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Abstract

This paper proposes a fully Bayesian approach for the analysis of triadic data in social

networks. Inference is based on Markov chain Monte Carlo methods as implemented in

the software package WinBUGS. We apply the methodology to two datasets to highlight the

ease with which cognitive social structures can be analyzed.
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1 Introduction

The study of social interactions has a rich history in many disciplines including anthropology,

sociology, psychology, gender studies and the behavioural sciences. A challenging area related

to social interactions concerns interpersonal perceptions, that is, the views that subjects form

about the relationships among other subjects, possibly including themselves. The fundamental

challenge involves the reconciliation of diverse perceptions.

To motivate the area, consider the friendship relation. We may be interested in the intercon-

nection between an individual’s capacity for extending friendship and receiving friendship. For

example, does being a friend to someone encourage reciprocal feelings from the other individual?

We may also be interested whether subjects perceive their own relationships in the same way as

others perceive those relationships. This is an example of a question of “accuracy” which is an

obvious yet difficult problem to address (Kenny 1994, Chapter 7). In cognitive social structures,

the possibility of bias is real (Krackhardt 1987). A common definition of accuracy is a special

type of consensus or interpersonal agreement among a group of judges (Kruglanski 1989). In

the absence of a measure of absolute truth or a gold standard, the judgements of others is often

used as a criterion.

We study the friendship relation in our first data example. In the second data example, we

consider the perception of schoolyard bullying. Of course, there are other cognitive social rela-

tions that fall into this class of problems including the seeking of advice, trust in a relationship,

the assessment of social status, etc.

Perhaps the most detailed form in which interpersonal perception data arise is referred to

as “triadic” data. Triadic data are a complex data structure where responses are collected on a

group of subjects. A group of n subjects gives rise to (n2 ) pairs of subjects, and in triadic data,

every subject provides two responses on each pair. For example, in the friendship relation, every

subject determines whether i considers j a friend, and also whether j considers i a friend, for all

i 6= j. Note that friendship is a directed relation and that triadic data includes self assessment.

With triadic data, the formulation of realistic and tractable statistical models that address

the inferential questions of interest has proven difficult. Many of the suggested approaches to the

analysis of triadic data first employ data reduction procedures such as correspondence analysis

(Kumbasar 1996) and locally aggregrated procedures (Krackhardt 1987). Consequently, triadic

data have not been studied in their full glory, taking into account the complexity and richness of
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the data structure. The purpose of this communication is to present a computationally tractable,

fully Bayesian approach to the analysis of triadic data. We motivate our approach by extending

a random effects model where analysis has remained elusive from a classical frequentist point of

view. The classical approach has been based on analysis of variance (ANOVA) procedures, an

approach known to be cumbersome and unsatisfactory (Lüdtke et al. 2013).

At a superficial level, triadic data seem to share features with paired comparisons data (David

1988) and hence one might consider adapting paired comparisons methodology to the present

setting. With triadic data however, directed measurements are taken on a pair of subjects leading

to two response variables. In paired comparisons data, there is typically a single measurement

on a pair of subjects. Sometimes, paired comparisons data has two responses (e.g. goals for

each team in sporting events) from which a difference is taken resulting in a single response. As

suggested above, and will be seen later, the inferential questions arising in triadic data settings

are typically complex and relate to the perceptions involving judges, senders and receivers. In

paired comparisons scenarios, the questions tend to be simpler, and include problems such as the

identification of the most preferred subject, the determination of whether subject i is preferred

to subject j and the evaluation of the relative ratings given by judges.

Over the past 25 years or so, a number of methodological approaches have been proposed

to study the accuracy and consensus of interpersonal perceptions using triadic data structures.

Bond, Horn & Kenny (1997) extended the social relations model of Kenny (1994) to incorporate

third-person perceptions. Bond et al. (2000) further extended the model to analyze multivariate

triadic relations. Their model incorporated covariances between measurements on different types

of relations on the same pair of subjects. For example, the model can be used to investigate

whether a friendship tie (the first type of relation) has an impact on the tendency to seek advice

(the second type of relation). An alternative approach was considered by Koskinen (2004) who

extended the model of Batchelder et al. (1997) to the Bayesian setting using prior distributions

to overcome nonidentifiability issues. Koskinen (2004) was primarily concerned with the problem

of model selection. On the computational side, Butts (2010) and Butts, Hunter & Handcock

(2011) have developed a range of social network analysis tools in the programming language R.

However, these tools do not include software for the triadic relations models described in this

paper.

In section 2, we propose a Bayesian approach for the analysis of binary data in a triadic set-
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ting. Various modelling assumptions and the introduction of prior distributions leads to complex

hierarchical models. We discuss practical modelling issues including parameter interpretation

and prior specification. Some innovative modelling is proposed including the treatment of a

covariance matrix with nonstandard form. Following the model for binary data, we outline an

analogous model for continuous data. In section 3, computational issues including model se-

lection are discussed. Markov chain Monte Carlo (MCMC) methods are implemented via the

software package WinBUGS (Spiegelhalter, Thomas, Best & Lunn 2003). WinBUGS is freely avail-

able from www.mrc-bsu.cam.ac.uk/bugs. In sections 4 and 5, Bayesian implementations are

illustrated for the two datasets. Some concluding remarks are provided in section 6.

