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Abstract

Anticipating an opponent’s serve is a salient skill in tennis: a skill that undoubt-

edly requires hours of deliberate study to properly hone. Awareness of one’s own

serve tendencies is equally as important, and helps maintain unpredictable serve

patterns that keep the returner unbalanced. This paper investigates intended serve

direction with Bayesian hierarchical models applied on an extensive, and now pub-

licly available data source of professional tennis players at Roland Garros. We find

discernible differences between men’s and women’s tennis, and between individual

players. General serve tendencies such as the preference of serving towards the Body

on second serve and on high pressure points are revealed.
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1 INTRODUCTION

All points in tennis are initiated with a serve. The different tactics underlying each serve

are driven by a player’s dynamic risk tolerance, and explain why we observe a rich variety

of shots differing in direction, speed and spin. Given the foray of potential serves one may

encounter, especially at the professional level, serve anticipation is paramount in ten-

nis strategy. This paper presents some candidate statistical models describing a player’s

intended serve decision. While there exist many important traits that can collectively

describe a serve decision, this paper only considers intended serve direction, classified in

three categories: Wide, Body and T (see Figure 1). Tactically, one must consider varying

levels of faulting risk — risk of landing the ball outside the service box — when choosing

a serve direction. Namely, serves aimed at the two corners (Wide and T) are risky and

more likely to land out; by contrast, serves aimed towards the middle (Body) are safe and

more likely to land in the service box.

From the returner’s point-of-view, it is difficult to anticipate the upcoming serve direc-

tion, especially when under constrained reactionary time pressure. While research interest

in serve anticipation is buoyant, the lack of accessible ball-tracking information has rele-

gated most studies to ones of low sample size, or qualitative in nature (Reid, Whiteside,

and Elliott 2011; Vernon, Farrow, and Reid 2018). In spite of these limitations, many

studies highlight a list of salient variables in serve anticipation that are worthy of consid-

eration. For instance, in a small sample-sized study of professional men’s players, Reid,

Whiteside, and Elliott (2011) suggest that spatio-temporal characteristics such as the ball

position at serve impact are significantly different when players aim at the three distinct

serve regions.

Beyond spatio-temporal features, player-specific traits are also deemed important.

With Hawk-Eye tracking data, Loffing, Hagemann, and Strauss (2009) show that right-

and left-handed servers exhibit different serve direction tendencies; in particular, left-
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handed servers frequently choose to slice serves out Wide on Advantage court. Paralleling

server handedness, Loffing, Hagemann, and Strauss (2009) further suggest that returner

handedness is also associated with serve direction, owing to tactical considerations. Specif-

ically, on second serve, players are remarkably predictable and seem to repeatedly aim

for the returner’s backhand: a common strategy in deliberately targeting the returner’s

weakness and prompting a soft return shot. Serving strategy is also dictated by changes

in faulting risk tolerance, which in turn is affected by match-state. Most notably, players

commonly display changes in risk aversion based on serve number. Unierzyski and Wiec-

zorek (2004) indicate that most first serves are aimed Wide and T, while Body serves are

more commonly observed on second serve. These findings are not surprising, given that

players typically feel emboldened on first serve, yet apprehensive of double-faulting on

second serve. According to the rules of tennis, a double-fault results in a lost point to the

server.

Another interesting assertion about anticipating serve direction is the ability to be

conscious of a server’s unique behavioural patterns. Vernon, Farrow, and Reid (2018)

describe elite returners as those attuned to their opponent’s serve tendencies, especially

during pressure points. That is, servers may have specific serve preferences that manifest

during tense situations in a match. Interestingly, Bailey and McGarrity (2012) corrobo-

rate this view and point out that during pressure situations, servers frequently hit serves

to the returner’s backhand. In terms of optimal strategy, servers may benefit from uti-

lizing a more randomized serve direction pattern — a mixed strategy — that keeps the

returner unbalanced and perhaps maximizes the expected number of serving points won.

However, Walker and Wooders (2001) show that randomized serve strategies are uncom-

mon in tennis and that player serve decisions are not serially independent; that is, players

tend to switch from one action to another far too often from an optimal strategy point-

of-view.

