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Abstract

This paper investigates optimal target locations for throw-ins in soccer. The inves-

tigation is facilitated by the use of tracking data which provides the positioning of

players measured at frequent intervals (i.e. 10 times per second). The methods for the

investigation are necessarily causal since there are confounding variables that impact

both the throw-in location and the result of the throw-in. A simple causal analysis

indicates that on average, backwards throw-ins are beneficial and lead to an extra

two shots per 100 throw-ins. We also observe that there is a benefit to long throw-ins

where on average, they result in roughly four more shots per 100 throw-ins. These

results are corroborated by a more complex causal analysis that relies on the spatial

structure of throw-ins.
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1 INTRODUCTION

The investigation of cause and effect relationships is a fundamental research topic in both

the sciences and the social sciences. Traditionally, cause and effect relationships are studied

through experiments where randomization is the primary technical tool for investigation.

In sport, cause and effect relationships are also important. For example, teams and

individuals want to know whether particular tactics are effective winning strategies. How-

ever, in sport, data do not typically arise through randomized experiments. Rather, data

are usually collected from matches, in non-experimental settings.

Fortunately, the development of causal methods (Pearl 2009) has provided opportuni-

ties to investigate cause and effect relationships in non-experimental settings. Whereas

the identification and measurement of relevant confounding variables is a necessary and

challenging component of causal methods, the hurdle appears less imposing in sport. In

sport, objectives are often clear (e.g. score more goals than the opponent), matches ter-

minate in reasonable timeframes (e.g. often two to four hours), and rules are well defined.

Most importantly, with the advent of detailed player tracking data (e.g. spatio-temporal

data), our sporting intuition often permits the identification and measurement of relevant

confounding variables.

Causal inference in sport assisted by player tracking data is a relatively new but poten-

tially fruitful research area. Wu et al. (2021) provided a template for such analyses in soccer

where the benefit of crossing the ball was investigated. In this investigation, the response

variable Y (resultant shot) was binary, and the treatment X (crossing) was binary. Wu et

al. (2021) generated conclusions that were contradictory to some of the existing literature,

where they indicated that crossing is a valuable tactic. Epasinghege Dona and Swartz

(2023) expanded on these ideas to carry out a causal analysis regarding pace of play in

soccer. In this investigation, the response variable Y (excess shots) was discrete, and the

treatment X (pace) was bivariate and continuous. Epasinghege Dona and Swartz (2023)

established that playing with pace is a valuable strategy, a conclusion that had not been

previously established in soccer.

This paper extends the causal investigations of Wu et al. (2021) and Epasinghege Dona

and Swartz (2023). Our analysis investigates the optimal locations of throw-ins in soccer.

In this investigation, the response variable Y (resultant shot) is binary, and the treatment
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X (throw-in reception location) is spatial. Stone, Smith and Barry (2021) have previously

studied the throw-in problem using data from the English Premier League where they

obtained the surprising result that backward throw-ins are more successful in terms of shot

creation. Notably, Stone, Smith and Barry (2021) did not have access to player tracking

data. Without tracking data, it is not possible to assess the extent to which the recipient

of a throw-in is open. Unlike our paper, Stone, Smith and Barry (2021) did not carry out

a causal analysis.

As mentioned, the availability of player tracking data provides the opportunity for a

deep-dive analysis of throw-ins in soccer. With player tracking data, the location coor-

dinates for every player on the field are recorded frequently (e.g. 10 times per second in

soccer). With such detailed data, the opportunity to explore novel questions in sport has

never been greater. The massive datasets associated with player tracking also introduce

data management issues and the need to develop modern data science methods beyond tra-

ditional statistical analyses. Gudmundsson and Horton (2017) provide a review of spatio-

temporal analyses that have been used in invasion sports where player tracking data are

available.

In Section 2, we describe the player tracking data and discuss related challenges. We

then describe how we construct the throw-in datasets from the tracking data. The throw-

in datasets are the source files which are used for the causal analysis. Some exploratory

data analyses are also provided. In Section 3, we discuss the use of propensity scores

in causal investigations. Propensity scores describe the probability of the treatment X

(spatial location of throw-in) given underlying covariates W . In Section 4, we present a

causal analysis concerning the optimal locations of throw-ins relative to the position on the

pitch. This is done in three ways. The first two approaches are simple as they are based on

defining a binary variable corresponding to backward/forward throw-ins and (2) defining a

binary variable corresponding to short/long throw-ins. We then consider a more complex

analysis based on the full spatial treatment X. The main result from the analyses is that

both backward throw-ins and long throw-ins confer a competitive advantage. We provide

some concluding remarks in Section 5.

