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Summary

This paper explores the use of binary segmentation procedures in two applications. The first application
is concerned with the estimation of nonparametric quantal response curves. With Bernoulli data and an
assumed monotone increasing curve, this gives rise a change-point model where the change points are
determined using a sequence of nested hypothesis tests of whether a change point exists. The second
application concerns cluster identification and inference for spatial data where the shape of the clusters
and the number of clusters is unknown. The procedure involves a sequence of nested hypothesis tests
of a single cluster versus a pair of distinct clusters. Examples of both applications are provided.
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1 Introduction

Without being too precise, there are various estimation problems in statistics where the goal is to
identify ‘commonality’. For example, in epidemiological studies, it is important to identify regions of
safety and regions of risk. These problems are typically challenging due to the multivariate nature of
the data which leads to complex and highly parametrized likelihoods.

Binary segmentation is a recursive partitioning tool which may lead to simple solutions for such
problems. Roughly speaking, a binary segmentation procedure begins by tentatively dividing data into
two parts. The hypothesis of commonality between the two parts is tested and the procedure termi-
nates if commonality exists. If commonality does not exist, then the division takes place and the
procedure is continued on each of the two parts. It is the simplification of the problem to nested
hypothesis tests that circumvents computational difficulties related to a possibly large and unknown
number of change points.

An alternative general procedure for classifying data into categories is the method of classification
and regression trees (CART); see Breiman etal. (1984). An advantage of the binary segmentation
approach over CART is its simplicity with respect to computation and the lack of tuning parameters.
In CART models, there are many variations for the growth and pruning of trees. Also, in the spatial
problems considered here, the CART approach does not have a natural way to take into account the
spatial structure so that adjacent regions are more likely to be grouped together. CART is primarily
intended for problems with many covariates where prediction is the ultimate goal.

Another general approach which can be used in partitioning problems is mixture modelling. Mix-
ture modelling requires the specification of parametric models whereas the recursive approaches con-
sidered in this paper are often described as nonparametric. When the number of components is un-
known (which is the case in the problems considered here), mixture modelling becomes more
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challenging and often requires Markov chain Monte Carlo (MCMC) methods for parameter estima-
tion. An introduction to mixture modelling is given by Titterington, Smith and Makov (1985). Kim
and Mallick (2002), van Dyk and Hans (2002) and Shlattmann, Gallinat and Bohning (2002), provide
examples of mixture modelling approaches in spatial statistics.

Binary segmentation procedures have been considered by various authors. Scott and Knott (1974),
and Chen and Gupta (1997) developed methods to split normal data into homogeneous groups. Subse-
quently, Braun and Miiller (1998), Yang and Kuo (2001) and Yang (2004) developed binary segmenta-
tion procedures for locating change points with respect to DNA sequencing, homogeneous Poisson
processes and sporting performances. Consistency issues related to binary segmentation have been
studied by Vostrikova (1981) who proved consistency for locating the number of change points in a
multi-dimensional random process under mild conditions. Venkatraman (1992) addressed consistency
issues for the procedure when the change points are allowed to approach one another.

We continue the development of binary segmentation procedures in two applications. We first con-
sider the estimation of nonparametric quantal response curves. When a stimulus is applied or observed
at various levels with respect to a biological organism, we have what is known as the bioassay prob-
lem. Often, the observed response to the stimulus is binary where the binary response may be the
occurence of death, the presence of tumours or any number of meaningful outcomes. In the case of a
binary response, a primary objective is the fitting of the guantal response curve which is the probabil-
ity of the binary response expressed as a function of the level of the stimulus. The fitting of quantal
response curves has been the focus of considerable statistical activity. In fact, the importance of fitting
quantal response curves extends beyond biological settings and includes problems in various domains
including sample surveys, econometrics and industrial statistics (Morgan, 1992; Agresti, 2002).