Collectively, the previous discussions suggest a rich library of candidate predictors to
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construct a serve direction model. The novelty of serve anticipation research presented in

this paper is threefold: an application on an extensive and now publicly available serve

location dataset; the joint investigation of several spatio-temporal, player-specific and

match-state predictor variables; and the consideration of intended serve direction as the

response variable. Modelling intended serve direction allows the inclusion of net-faults1

and a complete account of all attempted serves within our dataset. Our goal is to predict

what a server wants to do, and if we exclude the unsuccessful serves, there would be a bias

in the dataset. Of course, unsuccessful serves may be viewed as serving errors, and hence

unsuccessful serves whose intended bounce locations are imputed are subject to greater

measurement error than successful serves. We acknowledge that imputing intended serve

direction rather than consider it missing will artificially reduce the variability in the data

and may also introduce bias.

The models considered in this paper are developed in a Bayesian framework: parame-

ters are treated as random variables with distributions, and prior knowledge on parameters

can be easily incorporated. This flexible approach facilitates intuitive probabilistic inter-

pretations for parameter estimates and provides a systematic approach for prediction via

the predictive distribution. The models are moderate dimensional and analyses of the

models are carried out using Markov chain Monte Carlo (MCMC) methods. For a survey

of some of the statistical work that has been done in sports analytics, see Albert, Glick-

man, Swartz and Koning (2017). Operations research is a natural venue for research in

sports analytics. Recent examples of sports analytics in operation research include Cea

et al. (2020), Friesl et al. (2020) and Nikolaidis (2015).

In Section 2, we begin with a description of the serve location dataset obtained from

the 2019 and 2020 Roland Garros tournaments, and present the imputation methods for

intended serve direction. We also provide an exploratory data analysis to guide our sub-

sequent modelling. In Section 3, details of candidate Bayesian serve direction models are

1Serves that were impeded by the net and have no bounce locations.
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provided. In Section 4, the Bayesian models are applied to both men’s and women’s data,

along with a discussion of covariate effects and model fit diagnostics. We conclude with

a discussion in Section 5. To date, data-driven solutions in tennis are scarce, and have

stagnated from a lack of publicly available ball-tracking data. To our knowledge, this

paper represents the first instance of fitting Bayesian models on extremely detailed tennis

tracking data.

2 EXPLORATORY DATA ANALYSIS

Ball tracking data from the 2019 and 2020 Roland Garros tournaments has recently been

made publicly available by CourtVision2: a product owned by Infosys. In total, the

CourtVision data consists of 82 men’s and 81 women’s matches, amounting to 23,588 and

14,862 available serve observations, respectively. Only single’s matches were considered.

These matches involved 74 distinct male participants and 78 distinct female participants.

Each serve observation is supplemented with both ball-tracking and match-state informa-

tion. In terms of ball-tracking data, three-dimensional coordinates of the ball trajectory

— including location at serve impact, location as the serve reaches the net, and serve

bounce location — are provided. The (x,y,z) location coordinates refer to the longitu-

dinal, lateral and vertical axes, respectively. Meanwhile, the match-state data include

information like the current score, serve number and player IDs. Player handedness data

was scraped elsewhere, from official tour websites.3

2An example: https://www.infosys.com/roland-garros/match-centre-3d.html?matchId=

SM001&year=2020&tournamentId=520&matchDate=2020-10-11
3Men’s: https://www.atptour.com/en/players/ ; Women’s: https://www.wtatennis.com/

players/
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2.1 Response Variable - Intended Serve Direction

Our response variable of interest — intended serve direction — has three response lev-

els: Wide, Body and T. The visual demarcations of these three regions, along with other

helpful references to tennis jargon referenced throughout this paper, are provided in Fig-

ure 1. We note that on the left-side of a full tennis court (not shown on Figure 1), the

Advantage (Ad.) court sits above the Deuce court. During the serve motion, the server

must stand behind the baseline and serve diagonally across court towards the returner.

Specifically, the server must stand toward the right of the center-mark when serving on

Deuce court and toward the left of the center-mark when serving on Ad. court. The serves

alternate from Deuce court to Ad. court with each consecutive point until the comple-

tion of a game. Rules of tennis, including its scoring system, are available online at:

https://www.tenniscanada.com/tournaments/officiating/rules-of-the-court/.