2 A Hierarchical Model

Triadic data structures are extensions of round robin data structures. Round robin data arise

when pairs of individuals interact with one another, producing two outcomes for each pair (Gill

& Swartz, 2001). With n subjects in a group, a round robin structure therefore has n(n − 1)

responses. A triadic data structure has an additional peripheral level of assessment where each

subject in the group provides n(n−1) responses corresponding to their perceptions of the round

robin outcomes. Thus, each of the n subjects serves as a judge to provide their perception of

each dyadic relation in the network. For the dyad (pair) of subjects i 6= j, let the measurement

ykij represent the binary response of subject k as a judge about the presence/absence of a directed

relation from subject i as an actor towards subject j as a partner (target). More specifically,

ykij =

{
1 if judge k says that a tie exists from subject i to subject j

0 if judge k says that a tie does not exist from subject i to subject j .

The collection of observations {ykij} is the social network where k = 1, . . . , n, i 6= j. With

continuous data, this formulation was referred to as a triadic relations model by Bond, Horn &

Kenny (1997).

Using statistical notation, conditional on the pkij, we assume independent binary responses

ykij ∼ Bernoulli(pkij). That is, Prob(ykij = 1) = pkij. The mean structure concerning the presence
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of a tie from subject i to j as perceived by judge k is given by

H(pkij) = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk

H(pkji) = µ+ αj + βi + γk + (αβ)ji + (αγ)jk + (βγ)ik (1)

where H is known as a link function and is typically the inverse of a common distribution

function. For classical generalized linear models, the logistic link and the probit link are popular

choices.

In model (1), µ represents the overall density of ties in the network. The parameters αi and

βi represent, respectively, the properties of expansiveness (the ability to send ties) and attrac-

tiveness (the ability to attract ties) corresponding to actor i. The parameter γk is the effect of

subject k as a judge which represents his or her “perception bias” to sense the presence of ties

in the network. The interaction effect (αβ)ij represents the special adjustment that subject i

has for sending a tie to subject j over and above the expansiveness of subject i. The parameter

(αγ)ik represents the perception bias of judge k regarding the ability of subject i to send ties.

Similarly, the parameter (βγ)jk represents the perception bias of judge k regarding the ability

of subject j to attract ties. This formulation allows us to model the heterogeneity induced by

disparate social abilities and by the variability in the judging abilities of the members in the

network. It is conceivable that some components of this heterogeneity can be (or should be)

explained by some subject-specific factors such as age, sex, social status etc. The model can be

easily expanded to accommodate those factors as covariates. Note that model (1) contains non-

identifiabilities which may pose difficulties involving interpretation, computation and inference.

We have therefore imposed sum-to-zero constraints
∑
αi =

∑
βi =

∑
γi = 0 on the main effect

parameters. However, sum-to-zero constraints corresponding to the interaction effects (αβ)ij

and (αγ)ij proved more difficult to implement in WinBUGS. We have assigned prior distributions

on the interaction effects that are centred about zero and assign appreciable probability only to

plausible values of the parameters. This is a convenient tactic that has been used to combat

nonidentifiability (Exercise 5.1.e of Leonard & Hsu 1999).

At this stage, we propose a modification to model (1) which improves interpretation and

later provides a simplification in the modelling of covariances. The assumption is particularly

appropriate when the directional relation is friendship. The assumption is that judge k, in

assessing an individual i, will view the individual’s expansiveness and attractiveness for ties
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in the same way. In other words, the judge will tend to be either optimistic or pessimistic

concerning the individual forming ties in either direction. In symbols, we assume

(βγ)ik = (αγ)ik . (2)

The consequence of assumption (2) is that the mean structure in (1) becomes

H(pkij) = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (αγ)jk

H(pkji) = µ+ αj + βi + γk + (αβ)ji + (αγ)jk + (αγ)ik . (3)

Of particular interest are the cases when k = i and when k = j. That is, judge k provides

assessments on his or her own relationships in the network. For clarification, we rewrite (3) for

the self assessment where k = i as

H(piij) = µ+ αi + βj + γi + (αβ)ij + (αγ)ii + (αγ)ji

H(piji) = µ+ αj + βi + γi + (αβ)ji + (αγ)ji + (αγ)ii

where we note that the parameter (αγ)ii represents the special adjustment by judge i in assessing

his/her own capability to establish ties. Further, we define

δi = (αγ)ii −
1

n− 1

∑
k 6=i

(αγ)ik (4)

which is the difference between subject i’s self assessment and the mean assessment of subject

i by others. The quantity (4) is an attempt to parametrize the accuracy of self assessment in

establishing ties.

In the random effects setting of Bond, Horn & Kenny (1997), αi, βi and γi follow a trivariate

normal distribution with mean vector zero and covariance matrix

Σ1 =

 σ2
α ρ1σασβ ρ2σασγ

ρ1σασβ σ2
β ρ3σβσγ

ρ2σασγ ρ3σβσγ σ2
γ

 . (5)

The variance components σ2
α and σ2

β represent the variability of subjects to send and receive
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ties, respectively. The parameter σ2
γ measures the variability in the perception of members to

sense the strength of ties in the network. The correlation parameters in (5) require further

description:

• ρ1 = corr(αi, βi) measures individual level reciprocity (also called generalized reciprocity)

of sending and receiving ties. A positive value of ρ1 indicates that expansive subjects are

those who are relatively more capable of attracting relational ties. A negative value of ρ1

indicates the presence of asymmetric ties. For example, in networks having hierarchical

structures, junior members typically ask seniors for advice and not vice-versa.