Apart from tactics, there have been many recent investigations in the literature related

to soccer. A sample of diverse topics include match fixing (Forrest and McHale 2019), the

evaluation of passing (H̊aland et al. 2020), competitive balance (Manasis, Ntzoufras and
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Reade 2022) and the forecasting of match results (Hubáček, Šourek and železný 2022).

2 DATA

For this investigation, we have a big data problem where both event data and player tracking

data are available for 237 regular season matches (three matches missing) from the 2019

season of the Chinese Super League (CSL). The schedule is balanced where each of the 16

teams plays every opponent twice, once at home and once on the road.

Event data and tracking data were collected independently where event data consists of

occurrences such as tackles and passes, and these are recorded along with auxiliary infor-

mation whenever an “event” takes place. The events are manually recorded by technicians

who view film. Both event data and tracking data have timestamps so that the two files

can be compared for internal consistency. There are various ways in which tracking data

are collected. One approach involves the use of Radio Frequency Identification (RFID)

technology where each player and the ball have tags that allow for the accurate tracking of

objects. In the CSL dataset, tracking data are obtained from video and the use of optical

recognition software. The tracking data consists of roughly 1.3 million rows per match

measured on 7 variables where the data are recorded every 1/10th of a second. Each row

corresponds to a particular player at a given instant in time. Although the inferences gained

via our analyses are specific to the CSL, we suggest that the methods are applicable to any

soccer league which collects tracking data.

2.1 The Throw-in Datasets

We pre-processed the CSL tracking and event data. Originally, the data were provided in

xml files and we extracted content using the read xml function from the XML package using

R software. The resulting tracking and event data were written into csv file format.

Ultimately, we constructed throw-in dataframes for each match. These are comprehen-

sive datasets that allows us to investigate various questions of interest related to throw-ins.

A throw-in dataframe is a matrix where the rows correspond to throw-ins. Each throw-in

has been translated and standardized such that throw-in angles and distances downfield

are consistent according to direction that a team is attacking. The columns include the
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following basic variables: the identification of the throw-in team, the identification of the

opponent team, the identification of the player who made the throw-in and the binary vari-

able Y according to whether the end of possession from the throw-in resulted in a shot for

the throw-in team. The variable Y serves as the response variable which indicates success

related to a throw-in. An end of possession for the throw-in team occurs when the opponent

gains possession, a whistle occurs, there is a stoppage in play or when the ball goes out

of bounds. Although goals are a more direct measure of success, we note that goals are

rare events in soccer with less than three goals per match on average in most professional

leagues. We also record the relative spatial location X = (r, θ) of the received throw-in.

By relative spatial location, we mean the length of the throw-in and its radius angle given

the location on the field where the throw-in occurred to where the ball was received. The

measurement is standardized with respect to the side of the field where the throw-in occurs.

Using polar coordinates, the radius arm r is the length of the throw-in measured in metres

and θ is the angle of the throw-in measured in degrees. For example, X = (10, 90) describes

a throw-in of length 10m that is thrown perpendicular to the touch line.

For the propensity scores described in Section 3, we wish to relate covariates W which

have a potential impact on the relative spatial location X of the received throw-in. These

variables are derived from our soccer intuition and are viewed as confounding variables in

the causal analysis. In proposing covariates W , we take a broad perspective and introduce

variables that may have even a hint of impacting the spatial locations of throw-ins. We

introduce additional column variables W = (t, d, f, o, b, r) to the throw-in dataframes where

t ≡ time of the throw-in in minutes, t ∈ (0, 90)

d(t) ≡ score differential in favour of the throw-in team

f(t) ≡ field location of the throw-in, f(t) ∈ (0, 100)

o(t) ≡ openness of the receiver of the throw-in

b ≡ pre-match betting odds corresponding to the throw-in team

r ≡ red card variable corresponding to manpower advantage of throw-in team

(1)

In (1), we define the time variable t such that throw-ins that occur during extra time

in the first half are set to t = 45. For throw-ins that occur during extra time in the second

half, we set t = 90. Therefore t is a mixed variable (both continuous and discrete).
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The score differential d(t) is a discrete variable and expresses the lead by the throw-in

team. For example, d(t) = −2 indicates that the throw-in team is losing by two goals.

The field location variable f(t) has been standardized to the interval (0, 100) to account

for fields of different length. For example, f(t) = 50.0 corresponds to a throw-in taken from

midfield.

The openness variable o(t) in (1) describes the degree to which the receiver of the throw-

in is open. An open receiver is more likely to be targeted for a throw-in. To obtain o(t), we

first consider the shaded region in Figure 1 where only defenders in this region are assumed

to pose a threat of intercepting the throw-in. The idea is that defenders who are behind

the receiver can be “boxed out” by the receiver, and are not involved. Our experience is

that a receiver with a defender on his back will move towards the ball, be able to keep the

defender behind, and obtain possession. Thus, such a defender is not a threat to possession.