A basic starting point for the quantal response problem involves independent data yi,..., y, where
the response y; ~ binomial (m;,p;) is associated with the covariate x;, i = 1,..., n. For example, the
covariate x; may be the dosage of a toxic compound given to an experimental animal. We assume that
X1 < xp < -++ < x,. This leads to the n-dimensional likelihood

L) o< IT () 1= 1)

i=1 i

Early methods which are still in use today and form the backbone for many modern methods rely
on a parametric specification of the probabilities py, ..., p, (Finney, 1978). For example, one might
express logit (p;) as a linear function of x;, i =1,..., n. In this case, an advantage of the linear
logistic model is the reduction of the dimensionality of the likelihood from n to 2. This renders a
convenient likelihood analysis where maximum likelihood estimates are numerically obtained. These
classical parametric models have Bayesian analogues where in addition to the parametric form im-
posed on py, ..., p,, prior distributions are assigned to the shape parameters (e.g. the slope and inter-
cept). Typically, MCMC algorithms are used to obtain approximate samples from posterior distribu-
tions (Gilks, Richardson and Spiegelhalter, 1996).

The offspring of the aforementioned parametric models belong to the extensive class of generalized
linear models (McCullagh and Nelder, 1989). These models abandon the binomial assumption and
allow for robust inference under a wider class of distributions. Generalized linear models (GLMs)
based on quantal data also allow for the possibility of extra-binomial variation (Dean 1998). With
good software available, GLMs seem to be the preferred choice in the analysis of categorical data.

There are approaches that do not rely on the parametric form in (1). These include the pool-adja-
cent-violators algorithm (Ayer et al., 1955) which provides estimates of py,..., p, under the monoto-
nicity constraint p; < --- < p,, simple distribution-free procedures (Morgan, 1992), generalized addi-
tive models (Hastie and Tibshirani, 1990), methods based on splines (Thisted, 1988) and methods
based on the Dirichlet process (Dey, Muller and Sinha, 1998). The related problem of estimating join
points in segmented linear regressions has been studied by various authors including Hudson (1966)
and Gallant and Fuller (1973). They provide least squares estimates of the join points where continu-
ity at the join points is assumed and the number of join points is specified in advance.
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The approach proposed in this paper begins with (1) but avoids parametric assumptions associated
with the quantal response curve. We assume a monotone increasing response curve which implies a
change-point model. The approach used to determine the change points is based on a binary segmenta-
tion procedure that involves a sequence of nested hypothesis tests of a single change point. Thus the
procedure circumvents computational difficulties related to a possibly large and unknown number of
change points. If a nested test suggests a single change-point model, the change-point is located and
the data is split accordingly. For each sub-segment of data, testing continues until no change points
are found. Testing is carried out using a modification of the Akaike (1973) information criterion.
Other related work based on the detection of change points includes Cochran (1954), Armitage
(1955), Tarone (1982), Dempster, Selwyn and Weeks (1983), and Ma et al. (2002).

Our second application concerns the use of binary segmentation to detect clusters and provide
inferences for spatial data when the shape of the clusters and the number of clusters are unknown.
Unlike the procedure proposed in this paper, most statistical methods for detecting clusters are re-
stricted in the following senses; (1) they detect clustering but do not determine the location of clus-
ters, (2) they provide inferences but do not detect clustering, and (3) they detect clusters of a high
incidence rate without detecting clusters of a low incidence rate, or vice versa. Examples of (1)
include Whittemore et al. (1987), Diggle and Chetwynd (1991) and the graphical analysis machine
(GAM) of Openshaw et al. (1988). As examples of (2), Cuzick-Edwards (1990) k nearest neighbors
(kKNN) test and the methods of Stone and Diggle (1990) provide inferences about risks associated with
prespecified clusters. Examples of (3) include Besag and Newell’s (1991) test for the detection of
clusters and Turnbull et al. (1990). Other relevant references include Kulldorff and Nagarwalla (1995),
Kulldorff (1997) and Gangnon and Clayton (2001). Cressie (1993) is a comprehensive source on the
statistical analysis of spatial data and Kulldorff (www.satscan.org) provides free software for the ana-
lysis of spatial data.