• ρ2 = corr(αi, γi) measures one’s outlook versus their actual behaviour. A positive value

indicates that people who are liberal in establishing ties also perceive that others are liberal

in establishing ties. Conversely, people who are conservative in establishing ties perceive

that others are also conservative.

• ρ3 = corr(βi, γi) also measures one’s outlook versus their actual behaviour. A positive

value indicates that people who are inclined to attract ties also perceive that others are

more likely to attract ties. Conversely, people who are less inclined to attract ties also

perceive that others are less likely to attract ties.

For the self-perception bias parameters (αγ)ii, the random effects model assumes

(αγ)ii
iid∼ Normal(0, σ2

αγ) .

For the interaction effects in (3) involving reciprocity, it is further assumed in the random

effects context that (αβ)ij, (αβ)ji, (αγ)ij and (αγ)ji follow a multivariate normal distribution

with mean vector zero and covariance matrix

Σ2 =


σ2
αβ φ1σ

2
αβ φ2σαβσαγ φ3σαβσαγ

φ1σ
2
αβ σ2

αβ φ3σαβσαγ φ2σαβσαγ

φ2σαβσαγ φ3σαβσαγ σ2
αγ φ4σ

2
αγ

φ3σαβσαγ φ2σαβσαγ φ4σ
2
αγ σ2

αγ

 . (6)

The variance components σ2
αβ and σ2

αγ describe the variability in the interaction parameters.
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The parameters φ1, φ2, φ3 and φ4 are the corresponding correlations. The interpretation of these

correlation parameters is specific to the nature of the relation observed in the network.

Note that without assumption (2), there would have been two additional interaction effects

(βγ)ij and (βγ)ji resulting in a 6 by 6 matrix Σ2. This would have led to additional parameters

φ5, . . . , φ9 and σ2
βγ. In addition, we would need to jointly model (αγ)ii and (βγ)ii.

At this stage, it is worthwhile to pause and take stock of the model. With n subjects in the

study, there are n(n− 1) relationships, and each relationship is assessed by n judges. This leads

to n2(n−1) observations in the social network. From (3), there are 3n+ 1 main effects, n(n−1)

parameters corresponding to the interaction terms (αβ)ij and n2 parameters corresponding to

the interaction terms (αγ)ik. Additionally, variance component parameters (which are typically

the primary parameters of interest in social networks models) are given in (5) and (6). From

(5), there are an additional 6 parameters corresponding to Σ1. From (6), there are an additional

6 parameters corresponding to Σ2. This leads to a total of 2n(n + 1) + 13 model parameters.

Therefore for n ≥ 5, provided that no observations are missing, there are more observations than

parameters.

We also wish to emphasize an aspect of the independence assumptions used in modelling the

data. Recall that the ykij are assumed independent, conditional on the parameters pkij which are

expressed as functions of other parameters (equation (1)). However, the parameters within (1)

are modelled with various multivariate distributions to take into account the dyadic structure.

Therefore, there are dependencies in the model which induce marginal dependence amongst all

ykij. Although complex and high-dimensional, the model as currently proposed can be charac-

terized as a classical random effects model.

2.1 Prior Distributions

We now extend the random effects model by introducing prior distributions that express our

uncertainty in the fixed effects parameter µ and the variance component parameters. For the

overall density of ties in (3), we assume

µ ∼ Normal(0, 1) .
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Following conventional Bayesian protocol for linear models, we let

Σ−11 ∼Wishart3[R
−1, ν0]

where ν0 = 3, R = I/ν0, I is the identity matrix and E(Σ−11 ) = ν0R = I according to the

WinBUGS parametrization of the Wishart. Note that the degrees of freedom parameter ν0 ≥ 3

(the dimension of Σ−11 ) such that Σ−11 is invertible with probability 1.

The prior distribution for Σ2 in (6) is problematic due to its unusual structure. For example,

it cannot be assumed to have a Wishart form. To specify a prior for Σ2, we first assign the

conjugate priors 1/σ2
αβ ∼ Gamma(100, 10) and 1/σ2

αγ ∼ Gamma(100, 10). We then define the

matrix V = diag(σαβ, σαβ, σαγ, σαγ) and note that V ′ΦV = Σ2 where the correlation matrix Φ

is given by

Φ =


1 φ1 φ2 φ3

φ1 1 φ3 φ2

φ2 φ3 1 φ4

φ3 φ2 φ4 1

 . (7)

The matrix Φ has a nonstandard form where the component parameters φi have a particular

structure. To ensure that Φ is positive definite, we require that the determinants of the three

principal minors of Φ are positive. This leads to the following determinant constraints:

1− φ2
1 > 0 (8)

1− φ2
1 − φ2

2 − φ2
3 + 2φ1φ2φ3 > 0 (9)

1 + φ4
2 + φ4

3 − 2φ1φ
2
2φ4 − 2φ1φ

2
3φ4 − 2φ2

2φ
2
3 + φ2

1φ
2
4

+ 4φ1φ2φ3 + 4φ2φ3φ4 − φ2
1 − 2φ2

2 − 2φ2
3 − φ2

4 > 0 . (10)

We therefore require a prior distribution on Φ which is defined on the space constrained by (8),

(9) and (10). Our proposed prior distribution is simply defined as uniform on the constrained

space. In sampling terms, this means that φ1, φ2, φ3 and φ4 are generated independently from the
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Uniform(−1, 1) distribution, and only accepted as variates forming the matrix Φ if constraints

(8), (9) and (10) are satisfied.