We define a defender as “boxed out” if the defender is situated within 45 degrees from the

perpindicular from the throw-in location to the receiver. Admittedly, the 45 degree angle is

a bit arbitrary. The variable o(t) is then calculated by taking the distance from the nearest

defender in the shaded region to the receiver. In this way, longer distances convey greater

openness of the receiver. If the throw-in is intercepted, o(t) = 0.0. Openness is related

to the more complex notion of pitch control or field ownership. Pitch control was first

introduced using Voronoi tesselations (Voronoi 1907, Kim 2004). More advanced metrics

for field ownership are discussed in Wu and Swartz (2022).

For the fifth variable b in (1), we accessed pre-match betting odds available from the

website https://www.oddsportal.com/soccer/china/super-league-2019/results/ . The bet-

ting odds (reported in decimal format and also known as European odds) provide us with

the relative strength of the two teams. For simplicity, we temporarily ignore the vigor-

ish imposed by the bookmaker. 1 In this case, the interpretation of betting odds b for a

team is that the team has a pre-match probability 1/b of winning the match. Therefore,

values of b slightly greater than 1.0 indicate a strong favourite whereas large values of b

indicate an underdog. To better understand betting odds, consider fair odds b, a wager of

1For the actual analysis, consider bettings odds bw, bd and bl corresponding to a team win, draw and
loss respectively. For profitability, the bookmaker introduces a vigorish whereby 1/bw + 1/bd + 1/bl > 1.
Therefore, the implied probability of a win is given by p = (1/bw)/(1/bw + 1/bd + 1/bl). To measure the
strength of a team, we instead base our analysis using betting odds defined as the reciprocal of p.
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Figure 1: The figure depicts the line between thrower (X) and receiver (open dot), and
two rays labelled A and B that are situated 45 degrees from the perpindicular to the line.
The resultant shaded region corresponds to the area where defenders are assumed to pose
a threat of intercepting the throw-in.

x dollars and probability p of winning the bet. The expected profit from such a wager is

−x ∗ (1 − p) + (xb − x) ∗ p and setting this equal to zero yields p = 1/b. Our sporting

intuition is that stronger teams may have different throw-in strategies than weaker teams.

In general, stronger teams tend to play differently than weaker teams (see for instance,

Silva and Swartz (2016)). Figure 2 depicts some of the variables described above.

The final variable r is binary and is set according to whether the throw-in team has

a manpower advantage. One might expect the defensive team to behave differently (e.g.

more players lined up behind the ball) in this scenario.

To create the throw-in dataframe, we looped frame by frame through the tracking

data, where we matched events and time using the event data. The process required

approximately 15 minutes of computation for all 237 matches.

To illustrate the propensity score variables W given by (1), consider a match where

the score is 1-0. In the 70-th minute, teams are full-strength, a throw-in takes place at

midfield for the leading team who are the favoured team with pre-match decimal betting

odds b = 1.5 (with the vigorish removed). Further, suppose that the nearest defender to

the receiver is standing along the sideline 8 metres away from the receiver. In this case,
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Figure 2: The plot illustrates some of the key variables corresponding to throw-ins. Four
throw-ins are depicted where the angle θ is standardized accounting for the side of the field
and the attacking direction. The four throw-ins each correspond to r = 15 metres and
f(t) = 60.0.

W = (t, d, f, o, b, r) = (70, 1, 50, 8.0, 1.5, 0).

The vector W = (t, d, f, o, b, r) corresponds to our soccer intuition as a driver of the

throw-in decision. We did consider other variables which did not have significant effects.

For example, the speed of the target receiver was considered and this was obtained by taking

the Euclidean distance of the player two frames before and two frames prior to the throw-in.

We also experimented with the red card variable r in a categorical setting corresponding to

manpower advantage, no advantage and manpower disadvantage. However, only manpower

advantage proved significant, and hence it was reduced to a binary variable.
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2.2 Data Management

With increasingly complex and large datasets in data science, the importance of data in-

tegrity cannot be overstated. Without accurate data, reliable inferences cannot be achieved.

In this application, we constructed the throw-in datasets from the event and tracking data

where the following issues presented challenges.

• Some throw-ins were identified as impossibly short (i.e. 0 metres in length). These

were a consequence of foul throws (59 occurrences) and were removed from the dataset.

• Some throw-ins were identified as impossibly long (i.e. exceeding 40 metres in length).

These were a consequence of an event happening during the throw-in which invalidated

the throw-in (e.g. a foul), and from which the next event took place at a location

other than the free-throw location. These events were rare (13 occurrences) and were

removed from the dataset.