The proposed binary segmentation procedure for spatial data involves a sequence of nested hypoth-
esis tests of a single cluster versus a pair of distinct clusters. For each test, the null hypothesis of a
single cluster implies that the data within the region arise from a common density. For the alternative
hypothesis, we split the region into the two ‘most distinct’ clusters and assume distinct densities for
each. If the test suggests the alternative hypothesis, the region is split accordingly. For each resulting
cluster, splitting and testing continue until no more clusters are found. If at any stage, the test sug-
gests the null hypothesis, we then estimate the density in that cluster. The manner in which a region
is split is somewhat flexible; it is dictated by the specification of a growth cluster. The size and the
shape of the clusters evolve as the procedure proceeds. The procedure also allows for arbitrary base-
line densities which govern the form of the hypothesis tests. In this paper, we illustrate the use of
circular growth clusters and binomial densities. In the testing step, we identify the two distinct clus-
ters for which the likelihood is maximized. Once the clusters are identified, a modification of the
Akaike (1973) information criterion is calculated. If the criterion is positive, then the null hypothesis
is rejected and the region is split accordingly. Our approach is similar to the Bayesian partition model
of Holmes, Denison and Mallik (1999). In their model, they split the study space into a series of
regions, and assume that the data arises from a common density within each region. Related ap-
proaches using circular clusters have been developed by Gangnon and Clayton (2001) and Kulldorff
and Nagarwalla (1995). Turnbull et al. (1990) and Besag and Newell (1991) proposed circular clusters
of fixed population and case radius respectively. Other related work on partition models for spatial
data includes Gangnon and Clayton (2000), Knorr-Held and Rasser (2000) and Denison and Holmes
(2001).

In Section 2, the binary segmentation procedure is developed with respect to fitting nonparametric
quantal response curves. An example is presented based on insurance mortality data and a simulation
study is provided to indicate the performance of the procedure. In Section 3, the binary segmentation
procedure is developed with respect to cluster detection and inference using circular growth clusters
with binomial data. The approach is illustrated using sudden infant death syndrome data (Cressie,
1993) where the data are aggregated according to districts. Some concluding remarks are given in
Section 4.
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2 Estimation of Quantal Response Curves

We begin with the likelihood (1) and assume that the binomial probabilities p;, i = 1,..., n are mono-
tone increasing. In other words, we assume that p; < p, <--- < p,. We let the null hypothesis H
denote the constant model with no change points (i.e. 8p = p; = --- = p,,). Under Hy, the likelihood is

proportional to

;y’ Z (mi—yi)
L()(e()) = 667 (1 — eo)’:I

n

Zyi

which is maximized at 8y = 1 —

>om
i=1

Let H; denote the single change-point model with the change point given by the parameter c. This
implies 0, =p; =+ =p. < pes1 =+ =p, =0y where c=1,..., n — 1. Under H,, the likelihood
is proportional to

¢ n

Zy; (mi—yi) Z Yi Z (mi—yi)
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Li(c,01,0,) = 617 (1—6y)i 05t (1 — 0y)i=ct
which is maximized for fixed c =1,..., n— 1 via
2y i 2y 2V
R R lj] , 1:;+l lf ljl < z:;l+l
(0@.8@) =4 S S| Tm Sm
=1 i=ctl i=1 i=c+1
(60,60) otherwise

The fully maximized likelihood under the single change-point model L; (é,él(é)lég(éz) is then ob-
tained by maximizing L;(c,0:(c), 02(c)) over the finite set c = 1,..., n — 1. When 0, > 0, we assume
that the maximum likelihood estimate (¢, 6,,0,) is unique.