The prior distribution for Φ was introduced primarily for computational and inferential con-

venience. However, it is reasonable to ask what sort of distribution is this. In Table 1, we provide

some summaries concerning the component parameters of Φ which were obtained via simulation.

The correlation parameters φi have prior means of zero and span the interval (−1, 1) with ap-

preciable prior probability. To two decimal places, we also observe that all pairwise correlations

involving φ1, φ2, φ3 and φ4 are zero. Therefore, the distribution for Φ appears diffuse, and it

may therefore serve as an appropriate prior in the absence of strong prior opinion. An appeal-

ing feature of the prior specification is its flexibility. For example, we can easily fix correlation

parameters φi to hypothesized values or consider the equality of various correlation parameters.

Parameter Prior Mean Prior Std Dev
φ1 0.00 0.50
φ2 0.00 0.41
φ3 0.00 0.41
φ4 0.00 0.50

Table 1: Prior means and standard deviations for the components of the matrix Φ.

We conclude this subsection with some brief comments about the specified hyperparameters

used in the prior distributions of µ, Σ−1 and the variance components σαβ and σαγ. The first

point is that all of these parameters lie fairly deep in the hierarchy, and therefore detailed

subjective knowledge concerning these parameters is limited. To give some insight into our

hyperparameter choices, we can examine their implications for the probability p of a tie: in the

absence of any data for example, the implied prior for p is centred on 0.50 with a 60% probability

range from 0.03 to 0.97. This prior therefore allows flexbility in the range of probabilities that

can be accommodated.

2.2 Continuous Responses

Now rather than binary random variables ykij denoting the presence/absence of ties, there are

some network models where continuous responses are observed. For example, judges may be

asked to assess the strengths of relationships on a scale of 0 to 100. In this case, we provide the
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following straightforward modification to the random effects model (3):

ykij = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (αγ)jk + εijk

ykji = µ+ αj + βi + γk + (αβ)ji + (αγ)jk + (αγ)ik + εjik

where the error terms εijk are assumed independent and normally distributed with mean zero

and variance σ2
ε . We assign the standard conjugate prior 1/σ2

ε ∼ Gamma(1, 1). The remainder

of the prior specification is the same as in the binary case.

3 Computations

The subjects used in the study are assumed to be a random sample from a population and we

are interested in generalizing beyond the particular individuals involved in the study. Putting

the modelling components together in their hierarchical structure, the posterior density in the

binary response model is therefore proportional to∏
i 6=j,k

[ykij | pkij] [µ] [αi, βi, γi | Σ1] [Σ1] [(αβ)ij, (αβ)ji, (αγ)ij, (αγ)ji | Σ2] [(αγ)ii] [σαβ] [σαγ] [Φ](11)

where the notation [·] is used to denote a generic probability density function.

Although the posterior distribution given by (11) provides the full description of parameter

uncertainty given observed data, the complexity is such that posterior summaries are needed for

interpretation. Posterior summaries are typically simple quantities such as posterior means and

standard deviations. In this application, these quantities take the form of intractable integrals.

3.1 MCMC Methods

Referring to the posterior density in (11), it seems that a sampling based approach is the only

feasible way to approximate posterior summaries. In a Markov chain approach, it is typical to

first consider the construction of a Gibbs sampling algorithm. Writing one’s own code has some

appeal as it facilitates debugging. However, the development of full conditional distributions

is a daunting task especially in the case of the logistic link function. Conversely, the writing

of WinBUGS code is not particularly onerous and allows the user to modify model assumptions.

For example, the modification of WinBUGS code from the binary response case to the continuous
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response case involves changing only a few lines of instructions. We remark that there has

been some success in handling various types of logit models in Bayesian settings. In Holmes &

Held (2006) and Fruhwirth-Schattner & Fruhwirth (2007, 2010), the introduction of auxiliary

variables has been used to overcome the difficulty of variate generation from nonstandard full

conditional distributions. Along similar lines, Albert and Chib (1993) proposed Gibbs sampling

algorithms using data augmentation in the case of probit regression.

We encountered a numerical problem related to the Uniform(−1, 1) distribution used in the

specification of the prior for φ1, φ2, φ3 and φ4. With any of the φi close to -1 or 1, the determinant

of the matrix Σ2 approaches zero. Therefore numerical issues may arise in the calculation of

the inverse Σ−12 , and this causes WinBUGS to halt. An easy fix to the problem is to replace

the Uniform(−1, 1) distribution with the Uniform(−0.99, 0.99) distribution. There is no logical

problem in doing so as we do not expect the absolute values of the correlations to exceed 0.99.