• In our event dataset, a throw-in is labelled before the throw-in occurred, and therefore,

we should consider the next event to obtain the location where the throw-in was

received. There are some events like player substitutions, red/yellow cards that occur

before the throw-in. Therefore, we had to carefully eliminate these events before

calculating the throw-in length r and angle θ.

• There were two throw-ins where the target receiver was not identified.

From the original 8467 throw-ins occurring in the matches, 8393 were useable for data

analysis.

2.3 Exploratory Data Analysis

Exploratory data analyses often guide the development of formal statistical models. We

present several plots related to our investigation.

In Figure 3, we provide a histogram of the direction variable θ associated with all throw-

ins in the dataset. We observe that there are more forward throw-ins (i.e. θ < 90) than

backward throw-ins (i.e. θ > 90). This corresponds to our intuition since the attacking team

typically wishes to advance the ball downfield to a more threatening scoring position. The
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symmetric modes that we observe at approximately θ = 22.5 and θ = 157.5 are interesting.

These throw-ins are close to the touch line.
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Figure 3: The histogram of the variable θ describes the throw-in angle relative to the
sideline in the direction that the team is attacking.

In Figure 4, we provide a histogram of the radius arm r (or simply the length) associated

with all throw-ins in the dataset. We observe a right-skewed histogram where the modal

throw-in length is roughly 10 metres. There are several long throw-ins of approaching 40

metres in length. Whereas such throw-in distances may seem unlikely, these throw-ins may

be the result of a ball that was not initially received and travelled for a period.

In Figure 5, we provide a histogram of the openness variable o which gives the distance

from the receiver to the receiver’s nearest opponent who is positioned in the shaded region

of Figure 1. We observe that the median distance is roughly 10 metres and that the

histogram is right-skewed. From a practical point of view, a player is comfortably open

whether o = 10 metres or o = 30 metres, for example. Note that there were 126 cases

in the throw-in dataset where there were no opponents in the shaded area (see Figure 1).

These observations are not reflected in Figure 5, although they were retained for the causal

analysis.
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Figure 4: The histogram of the variable r describes the throw-in length.

3 PROPENSITY SCORES

Imagine temporarily that the throw-in problem was designed as a randomized experiment.

For each throw-in, we would randomize the location X = (r, θ) of the received throw-in,

and we would then relate Y (whether the completion of the possession resulted in a shot) to

X. This would allow us to determine an optimal X. With randomization, the idea is that

the underlying conditions leading to X would be nearly uniform across different realizations

of X.

Of course, with match data, X is not randomized. And it is quite possible that not only

does X depends on the covariate W in (1) but also Y depends on W . In other words, W

is a confounding variable when investigating the relationship between Y and X.

We therefore wish to obtain propensity scores P(X | W ) that describe how the prob-

ability of the treatment X (i.e. relative spatial location of the throw-in) is related to the

confounding variable W . If we are able to do this, then through matching, we can compare

Y1 under a treatment X1 relative to Y2 under a treatment X2 if X1 and X2 have similar

propensity scores. This is the essential logic of the causal approach where propensity scores

are used as a substitute for randomization.

Whereas we utilize a propensity score matching (PSM) approach, it is also possible to

carry out analyses based on weighted propensity scores (PSW). The latter has the advantage
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Figure 5: The histogram of the openness variable o describes the degree to which the
receiver is open (see formal definition in Section 2.1).

that all observations can be used in the analysis. Narita, Tena and Detotto (2023) provide

an insightful tutorial on the use of propensity score analyses with particular attention to

PSW analyses.

We consider three causal analyses in Section 4: (1) backward throw-ins versus forward

throw-ins, (2) long throw-ins versus short throw-ins and (3) a composite analysis based on

the full spatial variable X = (r, θ). The propensity score models that we use in these three

analyses are logistic, logistic and random forests, respectively.

4 CAUSAL ANALYSES

We return to the primary question concerning the optimal locations involving throw-ins. In

Section 3, we have developed a propensity score model which yields scores P(X | W ). Our

objective now is to investigate the causal relationship between the binary response variable

Y (whether the throw-in possession results in a shot) and the spatial treatment variable

X = (r, θ).

We present three analyses where the first two analyses address the following simple

questions: (1) Is a forward throw-in preferable to a backward throw-in? (2) Is a long

throw-in preferable to a short throw-in? For the third analysis, we use more sophisticated

12



methods to investigate the impact of the full spatial variable X = (r, θ) on Y .

For the purposes of the simple causal analyses in Sections 4.1 and 4.2, we make some

adjustments to the confounding variable W = (t, d, f, o, b, r) presented in equation (1).