As part of data management, all (x,y,z) serve bounce locations landing inside the three

serve regions were categorized as either Wide, Body or T. Faulted serves that missed the

serve regions long (longitudinally beyond the service line) or wide (laterally beyond the

singles sideline or in the non-intended court), were categorized with the intended serve

region, identified as the serve region closest in distance to the serve bounce location. We

further emphasize the server’s intention by including imputed locations of balls obstructed

by the net (i.e. “net faults”). Imputation was performed assuming a linear trajectory ball

path, removing net obstruction. That is, using both the ball location at serve impact and

the location as the served ball reached the net, we imputed where the ball would have

landed assuming an unimpeded linear trajectory path. We note that this approximation

may not be entirely valid, since players are known to impart top- and side-spin on served

balls, as well as gravity that induce a non-linear ball trajectory. In both the men’s and

women’s datasets, faults consisted of ∼ 30% of serve observations; of all faults, ∼ 25%

are classified as net faults.
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Figure 1: The anatomy of one-half of a symmetric tennis court. The axes are recorded in
metres. For classifying serve direction, each service court was divided into three equally
spaced zones: Wide, Body, and T.

2.2 Serve Speed

Serve speed, like serve direction, is intentional. And while it may seem logical to include

speed in our serve-decision response classification,4 we find this inclusion redundant given

the consideration of other covariates. Specifically, Figure 2 illustrates a clear drop in speed

from a player’s first serve, to their second serve. Since serve number will be considered

as a covariate in our analysis, and speed is important with respect to serve number, we

purposefully omit serve speed as part of the response variable.

4For example, player-specific slow speeds vs. fast speeds.
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Figure 2: Serve speed densities on first and second serves for six men’s players.

2.3 Covariates

In this section we produce graphics based on tennis knowledge that help inform covariates

of interest to be included in our models. We emphasize certain relationships by plotting

two-dimensional kernel density heatmaps, using the kde2d function from the MASS R

package. Darker regions on these heatmaps represent areas with higher density of serve

bounce locations. For convenience, densities were scaled such that binned areas with the

highest density are given a value of 1.

With the Deuce court serve direction maps presented in Figure 3, one can observe the

difference in serve direction tendencies between men’s and women’s tennis and between

individuals. For example, the men aim their serves more towards the corners: Wide

and T. Meanwhile, the women have a more conservative approach where the Body is

also commonly targeted. The differences in serve direction profiles between genders is
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Figure 3: All first and second intended serve location densities for three men (top row)
and three women (bottom row) corresponding to the Deuce court.

interesting, especially given the prevailing thought of the serve being more crucial in the

men’s game compared to the women’s (Rothenberg 2017). Also, from Figure 3, both Nadal

and Federer are inclined to serve towards T; conversely, Djokovic is more balanced towards

both Wide and T. Similar patterns are also evident when considering serve direction

densities on the Advantage court. Clearly, serve directions are server-dependent.

2.3.1 Match Pressure

It is a popular belief that some players have a supposed go-to serve they resort to in pres-

sure situations, like a breakpoint. However, breakpoints do not represent all points with

a sizable impact on match outcomes: for example, serving when down 15 - 30 in the fifth,

match-deciding set is also a tense moment. Consequently, we consider point importance

— a proxy for match pressure — which calculates a player’s expected change in match win

probability, depending on whether they win or lose the current point (Kovalchik 2017). If
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P(a,b) represents the probability that the current server eventually wins the match, with

a and b denoting the server’s and returner’s current scores respectively, then the point

importance is calculated as P(a+1, b) – P(a, b+1), where a+1 is the change in score if

the server wins the point. Match win probabilities are derived with recursive formulas

unique to the tennis scoring system. Initially proposed by Morris (1977), and popularized

by Kovalchik and Reid (2018), point importance is a numeric score lying in the interval

[0,1], where 0 represents no importance and 1 represents maximal match importance.