In WinBUGS, there sometimes arise programming issues that cause difficulty and whose so-

lution is not well known. The handling of the constraints (9) and (10) proved to be one of

these programming difficulties. Whereas interval censoring in WinBUGS is typically handled us-

ing the l(lower,upper) command, the nature of the constraints in (9) and (10) do not lend

themselves to this approach. In such situations, a ”zeros trick” can be used (see www.mrc-

bsu.cam.ac.uk/bugs/winbugs/examples/funshapes.txt). For example, to enforce the constraint

(9), we use the three WinBUGS commands shown below. Here Z is a degenerate Bernoulli random

variable set to zero. The second command forces the Bernoulli parameter equal to zero. Finally,

the third command implements the constraint (9) by forcing the argument of the step function

to be negative.

Z ← 0

Z ∼ dbern(c)

c ← step(phi1 ∗ phi1 + phi2 ∗ phi2 + phi3 ∗ phi3− 2 ∗ phi1 ∗ phi2 ∗ phi3− 1)

3.2 Model Selection

A popular method for model selection uses the predictive performance criterion proposed by

Laud & Ibrahim (1995). Given a finite number of candidate models, the criterion is based on

the predictive performance of a model in terms of its ability to predict a replicate of the data.
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The outcome ykij has probability distribution pkij = Prob(ykij = 1). In every MCMC loop, a

replicate ykijpred ∼ Bernoulli(pkij) can be generated conditional on the currently generated values

of the model parameters.

Let Ypred denote a replicate of the observed data Yobs. That is, Ypred is generated from a

predictive distribution. The particular predictive distribution is the one whose covariates match

up to the covariates of Yobs. In this way, Ypred is a replicate of Yobs. The predictive distribution

of Ypred under model M is

f (M)(Ypred|Yobs) =

∫
f(Ypred|η(M))f(η(M)|Yobs) dη

(M) (12)

where η(M) denotes all the parameters under model M , f(η(M)| Yobs) is the posterior density

and f(Ypred| η(M)) is the density of a predicted (or future) value. The model selection criterion

called the expected predictive deviance (EPD), chooses the model M with the smallest value of

E(M)[d(Ypred,Yobs)|Yobs] (13)

where d(Ypred, Yobs) is a discrepancy function and the expectation is with respect to the pre-

dictive distribution (12). For binary data, a common discrepancy function is d(Ypred,Yobs) =

||Ypred− Yobs|| which is the total number of incorrect predictions corresponding to model M.

It is straightforward to estimate (13) as part of MCMC sampling. In each loop of an MCMC

run, Ypred is generated and d(Ypred, Yobs) is calculated. The sample mean of the d(Ypred, Yobs)

values is then used to estimate (13).

In the examples that follow, we also compute the model selection diagnostic DIC known as

the Deviance Information Criterion (Carlin & Louis 2009). DIC is a counterpart to the Akaike

Information Criterion (AIC) and is an immediate byproduct of sampling from the posterior. In

WinBUGS, DIC is an option on the Inference menu. As with AIC, smaller values of DIC suggest

preferred models where differences greater than 3-5 are typically regarded as meaningful.

4 Example 1: Who Likes Whom?

We consider a binary social network which was part of a larger study collected by Krackhardt

(1987). Krackhardt collected data of perceptions about interactions among members of a man-
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agement team (supervisors up through the president) in a high-tech entrepreneurial firm. Each

of n = 21 persons in the management team was asked to fill out a questionnaire. We consider the

friendship response where judge k assessed whether i likes j. An affirmative (negative) response

corresponds to ykij = 1(0). Although common sense dictates that friendship is a symmetric tie,

many non-symmetries have been noted in the real world. A review of 1000 sociometric matrices

by Davis and Leinhardt (1972) forced them to alter their model to include non-symmetric ties.

In Figure 1, we provide a graphical summary of the n2(n − 1) = 8820 responses where the

(i, j)th cell is darker when many of the judges perceive that i likes j. Similarly, the (i, j)th cell

is lighter when many of the judges perceive that i does not like j. As expected, we observe

considerable symmetry in the matrix which suggests that if i likes j, then in most cases, j also

likes i. We also observe that there are various types of personalities in the study. For example,

subject 11 tends to like lots of people whereas subject 20 does not have such a happy disposition.

We fit the hierarchical model described in section 2 to the dataset where the logistic link is

used. In Table 2, we provide posterior summaries of the variance components and correlation

parameters. We first note that most of the parameters are “significant” in the sense that the

magnitudes of the posterior means exceed twice the values of the respective posterior standard

deviations. We observe that the standard deviations (σα, σβ, σγ) corresponding to the main

effects are generally larger than the standard deviations (σαβ, σαγ) of the special adjustment

(interaction) parameters. Referring to the correlation parameters in (5), we see that ρ1 is positive

indicating that subjects who like others also tend to be liked. Similarly, and as anticipated, ρ2

and ρ3 are also positive. Referring to the correlation parameters in (6), φ1 is nearly 1.0 which

implies as expected that there is reciprocity in friendships between particular pairs. Also as

anticipated, φ2 and φ3 are positive. Finally, φ4 is close to zero as there appears to be no reason

why i’s perception of j’s ability to make friendships should be related to j’s perception of i’s

ability to make friendships.