First, we discretize the time variable t according to the two categories t < 45 minutes and

t > 45 minutes. This has been done since we are doubtful that the corresponding response

variables are linear with respect to t, and we believe that the two halves of a match reflect

different playing styles. We also categorize the score differential to d(t) = −2,−1, 0, 1, 2

where d(t) = −2 indicates that the throw-in team is losing by a large margin (two or more

goals) and d(t) = 2 indicates that the throw-in team is winning by a large margin (two

or more goals). With respect to goal differential, we attempted expanding the categories

to d(t) = −3,−2,−1, 0, 1, 2, 3. However, we observed several insignificant effects and we

believe this was due to few observations corresponding to the cells d = −3 and d = 3.

We discretize the field location variable f according to f < 67 and f ≥ 67 since there are

tactical differences in the final third of the pitch. Third, we truncate the openness variable

o such that values of o > 10 metres are set according to o = 10. This is done because

we believe there is a meaningful difference in openness between o = 1 metres and o = 2

metres, for example. However, for o > 10, all throw-in receivers are effectively open. We

did experiment with different thresholds of openness (e.g. o > 12 metres) but found that

this made little difference in the causal analyses.

4.1 Causal Analysis based on Throw-in Direction

We simplify the problem involving the spatial causation variable X = (r, θ) to a binary

context such that the control 0 < θ < 90 corresponds to a forward throw-in and the

treatment 90 < θ < 180 corresponds to a backward throw-in. Therefore, the corresponding

propensity score becomes P (90 < θ < 180 | W ) which we fit using logistic regression. In this

framework, there are n0 = 5023 control observations and n1 = 3370 treatment observations.

Of course, there may be other classes of interest with respect to throw-in direction (e.g.

sideways throw-ins); the full spectrum of throw-in directions are analyzed in Section 4.3.

In Table 1, we provide the results of logistic regression based on the variable W =

(t, d, f, o, b, r) described in Section 2.1. We observe that the time t of the match is significant

where more throw-ins go backward as the time progresses. This may be a function of teams
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tiring and less willing to move forward up the pitch. The goal differential d is highly

significant where we observe that greater leads are associated with forward throw-ins. This

may be a consequence of the leading team playing better, having more confidence and

energy, and consequently moving downfield more frequently. The throw-in position variable

f is highly significant. As the throw-in location moves into the attacking third, there are

more backwards throw-ins due to the constraints of the endlines. The openness variable

o is significant and this aligns with our intuition. With teams defending their own goal,

we expect more openness with backwards throw-ins. The betting odds variable b is highly

significant and indicates that weaker teams tend to have more forward throw-ins. This is an

interesting result and may be explained that these teams have less confidence and perhaps

feel that the only way for them to succeed is to move forward. Conversely, stronger teams

are typically more comfortable on the ball, willing to build up play through structured

passing and possession, and thus, more likely to throw backwards. With respect to the red

card variable, we observe that the throw-in team (with a manpower advantage) tends to

have more backward throw-ins. This may be explained by the defensive team playing a

more cautious style with more defenders behind the ball.

Variable Estimate Std Error p-value
intercept -0.184 0.134 0.171
time t(45, 90) 0.108 0.050 0.030 *
goal differential d(−1) -0.208 0.091 0.021 *
goal differential d(0) -0.575 0.088 5e-11 ***
goal differential d(1) -1.185 0.101 2e-16 ***
goal differential d(2) -1.250 0.122 2e-16 ***
field location f(≥ 67) 0.706 0.047 2e-16 ***
openness o 0.026 0.011 0.018 *
betting odds b -0.050 0.008 5e-10 ***
red card r 0.641 0.176 3e-04 ***

Table 1: Results from logistic regression in Section 4.1 which determines the propensity
scores P (90 < θ < 180 | W ).

Since n1 < n0, the matching concept (Austin 2011, Imbens 2004) is that we attempt to

match each of the n1 treatment cases with a corresponding control case so that each pair has

14



a similar estimated propensity score based on the underlying match circumstancesW . Then

the intention is that the resulting two groups (controls and treatments) are similar in the

match characteristics, and the differences between the two groups can be attributed to the

treatment (i.e. backward throw-in). There are many ways that the matching of propensity

scores can be carried out (Stuart 2010). For example, matching may be carried out either

with or without replacement. Matching may also be greedy (where each treatment case

is matched with the closest eligible control case) or performed to optimize some global

criterion. Further, randomization can be introduced in the matching procedure so that

sensitivity due to the matching can be assessed. There are some downsides of propensity

score matching (Guo, Fraser and Chen 2020). For example, with unequal treatment and

control groups, matching results in a loss of data. Also, propensity score matching reduces

the dimensionality of the covariate vector to a single dimension.

