the observed data �ts in.In this regard, suppose y is generated under the model and consider the posterior proba-bility that d is at most c, Pr(d � c j y): Then, averaging over y, E(Pr(d � c j y)) = Pr(d �c); the prior probability. In other words, the collection of R posteriors obtained for d varyabout the prior, f(d): But we do not advocate comparing f(d j yobs) with f(d), which wouldreturn us to the approach of Chaloner and Brant (1988). Rather, we recognize that f(d j y)18



will vary about f(d) and use replication to learn how much variation we can expect whenthe model is correct.In order to simulate data under the presumed model, in general we would draw �; then �given �; and lastly y given �. Thus, all prior speci�cations be proper. This is not restrictivesince otherwise how could the observed data have arisen under the presumed model? Inpractice we think improper priors are rarely needed or justi�ed. Improper priors risk thepossibility of improper posteriors, which may be hard to check for some hierarchical models.Moreover, as we noted in the previous section, improper priors often cause di�culties inusing Markov chain Monte Carlo methods to �t hierarchical models.Extending our earlier notation, let y(r) denote the data set generated at the rth replicationand, for convenience, let y(0) denote the observed data. Then for a given discrepancy d weseek to compare f(d j y(0)) with the set f(d j y(r)); r = 1; 2; :::; R: How shall we makethis comparison? In this regard, note that, as a result of anticipated sampling based �ttingrequired for the hierarchical model, rather than obtaining f(d j y(r)) we will have obtaineda sample d�(r)` ; ` = 1; 2; :::; B from this distribution. Hence, practically, what is required iscomparison of R samples of size B with a single sample of size B obtained using the observeddata.Also note that, from section 2, we expect to study many d's, i.e., d1's, d2's, d2j1's. In fact,inclusion of additional discrepancy diagnostics adds little to the computational cost. Theonly concern is su�cient memory space. For instance, in the example of section 5 we havea model with yij; i = 1; :::; 20, j = 1; :::; 20 and �i a 2 � 1 vector leading, as we shall see,to 420 d1's, 40 d2's and 400 d2j1's. Hence, we would have 860 sets of R + 1 replicates eachof sample size B. With R and B typically in the range of 500 to (preferably) 1000, storagerequires delicacy, bookkeeping requires care. As we indicated at the outset, such simulationbased model checking is very computationally demanding!Since speci�cation of a distribution, in general, would be viewed as an in�nite dimen-19



sional problem, formal comparison of a given density with a set of R densities is an in�nitedimensional problem as well. (Were we to insist that all densities belong to a particularparametric family, we could simplify matters but such an assumption seems inappropriate.)We could attempt informal graphical comparison, plotting the R densities, f(d j y(r)) andoverlaying f(d j y(0)): We suspect such a display would be hard to grasp visually and di�-cult to interpret. Moreover, while we might attempt such a plot for a particular discrepancyfunction d, it is clearly infeasible for say 860 di�erent d's. What is needed is an automatablecomparison procedure.In this regard, Monte Carlo tests (Barnard 1963; Besag and Cli�ord, 1989) are standardprocedures for comparing values generated under a given model with an observed value.But, Monte Carlo tests are univariate in nature since values must be ordered to determinewhether an observed value is extreme relative to the generated values. They can not bedirectly applied to the R+1 B-dimensional data vectors which we have for each discrepancyfunction d. To implement such a test necessitates reducing each B-dimensional vector to apoint, after which a customary Monte Carlo test could be conducted on the resulting R+ 1points.Obviously there is no unique reduction of a sample from a distribution to a single sum-mary number for that distribution. Moreover, a sample of B points, apparently di�erentfrom R other samples, need no longer look so when reduced to a single point. Hence, we maywish to run Monte Carlo tests on several di�erent reductions. In fact, in the developmentof this work, we have experimented with several choices employing the following one in ourillustrative example.For any continuous discrepancy we use the B observations at replicate r to obtain �vequantiles, say q(r):05; q(r):25; q(r):5 ; q(r):75 and q(r):95 which we write as a vector q(r): Next we obtain theaverage of each of these quantiles over r, r = 1; 2; :::; R; q:05; q:25; q:5; q:75; and q:95; which wealso write as a vector q: (Following the earlier discussion these latter quantiles approximatethose of the prior distribution for the discrepancy.) For each r; r = 0; 1; :::; R we compute20