With respect to the main effect parameters αi, βj and γk in (3), the largest posterior means

for the α’s correspond to subjects 11 and 17. The smallest posterior means for the α’s correspond

to subjects 20 and 10. This roughly agrees with Figure 1 where darker rows indicate that the

individuals like other people. Similar agreement exists with respect to the β parameters and the

columns of Figure 1. The general agreement between the data and the posterior means of the

αi and the βj provide confidence in our model. The posterior means of the αk parameters vary
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Figure 1: Heatmap illustrating the total scores over all judges with respect to sending ties and
receiving ties using the friendship data in Example 1. A darker shade in the (i, j)th cell indicates
that many judges perceive that subject i likes subject j. Note that observations are not collected
along the diagonal.

from a low of -2.3 to a high of 1.1 indicating a variation in the perception of judges.

We return to the question of accuracy where we ask whether an individual’s perception of their

relationships is the same as the perception that others hold. In Figure 2, we provide boxplots

of the MCMC output corresponding to δi in (4) for i = 1, . . . , n. Recall that δi represents the

adjustment due to the self-perception of individual i with respect to his or her own relationships.

In Figure 2, we observe that most subjects have a slightly elevated view of themselves in terms

of their capacity to befriend others. Very few individuals have a negative view and there are a

few subjects with a grossly inflated view of their ability to form friendship ties.

In an MCMC application, it is good statistical practice to assess practical convergence of

the Markov chain. Our summaries in Table 2 are based on 50000 iterations after a burn-in

period of 50000 iterations. To gain confidence in our results, we considered parallel runs and
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Parameter Posterior Mean Posterior Std Dev 95% Credible Interval
σα 0.75 0.15 (0.51,1.06)
σβ 0.91 0.19 (0.62,1.34)
σγ 1.19 0.23 (0.83,1.74)
ρ1 0.53 0.19 (0.10,0.82)
ρ2 0.25 0.24 (-0.25,0.67)
ρ3 0.43 0.20 (-0.04,0.77)
σαβ 0.93 0.06 (0.83,1.05)
σαγ 0.53 0.06 (0.46,0.67)
φ1 0.97 0.02 (0.93,0.99)
φ2 0.41 0.09 (0.21,0.56)
φ3 0.45 0.07 (0.30,0.57)
φ4 0.16 0.17 (-0.12,0.49)

Table 2: Posterior summaries of the variance components and correlation parameters for the
friendship data in Example 1.

experimented with different starting values in the Markov chain. Some history and diagnostic

plots are provided in the online supplement. For all of the model parameters, the values of

the Brooks-Gelman-Rubin statistic R̂ (Brooks & Gelman 1998) were less than 1.001 indicating

satisfactory convergence.

A Bayesian analysis involving sampling from the posterior provides great flexibility for the

analysis of functions of parameters. For example, suppose that we are interested in the difference

(αβ)12 − (αβ)21. This represents the reciprocity between sending and receiving ties involving

subjects 1 and 2. From posterior sampling, the difference can be calculated for each iteration of

the Markov chain. The corresponding posterior density plot is given in Figure 3. As expected

with most pairs of subjects, the posterior probability is concentrated about zero. We also observe

the range of plausible values of (αβ)12 − (αβ)21.

As part of a larger sensitivity analysis, we considered the effect of the prior distributions µ ∼
Normal(0, 1), Σ−11 ∼Wishart3[R

−1, 3], 1/σ2
αβ ∼ Gamma(100, 10) and 1/σ2

αγ ∼ Gamma(100, 10).

We modified µ ∼ Normal(0, 10), Σ−11 ∼ Wishart3[((ν0/5)R)−1, 5], 1/σ2
αβ ∼ Gamma(50, 5) and

1/σ2
αγ ∼ Gamma(50, 5) which has the effect of introducing greater prior dispersion. Under the

alternative priors, we observed some changes in the posterior summaries reported in Table 2.
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Figure 2: Boxplots of posterior distributions corresponding to the personal assessment parameter
δi in (4) from Example 1. The label on the top of each boxplot corresponds to the subject number.

For example, the posterior mean for ρ1 changed from 0.53 to 0.39. The greatest change was

observed for the parameter σαβ whose posterior mean increased from 0.93 to 1.46.

Although we have reported on the full model as described in section 2, it is worth asking

whether sub-models are adequate. In Table 3, we record the EPD and DIC diagnostics discussed

in section 3.2 for various sub-models. Using either diagnostic, the message is clear that the full

model is best at describing the triadic friendship network of Example 1.

5 Example 2: Who Bullies Whom?

Children are routinely classified as bullies and victims but rarely is it known which bullies

harass which victims (Rodkin & Berger 2008). The dyadic bully-victim relationship is not

easy to observe or measure; a bully may not self identify himself, for example. The subjective

experiences of bullying and being bullied may or may not match. Also, bullies and their targets

often have different intentions and perceptions of an act (Veenstra et al. 2007). In such a setup,
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Figure 3: Posterior density plot of (αβ)12 − (αβ)21.

Model EPD DIC
µ only 1440.0 5321.2

µ + main effects 1297.0 4631.3
µ + main effects + interaction effects but φ1 = φ2 = φ3 = φ4 = 0 913.0 3195.0

µ + main effects + interaction effects 920.7 3011.0

Table 3: EPD and DIC diagnostics corresponding to the friendship data in Example 1.

third party observations can be valuable to ascertain and validate the dyadic relationship in the

tradition of the social cognitive mapping procedure.