Our decision to select the non-null model H; over Hy involves choosing H; if the modified Akaike

criterion (Akaike, 1973)
A =1log Li(¢,60,(¢),0,(¢)) — log Ly(60) — 1.5(¢q1 — qo) > 0 (2)

where the third term in (2) is a penalty function which adjusts for the difference in dimensionality
between the two models. In this application, g; = 3 corresponding to the parameters ¢, 0; and 6,,
and gy = 1 corresponding to Oy. If A in (2) is negative, the decision is to accept the constant model
Hy. We have used the terminology ‘“modified Akaike criterion” for two reasons. First, we have used
the coefficient oo = 1.5 from the range of coefficients 1 < a < 2.5 suggested by Akaike (1973). Sec-
ond, the parameter ¢ is discrete yet we have set the degrees of freedom ¢g; as though it were contin-
uous. Since the parameter ¢ can be discretized arbitrarily fine, there is an intuition behind the
choice. The simulation study in Section 2.2 suggests that with this penalty term, correct decisions
are being made with high probability. The two diverse examples that we have considered in this
paper provide inferences that are in agreement with previous work; this also suggests that the pe-
nalty term is reasonable. There are many penalty terms that have been proposed in the literature
(Gelfand and Dey, 1994), and in practice, a user may want to tinker with the penalty term to suit
their application.

At this point, the binary segmentation procedure readily presents itself. If H is accepted, the algo-
rithm terminates. However, if H; is selected, the data set is divided into the two sub-segments given
by {y1,...,ys} and {yet1,..., yn}. The test of a single change point is then carried out on each of
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the two sub-segments. The algorithm continues in this fashion and terminates when no more splitting
takes place. We note that the order in which subsegments are divided does not affect the subsequent
inference. We also note that the algorithm may be thought of as a forward selection procedure where
partitioning continues until the algorithm terminates. Interestingly, if one applied a backwards step,
where given a model, the one with the lowest modified Akaike criterion were chosen, we would
always choose the same model from which we came. Hence, a backward elimination procedure or a
stepwise procedure based on the same decision criterion would provide the same inferences as our
algorithm. This is discussed in more detail in the Appendix.

We emphasize that the proposed binary segmentation procedure is simple to carry out and avoids
traditional difficulties associated with an unknown and possible large number of change points. Note
also that unlike some approaches (for example, Cochrane (1954), Armitage (1955) and Tarone
(1982)), the binary segmentation procedure does not rely on the covariates xi, ..., x,. Therefore the
method presented here is also applicable when the levels of the stimulus are qualitatively labelled (e.g.
control, low, medium, high).

Table 1 Insurance data recording client mortality.

i Age Number Insured Deaths Death Rate
x)  (m) ) (per 1000)
1 35 1172 3 2.6
2 36 2127 1 0.5
3 37 2744 3 1.1
4 38 2766 2 0.7
5 39 2463 2 0.8
6 40 2368 4 1.7
7 41 2310 4 1.7
8 42 2307 7 3.0
9 43 2060 5 2.4
10 44 1917 2 1.0
11 45 1931 8 4.1
12 46 1747 13 7.4
13 47 1580 8 5.1
14 48 1580 2 1.3
15 49 1468 7 4.8
16 50 1516 4 2.6
17 51 1372 7 5.1
18 52 1343 4 3.0
19 53 1304 4 3.1
20 54 1233 11 8.9
21 55 1205 11 9.1
22 56 1114 13 11.7
23 57 1048 12 11.5
24 58 1155 12 10.4
25 59 1019 19 18.6
26 60 945 12 12.7
27 61 853 16 18.8
28 62 750 12 16.0
29 63 693 6 8.7
30 64 594 10 16.8
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Table 2 Results of the binary segmentation procedure applied
to the insurance mortality data using the modified Akaike cri-
terion A. The final state of the binary segmentation procedure
is marked with an asterisk.