To highlight point importance’s impact on serve decision, we present a case-study

involving Roger Federer. For convenience, point importance was arbitrarily binned such

that all points above the 80th quantile are High Importance, while all other points are Low

Importance. In total, Federer had 113 High Importance points and 442 Low Importance

points. Presenting the point importance serve location densities in Figure 4(a), we notice

that on important points, Federer typically serves toward T on Deuce Court, and opts for

more Wide/Body serves on Advantage Court. By contrast, Federer is less predictable on

his less important points. This case-study is, of course, only a sliver of point importance’s

impact on serve direction. For other players — Djokovic, for example — there is virtually

no change in serve direction behaviour, as seen in Figure 4(b).5

2.3.2 Ball Position at Serve Impact

Reid, Whiteside, and Elliott (2011) suggest that the ball’s lateral position at serve impact

can inform players on the intended serve direction. Presumably, the further away a player

strikes the serve from the center mark, the more angle is created that enables a Wide

serve. From Figure 5, we see that the relationship between lateral displacement and serve

direction is non-existent on first serve, but more apparent on second serve. That is, it is

only on second serve where the greater the lateral displacement, the more likely the ball

5There may be some mixed strategy implications here with Djokovic seemingly more willing to ran-
domise his serve direction options; at least, more so than Federer.
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(a) Roger Federer.

(b) Novak Djokovic.

Figure 4: Serve locations on important and less important points.

11



will land Wide.

Figure 5: Ball lateral position densities at serve impact.

Interestingly, Reid, Whiteside, and Elliott (2011) also report that the longitudinal

coordinate at serve impact is not significantly associated with serve direction. However,

since their study featured only six right-handed participants and was conducted under

non-match settings, we choose to include the longitudinal coordinate as part of our covari-

ates of interest. Under real, live-match settings, some players opt for a serve-and-volley

strategy,6 which requires a serve impact location inside the Baseline. Under this unique

strategy, players will likely choose Wide or T serves, over the Body serve. Other spatio-

temporal features, like ball toss trajectory and player position on the baseline, are also

deemed important. However, these features could not be extracted from our data, and

will not be considered.

6Strategy where players follow their serve immediately towards the net.
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2.3.3 Other Covariates

In addition to the covariates mentioned in this section, we will also consider serve deci-

sion lags in our potential models. According to Walker and Wooders (2001) player serve

decisions are not serially independent. As such, in modelling a player’s tth serve decision,

we will consider their previous serve decision at serve t-1.

Throughout our exploratory analysis, we find that certain serve direction patterns

exist more prominently under interacting schemas of our covariates of interest. In partic-

ular, players overtly target the returner’s backhand (BH) on second serve, and lefties are

notorious for serving Wide on Advantage court. Therefore, in addition to main covariate

effects, we also consider two interaction terms: one between serve number and returner’s

backhand location, and the other between court side and server handedness. Table 1

summarizes the full list of covariates.

Covariate Description

Serve Number 0 if first serve; 1 if second serve.
Lateral Distance Serve impact lateral distance from center mark.
Longitudinal Distance Serve impact longitudinal distance from baseline.
Serve at t− 1 is T 1 if T, 0 else.
Serve at t− 1 is Wide 1 if Wide, 0 else.
Returner’s BH Location 1 if BH location is T; 0 else.
Point Importance [0,1] denoting match pressure.
Server Handedness 1 if left-handed; 0 else.
Court Side 1 if Advantage court; 0 else.
Interaction 1 Court Side x Server Handedness.
Interaction 2 Serve Number x Returner’s BH Location.

Table 1: Candidate predictor variables.
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3 METHODS

3.1 Bayesian Multinomial Logistic Regression

A multinomial logit (MNL) model with C unordered response categories requires the

specification of C-1 logit equations, owing to identifiability concerns. In our application

C=3, denoting the three intended serve regions. Let Yit ∈ (1, . . . , C) represent an integer-

indexed serve decision for server i (i = 1, . . . ,m) on their tth serve number (t = 1, . . . , ni).

To limit model complexity, we assume that serve decisions do not vary significantly match-

to-match, and instead allow the subscript t to expand across all matches.

Let πitr = Prob(Yit = r) denote the probability of player i choosing serve decision

r on their tth serve. Choosing the last level, C, as our reference category, the C-1 logit

equations are written as

ηitr = log

(
πitr
πitC

)
, r = 1, . . . , C − 1. (1)

With the C-1 logit equations in (1), we can then obtain the response category proba-

bilities using the softmax function,

πitr =
exp{ηitr}

1 +
∑C−1

s=1 exp{ηits}
,

for r = 1, ..., C-1. For the reference category, we have

πitC =
1

1 +
∑C−1

s=1 exp{ηits}
.