In our application, we begin with the n1 cases where the throw-ins are backward, and

we use a nearest neighbor method for selecting the matched cases where the throw-ins

are forward. Specifically, we use the Matching package (Sekhon 2011) in the statistical

programming language R to randomly select (with replacement) control cases that fall

within a specified tolerance of the propensity scores for the treatment cases. Sampling with

replacement tends to increase the quality of matching when compared to sampling without

replacement. Unlike deterministic matching procedures, the random aspect of the nearest

neighbor procedure allows us to repeat analyses to check the sensitivity of the inferences.

We repeated the analyses 1000 times. To get a sense of the matching, for each of the 1000

analyses, we recorded the maximum absolute difference in propensity scores. This quantity

was then averaged over the 1000 analyses and yielded the difference 0.0048.

We tested for balance in the covariate distributions W = (t, d, f, o, b, r) of the matched

treatment and control groups using the two-sample t-test (Rosenbaum and Rubin 1985).

For a particular matching (selected randomly), the p-values corresponding to t, d, f, o, b, r

were 0.222, 0.396, 0.116, 0.962, 0.190 and 0.640, respectively. The lack of significance

suggests that there is balance in the matching across the confounding variables.

Following the implementation of the matching procedure, we calculate the average treat-

ment effect ATE = Ȳ (1)− Ȳ (0) where Ȳ (1) is the average number of resultant shots from

a backward throw-in and Ȳ (0) is the average number of resultant shots from a forward

throw-in. We obtained ATE = 0.018 with standard error 0.006 leading to p-value 0.001.
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This was based on the 1000 iterations of the matching procedure using n1 = 3370 matched

pairs. The result is significant and suggests that backward throw-ins are beneficial. This

corroborates the findings of Stone, Smith and Barry (2021). Specifically, our causal anal-

ysis indicates that from 100 backward throw-ins, roughly two more will result in a shot

than if the throw-ins had been forward. This is a meaningful result in terms of gaining a

competitive advantage.

In Figure 6, we present a more nuanced view of the situation for a randomly selected

case involving matching. For each group (treatment and control), we smooth the variable

Y with respect to the propensity score. On average, under our model’s specifications, we

observe that there is no advantage to executing a forward throw-in. As the propensity scores

increase (i.e. conditions more favorable to making a backward throw-in), the benefit of the

backward throw-in (in terms of shots) increases compared to making a forward throw-in.

This implies that players tend to make the correct decisions with respect to the direction of

throw-ins. As backward throw-ins become more probable, backward throw-ins have higher

probabilities of successful outcomes.
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Figure 6: Smoothed plots of the shot variable Y with respect to the propensity score for
backward throw-ins (treatment red) and for forward throw-ins (control blue).
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4.2 Causal Analysis based on Throw-in Length

In this section, we consider a second inferential question involving the length of throw-ins. In

recent years, the “long” throw-in has gained popularity in professional soccer, and we wish to

investigate whether the long throw-in confers an advantage. We again simplify the problem

involving the causation variable X = (r, θ) to a binary context. In this case, we define the

treatment of a long throw-in as r > 15 metres and 60 < θ < 120. The dual condition is

imposed so that long throw-ins do not correspond to throw-ins along the touchline (i.e. θ

near 0 or 180). Rather our interest is focused on long throw-ins that are directed towards

the middle of the pitch. Such long throw-ins appear to be an increasingly common tactic.

Therefore, the corresponding propensity score becomes P ((r > 15) ∩ (60 < θ < 120) | W )

which we fit using logistic regression. In this framework, there were n0 = 7831 control

observations and n1 = 562 treatment observations.

In Table 2, we provide the results of logistic regression based on the variable W =

(t, d, f, o, b). Note that the red card variable r was not included in the analysis of Table 2

since it was not statistically significant. In this analysis, we do not have as many statistically

significant terms as in Table 1. However, we do note that the coefficient estimates generally

correspond to our soccer intuition. For example, we expect more longer throw-ins in the

second half where one of the teams may be desperate and in need of a goal. This same

pattern appears with respect to the goal differential where a team trailing by one goal

(desperate) is more likely to make a long throw-in. When a team is tied or leading (i.e.

d = 0, 1, 2), they are less likely to make a long throw-in. The positive coefficient for f is

also sensible as long throws are more common in the attacking third. The openness variable

o is highly significant; in order to retain possession on the throw-in, it is reasonable that

long throw-ins require receivers to be more open than with short throw-ins.