the Euclidean distance between q(r) and q: For the resulting set of r+1 distances, we run aone-sided upper tail level .05 Monte Carlo test. We recognize that, because q is computedfrom the q(r); these distances are not independent. We choose not to be concerned aboutthis since actual correlation between distances is very small, since our choice of reductionis arbitrary and since our use for these Monte Carlo tests is as an informal model criticismdiagnostic.We also ignore entirely the issue of simultaneous inference. That is, a Monte Carlo testwill be run for each discrepancy of interest (860 in our example of section 5). Again, froma diagnostic perspective we do not care about the simultaneous correctness of all of thesedependent tests. Our only calibration is the expected one-in-twenty rejection rate if themodel speci�cation is correct.In the case of a discrete discrepancy, for instance a d0 when y is discrete such as binomialor Poisson, we replace the �ve quantiles for replicate r with bin frequencies calculated aftercreating �ve bins for the possible values of d0. The bin frequencies sum to B. Analogously,average bin frequencies can be calculated and thus, a Euclidean distance for each r from thisvector of averages. Again, we run a one-sided Monte Carlo test on the resultant set of R+1distances.Lastly, we want to compare our adequacy approach to that of Gelman, Meng and Stern(1995) which, as noted in section 2, can be applied to certain discrepancy functions. Asopposed to our foregoing Monte Carlo tests, the latter results in pairwise comparisons tocompute a so-called Bayesian p-value, hence to determine rejection or acceptance. In oursetting the method of Gelman et al is not applicable to the d2's since d must involve y:For the d1's and the d2j1's the implementation is as follows. For d1 we seek the one-sidedp-value P (d1(y;�) � d1(yobs;�) j yobs): From section 2, if we can calculate P (d1(y;��̀) �d1(yobs;��̀) j ��̀) for each ` we can average these values to obtain a Monte Carlo integrationfor the p-value. If not, then we must generate the y�̀'s and compute the proportion of timesd1(y�̀;��̀) exceeded d1(yobs; ��̀): For the d2j1's, apart from the Gaussian case, to calculate21



P (d2j1(y;�) � d2j1(yobs;�) j yobs) will always require the latter comparisons. In the casewhere d is a residual of the form yij � (�) all of the above events reduce to P (yij;new �yij;obs j yobs): Hence, using the approach of Gelman et al, d1 does not check the �rst stageand d2j1 does not check the second stage but rather we have a d0 checking the entire modelspeci�cation.5 An ExampleWe consider an illustrative hierarchical binomial regression model of the following form.The �rst stage has Yij � Bin(nij; pij); i = 1; :::; 20 populations; j = 1; :::;mi with mi = 20and all nij = 20 where pij � p(�i; �i) = e�i+�ixij1+e�i+�ixij and xij = j��(j)�(j) ; �(j) =mi�j=1 j=mi; and�(j) = smi�j=1 (j � �(j))2=(mi � 1). The second stage assumes ��i�i � � N ������ � ;��2�0 0�2��� ;i = 1; :::; 20 with the illustrative informative priors, � 2� � IG(c; d) such that E(� 2�) = 10;V ar(� 2�) = 3; � 2� � IG(e; f) such that E(� 2�) = 1; V ar(� 2�) = 1 and ����� � � N ��02� ; � 100 01�� :Sampling based �tting of this model is accomplished using Metropolis steps within the Gibbssampler. Table 2 summarizes the checkability of this model in terms of the I(d) and theinterstage correlations using 1000 replications each providing 1000 posterior samples. We seethat associations are weak, that d2j1 should be very e�ective, d1 less so with the d2's o�eringlittle promise.We next obtained 3 observed data sets y(0) arising under the following 3 models.Case 1: Yij = 12Bin(nij ; p(1)ij ) + 12Bin(nij; p(2)ij ) where p(r)ij = kre�i+�ixij1+kre�i+�ixij with k1 = 1 andk2 = e; a �rst stage failure of the distributional speci�cation with the second stage correct.Case 2: pij = e�i+�ixij1+e�i+�ixij ; j = 1; :::; 10 and pij = e2+�i+�ixij1+e2+�i+�ixij ; j = 11; :::; 20; a �rst stagefailure of the mean speci�cation with the second stage correct.Case 3: First stage correct with ��i�i � � N ������ � ;� �2�0 0�2��� ; i = 1; :::; 10 and ��i�i � �22