In this paper, we consider three different Bayesian model structures for ηitr; each

structure differs in their intercept component or inclusion of match covariates. We present

these three model formulations in the following sections, which were largely inspired by

Congdon (2020) and Liu (2015). All models are fit with STAN, which uses Hamiltonian

Monte Carlo methods to generate posterior samples (Carpenter et al. 2017).
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3.1.1 Baseline Common Intercept Model

The simplest structure we consider for ηitr is a common intercept model,

ηitr = αr (2)

where αr represents a common intercept for each rth logit component. The model in (2)

does not consider player-varying effects, nor does it consider match covariates. While this

model structure is shallow, it will serve as a baseline comparison model against our more

elaborate model structures. We impose a default prior on αr as follows:

(α1, . . . , αC−1) ∼ NC−1

(
0, νIC−1

)
, (3)

where ν is a scalar and IC−1 is the identity matrix with C − 1 rows and columns.

3.1.2 Player-Varying Intercept Model

The underlying tennis assumption associated with model (2) is that player strategies with

respect to serve are centred about a common strategy. This makes sense from the point-

of-view that there is a long history of tennis playing experiences which dictate standard

and effective playing strategies. These ideas naturally suggest a hierarchical model where

players can have different intercept parameters, drawn from a common distribution. We

consider a player-varying intercept model where we allow intercepts to vary across server

i as follows

ηitr = αir. (4)

In the above formulation (4), αir denotes player-level varying intercepts for each rth

logit component, and are given a multivariate normal prior,

(αi1, . . . , αi,C−1) ∼ NC−1

(
(α1, . . . , αC−1) ,Σαi

)
.

To complete the hierarchical setup, we specify hyperprior distributions for the mean
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and covariance parameters. The mean parameter is given a weakly informative multi-

variate normal prior, similar to formulation (3). For the prior on the covariance matrix,

we impose the same distribution for each server, i. A Cholesky factorization on Σαi
is

implemented, and weakly informative priors are assigned: a half-Cauchy on the scale pa-

rameter and a computationally efficient Lewandowski-Kurowicka-Joe (LKJ) distribution

originally proposed by Lewandowski et al. (2009) on the Cholesky factor of the correlation

matrix (Stan Development Team 2021).

3.1.3 An Expanded Model

Covariates beyond player effects can also influence serve decisions. We expand our player-

varying intercept model in (4) by including covariates,

ηitr = αir +XT
itβr, (5)

where αir again denotes player intercepts, Xit is a p x 1 covariate vector, and βr is a p

x 1 parameter vector to be estimated. For simplicity, we include only the subscript r to

emphasize that a set of coefficients are obtained for each rth response category; however,

the components can also depend on player i or even the serve number index, t. The

components of βr are given vague multivariate normal priors with mean 0 and standard

deviation νβ = 3, independently. We consider all eleven covariates listed in Table 1 for

the Expanded Model.

3.2 Predictive Distributions

For a serve prediction, ỹ, on a new match-state, x̃, the predictive distribution of ỹ is given

by

p (ỹ | x̃, x, y) =

∫
p(ỹ | x̃, θ) · π(θ | y, x)dθ (6)
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where θ represents the MNL model parameters, y are the historical data and x are the

corresponding historical match-states. To simulate from the predictive distribution in (6),

we first draw parameter values θ(1), . . . , θ(M) from the posterior distribution, π(θ | y, x).

With the mth drawn parameter value and a new match-state, x̃, we draw ỹ(m) from the

sampling distribution p(ỹ | x̃, θ(m)). Repeating this procedure, we obtain a predictive

sample ỹ(1), . . . , ỹ(M) which can be used to address serve direction questions presented in

Section 4.4.

4 RESULTS

All models were fit by modifying STAN code published by Koster and McElreath (2017).

In our model fitting, we set the serve direction “Body” as the reference category. In total,

4,000 draws were obtained from each posterior distribution.