Step Data Split in Years A

0 [35, 64]

1 [35, 531 U [54, 64] 68.3
2 [35, 441 U [45, 531 U [54, 64] 8.5%
3 [35, 39] U [40, 44] U [45, 53] |J [54, 64] —0.9
4 [35, 441 U [45, 46] U [47, 53] | [54, 64] —1.5
5 [35, 441 U [45, 531 U [54, 58] | [59, 64] —0.1

2.1 Insurance mortality rate example

A problem for insurance companies offering life insurance is the estimation of mortality rates. In Table 1,
we present data obtained from Broffitt (1988) which has been subsequently analyzed by Liu (2000) and
Carlin (1992). It provides the number of deaths for insured clients ranging from 35 to 64 years of age.

The nature of human mortality in adults is such that we might expect a strictly increasing and
convex response curve. Liu (2000) fits a strictly increasing and convex response curve using a poisson
distribution which is well-known as an approximation to the binomial distribution.

However, despite our beliefs about the actual shape of the response curve, this may be a case where
the change-point approach of Section 2 is preferable to insurance companies. In other words, compa-
nies may prefer grouping people into age groups with common mortality rates. Otherwise, with a
strictly increasing response curve, one could imagine the absurd situation where a client is quoted a
premium, and upon phoning back the next day, is quoted a higher premium as he/she is one day older.
Using the change-point approach, premiums change only on birthdays.

In Table 2, we present the step by step results of the binary segmentation procedure using the
modified Akaike criterion for splitting the data. The procedure begins in step 1 by identifying the first
candidate change point. The value is 53 years of age and this tentatively divides the full data [35, 64]
into two subsegments [35,53] and [54,64]. The calculated A for this split is 68.3, and since this is
positive, the split is accepted. In step 2, the first subsegment [35,53] is further divided according to
the candidate change point of 44 years of age. The corresponding A is 8.5 and the split is again
accepted. The data has now been divided according to [35,44], [45,53] and [54, 64]. In step 3, the new
subsegment [35,44] is further divided according to the candidate change point of 39 years of age. This
time, the A is —0.9 and the split is rejected. We continue in this fashion until no more splits are
accepted. At the completion of the algorithm, the age groupings in years are [35,44], [45,53] and
[54, 64] with estimated death probabilities 0.0015, 0.0041 and 0.0126 respectively.

It is interesting to compare the results of binary segmentation with estimates from other techniques.
Figure 1 provides a plot of the observed mortality rates together with the fitted lowess curve (Cleve-
land, 1979). There is considerable variability in the observed mortality rates which results in only
three groupings using the binary segmentation procedure. If the observed mortality rate for 64 year
olds had been a little higher, the procedure would have detected four groupings. For comparison
purposes, the pool-adjacent-violators algorithm gives change points 39, 40, 41, 44, 53, 54, 55 and 59
whereas the binary segmentation procedure gives change points 44 and 53.

2.2 Simulation results

We consider the performance of the binary segmentation procedure in the estimation of quantal
response curves via simulation. We generate independent variates yi,..., yjoo With change points
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Figure 1 Observed mortality rates (per 1000) from Section 2.1 together with the fitted lowess
curve. The alternating sequence of triangles and dots differentiate the three groupings obtained
by the binary segmentation procedure.

¢ =20 and ¢ = 50 such that yy, ..., yy0 ~ binomial (m,0.5 — 8), y»1,..., yso ~ binomial (m,0.5) and
Y51, - -, Y100 ~ binomial (m,0.5 4+ 8). The binary segmentation procedure is applied to the generated
data and we determine whether a correct decision is made (i.e. whether two change points are selected
and their values are ¢ = 20 and ¢ = 50). We also determine whether a nearly correct decision is made
(i.e. whether two change points are selected and their values are each within two units of ¢ = 20 and
¢ = 50). We repeat the simulation 10000 times to obtain estimates of correct and nearly correct deci-
sions.