In this example, we do not provide all of the analysis that was performed in the first example.

In particular, we do not report on the convergence aspects of the algorithm although we note that

no difficulties were encountered. We instead concentrate on the inferential differences between

the two examples with an attempt to highlight the flexibility of the proposed methodology.

Card et al. (2010) introduced a triadic relations model in the context of the perception of

bullying among school children. Data were collected from third and fourth grade students in

public elementary schools in Illinois, USA. A total of 162 children in nine classes participated

where each student identified the bullies and their victims from among their classmates. The

18



questionnaire format allowed the respondents to identify themselves as bullies and victims. Very

rarely did a subject identify himself or herself as a bully but self-identification as a victim was

common.

In this dataset, there was only one possible mechanism for missing data. When students did

not participate due to absence from school or lack of parental consent, then they did not fill

out the questionnaire. For students who did fill out the questionnaire, there were no missing

data as they provided information on all students. In our analysis, we have simply ignored the

missing observations, under the assumption that the reasons for missingness were unrelated to

the response variable of interest. This enables the missing data to be treated simply as unknown

parameters.

The data are binary where

ykij =

{
1 if student k indicates that student i bullies student j

0 if student k does not indicate that student i bullies student j .

In Figure 4, we depict the bully-victim relationships for a class of 21 children which we

subsequently analyze. In this group, 6 children did not provide perception data, and in total,

264 bully-victim ties were reported. We observe that there are relatively few bullies and there

seems to be general consensus on the identification of the bullies.

Card et al. (2010) analyzed the full dataset involving 162 children using an ANOVA-based

triadic relations model (Bond et al. 1997). With binary responses, we use a more appropriate

logit model where we record the bullying behaviour of actor i towards partner j as a potential

victim as perceived by judge k

logit(pkij) = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk

logit(pkji) = µ+ αj + βi + γk + (αβ)ji + (αγ)jk + (βγ)ik . (14)

In this model, the mean parameter µ measures the overall perception of the bullying be-

haviour of students in the class. The parameter αi indicates student i’s propensity of bullying

others and βi represents student i’s vulnerability of victimization at the hands of others in the

class. The parameter γi is subject i’s “perception bias” to sense the occurrence of bullying in

the class.

As in section 2, αi, βi and γi are assumed to follow a trivariate normal distribution with mean
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Figure 4: Directed graph showing the reported bully-victim relationships for a class of 21 school
children corresponding to Example 2. The number of edges going from student i to student j is
the number of judges who reported the relationship. The graph shows the set of bullies in the
middle and victims along the periphery of the graph.

vector zero and covariance matrix Σ1 as specified in equation (5). The variance component σ2
α

measures the individual variability in aggression - smaller values indicate that all students bully

to the same extent whereas larger values indicates that aggressive behaviour can be attributed

to a small group of bullies. The component σ2
β represents the variability among students as the

victims of bullying. Smaller σ2
β values indicate that bullies choose their victims from among a

large group of fellow students and larger σ2
β values indicate that they pick their victims from

among a small group of students. The variance parameter σ2
γ measures the variability in the

perception of students to sense the occurrence of bullying in the class. Smaller values of σ2
γ

indicate that perception of bullying behaviour is experienced across all the members of the group

and larger values mean that perception of bullying is centered only among a small number of

students.

Further, we wish to investigate the relationships between the individual traits of the bully-

ing/victimization experience. We formalize these relationships via three correlation parameters

whose interpretations are subtle but are important in understanding the behaviours associated

with bullying. The three correlation parameters are as follows:
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• ρ1 = corr(αi, βi) measures individual level reciprocity of bullying and victimization. A

positive value of ρ1 indicates that students who bully others are likely to be the victims of

bullying at the hands of others. A negative value of ρ1 indicates the presence of asymmetric

ties in the sense that bullies are not likely to be bullied and victims usually do not bully

others.

• ρ2 = corr(αi, γi) relates students’ perception with their actual bullying behaviour. A

positive value indicates that students who bully others are likely to report the bullying

behaviour at large (though perhaps not likely to report their own behaviour). A negative

correlation means that bullies are not likely to acknowledge the presence of bullying going

on in the class.

• ρ3 = corr(βi, γi) measures the relationship between one’s outlook versus their victimization

experience. A positive value indicates that students who experience bullying also perceive

that others are more likely to be victims. Conversely, students who are less likely to attract

bullying also perceive that others are less likely to be bullied. A negative correlation is an

indication of denial on the part of victims and over-reaction to report bullying on the part

of students who are not themselves victimized.