4.1 Model Comparison

To compare the candidate models, we compute Watanabe-Akaike Information Criterion

(WAIC) where lower WAIC values indicate stronger model fit. The WAIC diagnostic

estimates the expected log pointwise predictive density, which represents out-of-sample

prediction error. WAIC includes a penalty term that accounts for model complexity.

From Vehtari, Gelman, and Gabry (2017), we also compute WAIC standard errors to

assess WAIC uncertainty. In Table 2, we provide pairwise differences in model WAIC

along with standard errors (SE).

We note that for a pair of models, a large ∆WAIC relative to its SE reflects a dis-

cernible difference in model fit. From Table 2, the Expanded Model greatly outperforms

its intercept model analogues for both men and women. It is also seen that the Player-

Varying Intercept Model is preferable to the Common Intercept Model.

17



Model WAIC ∆WAIC (SE)
Men’s

Expanded Model 41,147.5
Player-Varying Intercept 44,378.2 3230.7 (111.0)
Common Intercept 44,744.0 3596.5 (118.6)

Women’s
Expanded Model 28,281.0
Player-Varying Intercept 30,009.0 1728 (86.6)
Common Intercept 30,587.4 2306.4 (98.2)

Table 2: Model comparisons with WAIC.

4.2 Player-Varying Intercepts

We explore player differences in serve direction behaviour with scatter plots (see Figure

6) of posterior T and Wide intercept means, obtained from the Player-Varying Intercept

Model of Section 3.1.2. The means are transformed onto the probability scale. In general,

the men have higher probabilities serving T and Wide than the women, which affirms the

men’s preference aiming towards the corners rather than the Body. This is apparent by

noting that the points for men in Figure 6(a) lie further in the upper right quadrant than

the points for women in Figure 6(b). However, a few women also habitually aim towards

the corners — among them is 23 time Grand Slam champion, Serena Williams. With an

estimated Prob(Wide) above 0.5, accompanied with a high Prob(T) of 0.4, returners are

forced to cover more ground when bracing against Williams’ formidable serve. Similar to

Williams, both Shapovalov and Thiem in the men’s game exhibit clear preferences aiming

Wide; however, other servers such as DelPotro, Siniakova and Vondrousova clearly prefer

aiming T over Wide. Preferences aiming T may be explained by net height; the net is six

inches lower in the center, making it easier to serve accurately when aiming T compared

to when aiming Wide. Interestingly, players like Djokovic and Kenin maintain a more

balanced serve direction pattern in aiming both Wide and T nearly equally as often.
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(a) Mens players.

(b) Womens players.

Figure 6: Comparing player serve direction tendencies. The dashed-line represents equal
probability serving Wide and T.
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4.3 Covariate Effects

With the Expanded Model of Section 3.1.3, we investigate how covariates alter a player’s

intended serve direction. Posterior summaries of all eleven covariates are presented in

Table 3. On average, the second serve greatly deters players from aiming towards the two

corners. The same can be said of point importance where the greater the importance, the

more likely a player will be conservative and aim towards the Body. Consistent with the

literature review, higher lateral impact distances promote a Wide or Body serve over a T

serve. Meanwhile, higher longitudinal impact distances are associated with serves aimed

Wide or T — especially among women. From the interaction effects, left-handed servers

often aim Wide on Ad. court, although the strength of this association is stronger for

men compared to women. This difference may be explained by the disparity of available

left-handed serve observations: the women do not have a southpaw as dominant as Nadal

at Roland Garros. From the second interaction effect, servers deliberately target the

returner’s backhand on second serve. The remaining covariates have moderate effects on

serve direction.

20



T Logit Wide Logit

Mean SE Mean SE

Men’s
Serve Number -2.17 0.07 -1.58 0.06
Lateral Distance -0.61 0.06 0.16 0.06
Longitudinal Distance 0.25 0.09 0.14 0.08
Serve at t− 1 is T -0.07 0.07 -0.01 0.07
Serve at t− 1 is Wide -0.15 0.07 -0.20 0.07
Returner’s BH Location 0.18 0.08 -0.07 0.08
Point Importance -1.55 0.55 -0.75 0.53
Server Handedness 0.14 0.20 -0.15 0.21
Court Side 0.10 0.07 -0.04 0.07
Interaction 1 -0.38 0.14 0.36 0.13
Interaction 2 1.39 0.09 -0.10 0.09