In Table 3 we report the results of the simulations for different values of m and 8. We observe that
as the number of Bernoulli trials m increases, the performance of the procedure improves. We also
notice that as the difference & between the Bernoulli parameters increases, the performance of the
procedure improves. It is also important to note what happens in cases where the data are insufficient
to determine the correct change points. For example, in the case where m = 10 and & = 0.05, the
binary segmentation procedure gives zero change points 98% of the time, and one change point 2% of
the time. The conservative nature of the procedure is often viewed as a desirable property.

3 Estimation of Spatial Intensity

It is often the case that spatial data have predefined subdivisions of interest. For example, data is often
collected on non-overlapping administrative or census districts, and these districts are often irregular
in shape. For these problems, we let C,(x,y) denote the circular growth cluster centered at coordinate
(x,y) with radius r. If the centroid of a district lies within C,(x,y), then the entire district is defined
to lie within the candidate region. We investigate various regions by considering a fixed set of (x,y)
values and by increasing the radius r in small fixed quantities allowing districts to enter the candidate
region. This facilitates the binary segmentation procedure where the largest A is obtained through a
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Table 3 Simulation results for quantal response curves. The
generated data y;,..., yjoo are independent binomial (m,p)
variates where p = 0.5 —9,0.5,0.5+ 0 varies according to
the change points ¢ = 20, 50. The probabilities that the binary
segmentation procedure gives the correct change points and
nearly the correct change points are estimated using 10000

simulations.
m o} Prob Prob
(correct) (nearly correct)

10 0.05 0.00 0.00
10 0.10 0.01 0.04
10 0.20 0.12 0.45
10 0.40 0.58 0.80
20 0.05 0.00 0.01
20 0.10 0.04 0.20
20 0.20 0.26 0.63
20 0.40 0.72 0.77
50 0.05 0.01 0.08
50 0.10 0.13 0.48
50 0.20 0.51 0.74
50 0.40 0.79 0.79

systematic search over a finite number of circular growth clusters. To identify the radii, we consider
r=wv,2wv,..., wou for specified v and w.

Using an epidemiological context, let z(x,y) be the number of occurrences of a particular disease
within the district where the coordinate (x,y) resides. Further, let m(x,y) be the population of the
district. We then assume that z(x, y) follows a binomial distribution with m(x,y) trials. For each poten-
tial circular growth cluster, we consider the model z(s,¢) ~ binomial(m(s,7),0;) if the district with
centroid (s, ) belongs to the corresponding region and z(s, ) ~ binomial(m(s,t),0,) otherwise. Then,
we calculate the maximum likelihood under the null hypothesis Hy : 0; = 0, = 0y and the maximum
likelihood under the alternative hypothesis H; : 0, # 0,. The likelihood under the null hypothesis is
proportional to

2 2bx) S (mlxy)—z(x))
Lo(0p) = 0, (1—60)7

where V is the set of all district centroids within the region of interest and the maximum is obtained

> zx,y)

\4

> m(x,y)

\%

at 0y = . Under H,, the likelihood is proportional to

Ll(Cr(xvy)v 81, 62)
_ H ei(s,t) (1 . el)(m(s,t)—z(s,r))

(s,1)€VNC,(x,y)

% H ezz,(s,t) (1 - 62)(m(s,t)7z(s,t)) ) (3)
(s,)EV\ Cr(x,y)
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For fixed C,(x,y), the profile likelihood L;(C,(x,y), 01, 6,) is maximized at
> s 2. s

é _ (s,))eVNC,(x,y) and é _ (s;,1)€V\ Cr(x,y)
‘ > m(s,1) ? > m(sn)’

(s,))EVNC,(x,y) (s,)EV\ Cr(x,y)

The fully maximized likelihood L, (C‘ , 0, , éz) is then obtained by maximizing L;(C,(x,y), él,éz) over

the discretized indices (x,y) and radii r = v,2v,..., wo. We select the non-null model H, if the
modified Akaike criterion
A =1logL;(C,06,,6,) —log Ly(8o) — 1.5(q1 — qo) > 0 (4)

where g; =5 and g9 = 1. A negative value of A leads us to accept Hy. Using similar logic as in the
estimation of quantal response curves, we obtain g; =5 by assigning two degrees of freedom for
(01,0,) and assigning three degrees of freedom for C,(x,y) keeping in mind that the grids can be
chosen arbitrarily fine. The degrees of freedom gy = 1 corresponds to the single parameter 0y.