The directed interaction effect (αβ)ij represents the special propensity of student i bullying

student j over and above the bullying potential of subject i and the attraction of subject j to

be bullied. The parameter (αγ)ik represents the specific perception of judge k regarding the

propensity of student i to bully others. On the other hand, the parameter (βγ)ik represents the

specific perception of judge k regarding the vulnerability of student i as a victim of bullying. In

contrast to the friendship relation, which is symmetric, we note that the bullying-victimization

relation is inherently asymmetric. Therefore, a judge would mostly perceive a subject in opposite

directions with respect to bully or victim. In other words, judge k, in assessing an individual

i, will view the individual’s bullying propensity and victimization vulnerability in the opposite

direction. This leads to the assumption

(βγ)ik = −(αγ)ik (15)
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which is the counterpart to the simplification assumption (2). We therefore see that the nature

of the relation in triadic data plays a role in the modelling exercise. Under (15), the logit model

(14) becomes

logit(pkij) = µ+ αi + βj + γk + (αβ)ij + (αγ)ik − (αγ)jk

logit(pkji) = µ+ αj + βi + γk + (αβ)ji + (αγ)jk − (αγ)ik .

The study design allows students to identify themselves as possible bullies (k = i) and victims

(k = j). In these cases, some of the parameters have particular importance. For example, the

parameter (αγ)ii represents subject i’s personal perception bias in judging his or her capability

to bully others.

We assume that the interaction effects (αβ)ij, (αβ)ji, (αγ)ij and (αγ)ji follow a multivariate

normal distribution with mean vector zero and covariance matrix Σ2 as in (6). For a detailed

interpretation of the variance components σ2
αβ and σ2

αγ and the correlation parameters φ1, φ2,

φ3 and φ4, we refer the reader to Bond et al. (2007) and Card et al. (2010).

Table 4 provides posterior summaries of the variance components and correlation parameters.

Among the variance components pertaining to main affects and interaction effects, var(αi) = σ2
α

has the highest value indicating that most of the variation in the outcomes can be attributed

to the heterogeneity in aggressive behaviour due to a small group of bullies. Amongst the

correlations ρi, only ρ2, relating students’ perception with their actual bullying behaviour, is close

to significant. The negative value of ρ2 is indicative of a bully’s tendency to not acknowledge the

incidence of bullying and non-bullies’ ability to report the bullying behaviour when it is present.

To highlight the importance of the nature of the ties in triadic networks, we contrast the highly

significant ρ1 in the friendship data example with the near-zero value of ρ1 in the bully-victim

data. Specifically, friendship is highly reciprocated at the dyadic level but not so with respect

to bullying. That is, bullying is not correlated with being bullied.

We carried out a sensitivity analysis for this model changing prior distributions in exactly

the same way as was done in Example 1. The value of the posterior mean of ρ2 changed from

-0.40 to -0.54. The largest changes were for the posterior mean of σα decreasing from 6.95 to

3.17 and for the posterior mean of σα,γ increasing from 0.63 to 1.39.

In a comparison of our results with Table 2 from Card et al. (2010), we note that the largest

discrepancy involved the parameter ρ3. Card et al. (2010) obtained the estimate ρ̂3 = −0.91
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Parameter Posterior Mean Posterior Std Dev 95% Credible Interval
σα 6.95 3.15 (2.58,14.38)
σβ 0.61 0.13 (0.41,0.92)
σγ 1.34 0.38 (0.80,2.27)
ρ1 -0.02 0.37 (-0.70,0.67)
ρ2 -0.40 0.36 (-0.90,0.43)
ρ3 -0.01 0.31 (-0.59,0.59)
σαβ 0.32 0.02 (0.29,0.36)
σαγ 0.63 0.06 (0.51,0.75)
φ1 -0.21 0.56 (-0.96,0.83)
φ2 0.31 0.19 (-0.04,0.73)
φ3 0.17 0.29 (-0.40,0.68)
φ4 0.73 0.17 (0.31,0.97)

Table 4: Posterior summaries of the variance components and correlation parameters for the
bully-victim data in Example 2.

and advised readers that this should be “interpreted cautiously”. A strong negative correlation

implies that children who are bullied are less likely to perceive bullying. In our analysis, ρ3 ≈ 0

which implies a lack of relationship between the experience of being bullied and the perception

of bullying. A possible explanation for the discrepancy is that Card et al. (2010) regressed 0/1

response data using ANOVA techniques designed for continuous data.

In Table 5, we present diagnostics for three competing models in the bully-victim data. We

observe that the EPD and DIC diagnostics both suggest that the interaction terms are important

components in describing the underlying bully-victim mechanism.

Model EPD DIC
µ only 503.0 2188.0

µ + main effects 355.7 1347.0
µ + main effects + interaction effects but φ1 = φ2 = φ3 = φ4 = 0 251.6 874.5

µ + main effects + interaction effects 246.2 876.4

Table 5: EPD and DIC diagnostics corresponding to the bully-victim data in Example 2.
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6 Discussion

Assessing accuracy in social relations data has been an elusive problem in the field of social

relations analysis. In this paper, we have provided a fully Bayesian analysis for triadic models in

both the binary response and the continuous response settings. The models are relatively easy to

specify in the WinBUGS programming language where the construction of Markov chains is done

in the background. A great benefit of the WinBUGS implementation is that model modifications

may often be accomplished without great difficulty (e.g. drop interaction terms). A user may also

choose to modify prior distributions in the light of available prior information. Whereas we have

primarily used default priors for the sake of illustration, more informative prior distributions are

often beneficial both in terms of convergence and in obtaining stronger inferences. The WinBUGS

code utilized in this paper may serve as a template for the development of specialized models in

the analysis of triadic social relations data.
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