Women’s
Serve Number -1.45 0.08 -0.97 0.07
Lateral Distance -0.82 0.08 0.68 0.08
Longitudinal Distance 1.75 0.17 1.14 0.17
Serve at t− 1 is T 0.04 0.06 0.12 0.06
Serve at t− 1 is Wide 0.05 0.06 0.01 0.06
Returner’s BH Location -0.03 0.10 -0.09 0.09
Point Importance -0.95 0.51 -0.45 0.51
Server Handedness 0.26 0.24 -0.21 0.26
Court Side 0.03 0.09 0.00 0.09
Interaction 1 -0.48 0.17 0.18 0.18
Interaction 2 0.81 0.10 -0.44 0.10

Table 3: Posterior summaries of the parameters βr corresponding to the Expanded Model
(3.1.3).
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4.4 Prediction Example: Federer

Following Section 3.2, we illustrate an application of predictive distributions with our Ex-

panded Model. For a new match-state, we imagine the following scenario: Roger Federer

trailing 0-1 in sets, 5-6 in games, and facing breakpoint against a right-handed returner. If

Federer previously served T, which direction will he now serve? How would his predicted

serve direction change on first serve compared to second serve? For this unique match

scenario, we present Federer’s predictive distributions in Figure 7. Consistent with Fed-

erer’s temperament, on first serve the predictive probabilities reflect Federer’s disdain for

the Body direction and instead favour Wide and T. Meanwhile on second serve, there is

a clear preference serving Wide, which incidentally would target the returner’s backhand.

Figure 7: An example of Roger Federer’s predictive probabilities. Probabilities were
obtained form the proportion of predicted serve directions among the 4000 posterior draws.

We evaluate the predictive performance of the Expanded Model by fitting on a training
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set and calculating accuracy on the held-out test set. For this illustration, we randomly

selected one of Roger Federer’s matches as the test set, and fit the Expanded model on

the remaining training data. The test set comprised of 126 Federer serve observations

(∼ 22% of Federer’s available data). Doing so, we obtained an overall accuracy of 64%.

5 DISCUSSION

Moving forward, more questions about serve direction can now be answered with the avail-

ability of ball-tracking data. For instance, what are the consequences of a player’s choice

about serve direction? For the last several years, both Nadal and Thiem have arguably

been the premier clay court players in the men’s game. But from Figure 6(a), both these

players have drastically different serve direction patterns: Thiem prefers aiming Wide

while Nadal prefers aiming T. There exists several different serve strategies ranging from

unpredictable serve directions to blatant barrages aimed at the returner’s backhand, but

with unexplored success rates. Moreover, a further exploration of why player serve pat-

terns are different can also be investigated. Vaverka and Cernosek (2013) have shown

that body height is associated with serve speed, but could height also be associated with

serve direction? At greater heights, a player has a higher margin of error to land their

serve inside the serve box, which may promote more serves intended for the two corners.

Unfortunately, we could not reliably assess the association between player height and in-

tended serve direction since serve data from taller players like John Isner, Milos Raonic

and Reilly Opelka were missing.

This paper implements a Bayesian framework analysing intended serve direction among

professional tennis players. The framework considers a conglomerate of serve anticipa-

tion variables, ranging from spatio-temporal features to player-specific and match-state

variables. We emphasize that the players in this study include top-ranked professionals

who routinely get invited to Grand Slam tournaments. The inferences gained cannot be

generalized to amateur players. Moreover, our framework assumes that players follow a
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consistent serve direction pattern across matches. However, we keep in mind that players

can easily change their serve tendencies on a whim. The vagaries of player tendencies

emphasize the importance of frequently updating predictive probabilities.

In general, the main difference in intended serve direction between the men’s and

women’s game relates to risk: the men are more inclined to choose risky serves towards T

and Wide, whereas the women blend in a notable amount of safe Body serves. Among all

players, we observe a tendency to shrink towards more conservative Body serves during

tense situations such as on second serve and on high pressure points. We find that players

also frequently target the returner’s backhand on second serve, and that left-handed

servers distinctly prefer aiming Wide on Advantage court.
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