If Hy is accepted, then a final cluster has been determined which includes all of the districts with
centroids in V. However, if Hj is rejected, the data set is divided into districts whose centroids lie in
C and districts whose centroids lie outside of C. The testing procedure is then carried out on each of
the two subregions. The algorithm continues in this fashion and terminates when no more splitting
takes place. Whenever a test suggests the null hypothesis, we estimate the probability of disease in the
resulting cluster by 6.

3.1 SIDS example

We consider the spatial clustering of the incidence of sudden infant death syndrome (SIDS) in the state
of North Carolina. The data are taken from chapter 6 of Cressie (1993) and consist of SIDS counts in
the 100 counties of North Carolina during the years 1974 through 1978. For every county, a geological
coordinate (x,y) is available that corresponds to the longitude x and latitude y in miles of the county
seat from an arbitrarily chosen origin. We use the coordinate (x,y) as a surrogate for the centroid of
the county. In addition, the number of live births in each county is available for the time period. The
number of live births in the counties ranges from 284 to 21588, and the incidence rate of SIDS over
the state is 0.00202. The data were compiled by M. Symons, D. Atkinson and the State Center for
Health Statistics of the North Carolina Department of Human Resources. The data have been pre-
viously analyzed by various investigators including Cressie and Chan (1989) and Kulldorff (1997).
Figure 2 is a county map of North Carolina which we have taken from Cressie (1993) and modified.

We apply the proposed binary segmentation procedure to the SIDS data of North Carolina using
circular growth clusters and the binomial model. We choose v = 3 and w = 100 which determines the
size of the growth clusters, and we let the county seat coordinates form the set of (x,y) values under
consideration. In Figure 3, a map of the county seats is given where larger circles correspond to
counties with a higher number of births and darker circles correspond to counties with higher SIDS
rates. Figure 2 also displays the final clusters obtained using the binary segmentation procedure. We
observe that a total of seven clusters are detected where subcluster Al is distinguished within the first
detected cluster A. It is noteworthy that the proposed binary segmentation procedure can lead to non-
contiguous regions falling in the same partition. This is the case in the SIDS example where the
leftover region is a cluster of its own, and consists of four geographically separate regions.

In a comparison of Figure 2 with the auto-Gaussian models proposed by Cressie and Chan (1989), the
regions of high/low SIDS rates roughly correspond. Overall, the Cressie and Chan (1989) models have
more clusters (e.g. 24 scales in their Model 4.4) and their focus is more concerned with white/nonwhite
SIDS rates than with county rates. We note that our clusters D and E have SIDS rates that are more than
double the state rate; these two regions are also detected by Cressie and Chan (1989). Our cluster C
(Anson county) has the highest SIDS rate which is more than four times the state rate; it is not promi-
nent in the Cressie and Chan (1989) map (their Figure 3) since it was excluded from their analyses.
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A1 (0.10) B

Figure 2 County map of North Carolina indicating estimated county
clusters obtained from the SIDS data using the binary segmentation
procedure. Darker colors correspond to areas with higher SIDS rates.
The numbers inside parentheses indicate the estimated number of
deaths per 1000 live births for the corresponding clusters. The left-
over area corresponding to four geographically separate regions has
an estimated death rate of 2.40.

4 Concluding Remarks

The methods proposed in the paper are motivated by simplicity.