We carry out the matching procedure as described in Section 4.1. To check the sensi-

tivity of the inferences, we repeated the analyses 1000 times. For each of the 1000 analyses,

we recorded the maximum absolute difference in propensity scores. This quantity was then

averaged over the 1000 analyses and yielded the difference 0.0002. We then obtained the

average treatment effect ATE = Ȳ (1)− Ȳ (0) = 0.042 with standard error 0.016 and corre-

sponding p-value 0.004. This was based on the 1000 iterations of the matching procedure

using n1 = 562 matched pairs. Here, Ȳ (1) is the average number of resultant shots from
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Variable Estimate Std Error p-value
intercept -3.613 0.274 2e-16 ***
time t(45, 90) 0.355 0.095 2e-04 ***
goal differential d(−1) 0.116 0.161 0.472
goal differential d(0) -0.113 0.160 0.477
goal differential d(1) -0.602 0.194 0.002 **
goal differential d(2) -0.444 0.228 0.052
field location f(≥ 67) 0.212 0.089 0.017 *
openness o 0.111 0.023 2e-06 ***
betting odds b -0.024 0.015 0.135

Table 2: Results from logistic regression in Section 4.2 which determines the propensity
scores P ((r > 15) ∩ (60 < θ < 120)).

a long throw-in and Ȳ (0) is the average number of resultant shots otherwise. The result

indicates that long throw-ins are beneficial as they lead to approximately four more shots

per 100 throw-ins. In this analysis, the p-value is larger than in Section 4.1 but is still sig-

nificant. We note that the distance analysis presented here involves fewer observations than

the directional analysis of Section 4.1. The result indicates that the recent trend involving

more long throw-ins is a sound tactic.

In Figure 7, we consider a randomly selected case involving matching. We smooth the

variable Y with respect to the propensity score for each group (treatment and control). We

again see that professional soccer players are making the correct decisions. As it becomes

more likely for executing a longer throw-in, the benefits of doing so increase. Inspecting

the propensity scores, we observe that long throw-ins are relatively rare. This suggests that

teams may consider increasing the frequency of long throw-ins.

4.3 Causal Analysis based on Full Spatial Location of Throw-in

In this section, we utilize the full spatial variable X = (r, θ) to gain insight on the causal

relationship between X and the shot variable Y . Gelman and Meng (2004) consider struc-

tures beyond the simple binary X as analyzed in Sections 4.1 and 4.2. Here, we use machine

learning methods to obtain the propensity scores.

A rationale for machine learning methods in prediction is that complex phenomena
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Figure 7: Smoothed plots of the shot variable Y with respect to the propensity score for
the treatment group involving long throw-ins (red) and for the control group (blue).

are often difficult to model explicitly. Here, we have a two-dimensional spatial response

variable X = (r, θ), and an explanatory vector W described by (1). We have little apriori

knowledge about the relationship between X and W . For example, the relationship may

only involve a subset of the variables W , the components of W may be correlated, and

most importantly, the relationship X ≈ g(W ) involves an unknown and possibly complex

function g. In addition, the stochastic aspect of the relationship is typically unknown.

For this application, we use random forests as the chosen machine learning algorithm.

Random forests (Genuer and Poggi 2020) are particularly easy to implement using the

randomForest package (Liaw and Wiener 2002) in the R programming language. The basic

idea is that a random forest is a collection of many decision trees where prediction results are

aggregrated over trees. The use of multiple trees improves prediction and makes inference

less reliant on a single tree. The splits in the trees accommodate non-linear relationships

and terminal nodes provide the estimated probabilities of discretized values of X.

A feature of random forest procedures is that the cutpoints for component variables in

W (which determine nodes in trees) are obtained optimally by the algorithm. The random
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forests procedure provides us with propensity scores P (X | W ) for data (X,W ) which is

a necessary ingredient of the spatial causal analysis. In this analysis, P (X | W ) is the

probability that the ball is received at spatial location X = (r, θ) given the match situation

W .

In choosing the tuning parameters of the random forest procedure, we aimed for predic-

tive accuracy. We used the grid search method to obtain the optimized hyperparameters

of the random forest model. From that, we obtained ntrees = 300, mtry = 1 and nodesize

= 2. All the other hyperparameters were set to their default values. For the evaluation of

model performance, we used 10-fold cross validation.

In Figure 8, we present the feature importance plot of the variables W = (t, d, f, o, b, r)

used in the random forest procedure. The plot is provided as part of the randomForest

package. As in Section 4.1 and Section 4.2, we observe that the variables t, d, f, o, b are

important. In particular, t, f, o, b are roughly of the same importance with goal differential

d slightly less important. The red card variable r does not appear important in the full

spatial analysis.
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Figure 8: A plot of feature importance for the random forest procedure of Section 4.3.