N �� ����� � ;��2�0 0�2��� ; i = 11; :::; 20, a second stage failure in the form of partial exchangeability:Though arti�cial in practice, here, using known model failures is advantageous in enablingus to determine how well we can handle each type of violation.Table 3 summarizes the �ndings. In Case 1, we (DGSV) accurately diagnose where thefailure lies while Gelman et al (GMS) do not criticize the model. In Case 2, we again �ndthe correct failure and now GMS do �nd failure with the entire model. In Case 3, we clearly�nd the second stage failure using d2j1 as well as d2 = �1 � �� with the suggestion of anerroneous �rst stage failure. Again, GMS do not criticize the model.References[1] Aitkin, M. (1991). \Posterior Bayes factors" (with discussion), J.R. Statist. Soc., B, 53,111-142.[2] Albert, J.H. and Chib, S. (1994). \Bayesian tests and model diagnostics in conditionallyindependent hierarchical models", Technical Report, Department of Mathematics andStatistics, Bowling Green State University.[3] Barnard, G.A. (1963). J.R. Statist. Soc., B, 25, p. 294-295 (in discussion).[4] Berger, J.O. and Perrichi, L.R. (1993). \The intrinsic Bayes factor for model selectionand prediction", Technical Report #93-43C, Department of Statistics, Purdue Univer-sity.[5] Berger, J.O. and Perrichi, L.R. (1995). \The intrinsic Bayes factor for linear models",In: Bayesian Statistics 5, Eds: J.M. Bernardo, et al, Oxford, U.K., Oxford UniversityPress (to appear).[6] Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis, New York:Springer-Verlag. 23
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[39] Smith, A.F.M. (1991). Discussion of \Posterior Bayes factors", J.R. Statist. Soc., B, 53,132-133.[40] Tallis, G.M. and Chesson, P. (1982). \Identi�ability of mixtures", J. Australian Math.Soc., A, 339-348.[41] Teicher, H. (1961). \Identi�ability of mixtures", Annals Math. Statist., 32, 244-248.[42] Teicher, H. (1963). \Identi�ability of �nite mixtures", Annals Math. Statist., 34, 1265-1269. APPENDICESAppendix 1: Asymptotic Behavior of I(d)Following section 3 and assuming appropriate regularity conditions, in case (i) n ! 1;mi �xed implies f(� j yobs) becomes degenerate but the f(�i j yobs) do not. In case (ii) allmi ! 1; n �xed implies the f(�i j yobs) become degenerate but f(� j yobs) does not. Incase (iii) all mi ! 1 and n ! 1 implies the f(�i j yobs) become degenerate and so doesf(� j yobs):For case (i) it is convenient to write I(d) =var(d)EyobsE�jyobs var� j�obs (djyobs ;�))+Eyobs var�jyobsE�j�obs (djyobs ;�)) : (A1)The variance in the second term in the denominator tends to 0, hence, the term itselfdoes. For d1 and d2 the �rst term in the denominator does not approach 0. Hence, I(d1)and I(d2) remain bounded. For d2j1 the variance in the �rst term is 0; hence the term is aswell, so I(d2j1)!1:For cases (ii) and (iii) it is more convenient to write I(d) =var(d)EyobsE� jyobs var�j� ;yobs (dj�;yobs)+Eyobs var� jyobsE�j� ;yobs (dj� ;yobs) : (A2)27



For case (ii), using similar argumentation, for d1; both terms in the denominator tend to0; so I(d1) !1: For d2's and d2j1's, the �rst term in the denominator does not tend to 0,so I(d2) and I(d2j1) remain bounded. For case (iii) for each of d1; d2 and d2j1; both terms inthe denominator tend to 0, so I(d1); I(d2) and I(d2j1) tend to 1:Appendix 2: Derivation of Posterior CovariancesWe assume y j � � N(X�; C1); � j � � N(Z�; C2) and � has a noninformative prior�(�) = 1: It follows immediately that y j � � N(XZ�; D) where D = C1 +XC2XT : Now,using Lindley and Smith (1972) it follows that � j y � N((ZTFZ)�1ZTXTDy; (ZTFZ)�1)where F = XTD�1X: Furthermore, � j �;y � N(B(XTC�11 y + C�12 Z�); B) where B =(XTC�11 X + C�12 )�1: Now,�(� j y) = E[�(� j �;y)] + �[E(� j �;y)] = B +BC�12 Z(ZTFZ)�1ZTC�12 B: (A3)Similarly,�(�; � j y) = BC�12 Z(ZTFZ)�1: (A4)Now, de�ning residual vectors at the two stages as r1 = y � X� and r2 = � � Z�; itfollows from (A3) that�(r1 j y) = X�(� jy)XT = X[B +BC�12 Z(ZTFZ)�1ZTC�12 B]XT :Further, we have, using (A4)�(r2 j y) = B +BC�12 Z(ZTFZ)�1ZTC�12 BT + Z(ZTFZ)�1ZT � 2BC�12 Z(ZTFZ)�1ZT :Finally,�(r1; r2 j y) = �Z(B + BC�12 Z(ZTFZ)�1ZTC�12 B) +XBC�12 Z(ZTFZ)�1ZT :28