We have demonstrated how quantal response curves can be easily constructed using binary segmen-
tation by viewing the problem as a change-point model. Extensions of the approach to parametric
families such as the poisson are also possible.

We have also demonstrated how spatial clusters can be easily detected using an approach based on
binary segmentation. Although the resultant clusters can have diverse shapes, it is clear that not every
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Figure 3 Map of the 100 county seats of North Carolina where larger
circles correspond to counties with a higher number of births and dar-
ker circles correspond to counties with higher SIDS rates. The axes are
distances labelled in miles.
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shape is possible. This leads to possible extensions of the approach. When an experimenter is enter-
taining spatial problems, he should consider the way in which the phenomenom of interest spreads.
For example, if the phenomenom spreads in an airborne manner in an area that is not excessively
windy, it may be sensible to use circular growth clusters. However, there are more complex ways that
phenomena may spread, and for these cases, one may prefer a growth cluster that expands in a more
general fashion, perhaps in a contiguous way but in any direction. For example, we note in Figure 2
that the incidence rates in clusters A and B are similar, and these clusters might be sensibly grouped
together. Such generality would necessarily compound the computations, and this is a topic of future
research.

Appendix: Discussion on the Forward Selection Approach

Both of the applications proposed in the paper concern the determination of complex models. In each
application, a complex model is determined by beginning with a simple null model and then adding
parameters (i.e. complexity) one step at a time. The procedures are terminated according to the
Akaike stopping criterion.

There is an opposing school of thought which suggests that complex models should be built and
then reduced. For example, in the determination of classification and regression trees, the standard
approach is to grow trees via node splitting and then prune the trees back (e.g. Breiman et al., 1984).

In other words, our approach may be generally viewed as a forward selection procedure whereas
one might also consider some sort of stepwise procedure. However, it turns out that our use of binary
segmentation with the Akaike criterion provides a special structure whereby a backwards step always
returns to the simpler model from which it came. Thus, our forward selection approach provides the
same inferences as some sort of stepwise procedure based on the Akaike decision criterion.

To see that this is the case, consider the estimation of quantal response curves and let

2]

7]
t Z Vi t Z m;—yi;
S| " S|
1

I(t1,1;) = log -
dom; > m;
141

Furthermore, let the model with cutpoints ¢; < --- < ¢; be denoted [cy, ..., ¢;]. Then, in going from
the null model [()] to model [cy], the criterion

A(cr) =1(1,cl) +1(c; + 1,n) = I(1,n) — K
is calculated where A(c;) > 0, and in going from model [c|] to model [}, 3], the criterion
Alcr,e) =11 el) +1(cr + 1,¢2) + (e + 1,n) = I(1,¢1) — l(c; + 1,n) — K
=lIllci+ 1,c2) + e+ 1,n) = l(c; + 1,n) — K
is calculated where A(cy,c;) > 0 and K = 3.0.
Suppose that you now prune. This means that the only model reductions that can be considered are

the model reduction [c;,c;] — [¢;] with criterion A(cy,c;), and the model reduction [cy,c3] — [c3]
with criterion

A(cz,e1) =1

(

where we choose the reduced model [c;] over the reduced model [c;] if A(cy,cp) is smaller than
A(cp,c1) and vice-versa.

(Lel)+1(ci + L) + ez + 1,n) = I(1,¢c3) = l(ca + 1,n) — K
(1,e1)+ler +1,¢2) = I(1,¢c2) — K
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Now, since A(c;) > A(cz) by virtue that model [c;] was chosen in the first forward step amongst all
single cutpoint models, it follows that

A(Cl,Cz) 7A(62,Cl) :A(Cz) 7A(C1) <0

which implies that [c;] is selected in the backward step. Therefore, in pruning, you go back to the
model from which you came. This is easily seen to be true not only for the case presented above but
for any stage of the algorithm. It is also seen to be true in our application concerning the estimation
of spatial intensity.
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