Our causal investigation begins by discretizing the two-dimensional space X where
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throw-ins may be received. The region is truncated such that we only include observa-

tions extending 18 metres vertically from the throw-in location and 20 metres from the

throw-in location horizontally (both left and right). Therefore, the area of the region is

720 squared metres (i.e. 18 metres by 40 metres). The region is then divided into rectan-

gles of dimension 4 metres (horizontally) by 2 metres (vertically). This leads to 720/(2*4)

= 90 rectangles. Based on n = 7704 throw-ins in the truncated region, we would expect

7704/90 ≈ 85 throw-ins on average, per rectangle. We amalgamate neighbouring rectangles

when the number of observations in a rectangle is less than 30. There were 19 rectangles

with fewer than 30 observations. After joining rectangles with insufficient observations,

we were left with 71 rectangles. For every throw-in received, there is a propensity score

P (X | W ) obtained using the machine learning methods based on random forests.

The matching idea used previously in the binary analyses of Sections 4.1 and 4.2 is now

extended for the grid structure. We begin by randomly selecting a throw-in and noting its

propensity score p = P (X | W ). Within each of the remaining 70 rectangles, we then select

the throw-in whose propensity score is closest to p; these are the matching observations.

The process in the preceding paragraph is repeated M = 30 times. This means that

there are 30 observations within a given rectangle, and each of these observations is matched

to an observation in each of the remaining 70 rectangles. For each rectangle, we calculate

the average number of shots Ȳ generated by the throw-ins within the rectangle.

There is variability in the procedure due to the initial M = 30 observations that were

randomly selected. Therefore, the entire procedure is repeated 100 times with Ȳ for each

rectangle averaged over the 100 iterations. We investigated the matching of propensity

scores by calculating the maximum absolute difference of propensity scores across the (712)

pairs. This was then averaged over the M = 30 observations and the 100 iterations giving

a value of 0.003. Therefore, the small difference suggests that the matching was successful.

To investigate the causal effect of X on Y , we produce a smoothed heat map of the

average treatment effect Ȳ . In Figure 9, the heatmap is smoothed using the function

interp.loess in the R package tgp. We observe darker regions (i.e. larger Ȳ ) to the left

(backward throw-ins) that are not too long (i.e. less than 5 metres outward). We also

observe darker regions near the top (longish throw-ins from roughly 10 metres to 17 metres).

This corroborates our findings from Section 4.1 and Section 4.2.

Our investigation of variability associated with the matching procedure involves calcu-
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lating the standard deviation s(Ȳ ) for each rectangle. For a particular rectangle, we obtain

Ȳi for the i-th iteration, i = 1, . . . , 100. The quantity s(Ȳ ) is the resultant sample stan-

dard deviation corresponding to the Ȳi values. Then s(Ȳ ) is averaged over the 71 rectangles

where we obtain s̄(Ȳ ) = 0.064. From the color coding legend in Figure 9, it is apparent that

the variability due to matching does not lead to maps with meaningful colour differences.
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Figure 9: A smoothed heat map of the average treatment effect Ȳ over the grid of the
reception locations of throw-ins according to the algorithm of Section 4.3. The point
(X1, X2) = (0, 0) refers to the throw-in location.

5 CONCLUSIONS

The evaluation of tactics is a difficult and important problem for teams seeking to gain a

competitive edge. This paper uses causal methods facilitated by tracking data to investigate

throw-ins in soccer. Our results suggest the surprising result that backward throw-ins are

more effective than forward throw-ins. It is surprising since the receptor of a backward
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throw-in is in a less threatening offensive position on the field. We also demonstrate the

benefit of the long throw-in, a tactic that appears to be increasing in usage but whose

benefits have not been previously quantified.

We see this work as a template for the use of causal methods in sport to assess tactics.

Of course, a limitation of causal methods is the latency of confounding variables W that

effect the tactic X and the response Y . An underlying premise of our work is that sport

specific knowledge and tracking data permit the identification of the important confounding

variables.

There is an important and practical question related to our work. Given a particular

game situation W ∗ = (t, d, f, o, b, r), how should the throw-in be executed X to optimize Y ?

Let’s assume that all confounding variables have been identified. Then we wish to compare

a throw-in tactic X0 against a throw-in tactic X1 both occurring under W ∗. There would be

n0 observations under X0 and n1 observations under X1. Unfortunately, n0 and n1 would

be small (likely 0 or 1), and therefore a meaningful comparison could not be carried out.

Perhaps there is some way around this, maybe by categorizing W ∗, X0 and X1 into larger

classes of interest. With the provision of more data, this may be a future research direction.

Whereas tactics related to set plays are perhaps the easiest and first investigations that

come to mind, we also wish to continue the analyses of tactics to more complex scenarios

and across various sports.
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