(a; b) (0:1; 0:1) (1:0; 0:1)n 10 40 100 10 40 100d1 1:83 � 101 2:54 � 107 4:09 � 1014 6.27 1:65 � 102 6:80 � 105d2j1 2:61 � 101 3:36 � 107 5:95 � 1014 1:55 � 102 1:59 � 104 3:05 � 107d2 5.18 5.62 5.92 5.60 6.20 9.43Table 1: I(d)'s for Poisson Simulation (section 3)
I(d)d1 = Yij �mp(�i; �i) 3.378206d2j1 = Yij �mp(��; ��) 41.162387d2 = �i � �� 1.628587d2 = �i � �� 1.299362CorrelationsCorr(Y11 �mp(�1; �1); �1 � ��) -0.043967Corr(Y11 �mp(�1; �1); �1 � ��) 0.130122Corr(Y11 �mp(�1; �1); �2 � ��) 0.005247Corr(Y11 �mp(�1; �1); �2 � ��) -0.032818Table 2: Checkability of the binomial regression model29



DGSV DGSV GMSpopu- d1 = Yij �mp(�i; �i) d2j1 = Yij �mp(��; ��) d1 , d2j1 , do d2 = �i � �� d2 = �i � ��lation (# failures out of 20) (# failures out of 20) (# failures out of 20) # of failures # of failures1 1 0 1 0 02 4 0 1 0 03 0 2 1 1 04 5 4 2 0 05 2 0 2 0 06 2 0 5 0 07 3 0 1 0 08 3 0 2 0 09 2 7 2 0 010 2 0 0 0 011 0 0 1 0 012 3 1 4 0 013 5 0 0 0 014 5 0 0 0 015 2 0 1 0 016 4 0 0 0 017 3 5 0 0 018 3 1 1 0 019 1 0 0 0 020 1 0 1 0 0Total 51 20 25 1 0ExpectedTotal 20 20 20 1 1Table 3.1: Case 1 - First stage violation, no second stage violation
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DGSV DGSV GMSpopu- d1 = Yij �mp(�i; �i) d2j1 = Yij �mp(��; ��) d1 , d2j1 , do d2 = �i � �� d2 = �i � ��lation (# failures out of 20) (# failures out of 20) (# failures out of 20) # of failures # of failures1 2 0 0 0 12 9 1 3 0 03 4 2 1 0 04 5 4 0 0 05 6 0 5 0 06 1 2 4 0 07 7 0 1 0 08 3 0 0 0 09 2 4 4 0 010 1 0 6 0 011 7 3 1 0 012 1 4 3 0 013 3 0 1 0 014 2 0 2 0 015 2 1 2 0 016 2 0 2 0 017 4 3 2 0 018 0 0 5 0 019 4 0 0 0 020 0 1 0 1 0Total 65 25 42 1 1ExpectedTotal 20 20 20 1 1Table 3.2: Case 2 - First stage violation, no second stage violation
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DGSV DGSV GMSpopu- d1 = Yij �mp(�i; �i) d2j1 = Yij �mp(��; ��) d1 , d2j1 , do d2 = �i � �� d2 = �i � ��lation (# failures out of 20) (# failures out of 20) (# failures out of 20) # of failures # of failures1 1 6 0 0 02 2 2 1 0 03 0 0 6 0 04 1 0 0 0 05 1 5 3 0 06 1 0 0 0 07 3 0 0 0 08 3 1 2 0 09 2 2 1 0 010 3 0 1 0 011 1 6 1 0 112 1 5 0 0 113 1 5 3 0 114 0 3 3 0 115 3 5 0 0 116 1 4 1 0 117 0 5 1 0 118 2 5 0 0 119 4 6 4 0 020 2 4 1 0 1Total 32 64 28 0 9ExpectedTotal 20 20 20 1 1Table 3.3: Case 3 - No �rst stage violation, second stage violation
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