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Abstract

This paper presents a Bayesian latent variable model used to analyze ordinal re-

sponse survey data by taking into account the characteristics of respondents. The

ordinal response data are viewed as multivariate responses arising from continu-

ous latent variables with known cut-points. Each respondent is characterized by

two parameters that have a Dirichlet process as their joint prior distribution. The

proposed mechanism adjusts for classes of personalities. The model is applied to

student survey data in course evaluations. Goodness-of-fit (gof) procedures are de-

veloped for assessing the validity of the model. The proposed gof procedures are

simple, intuitive and do not seem to be a part of current Bayesian practice.
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1 INTRODUCTION

For the sake of convenience, many surveys consist of ordinal data, often collected on a

five-point scale. For example, in a typical course evaluation survey, a student may ex-

press his view concerning an aspect of the course from a set of five alternatives: 1-poor,

2-satisfactory, 3-good, 4-very good, and 5-excellent. Sometimes five-point scales have

alternative interpretations. For example, the symmetric Likert scale measures a respon-

dent’s level of agreement with a statement according to the correspondence: 1-strongly

disagree, 2-disagree, 3-neither agree nor disagree, 4-agree, and 5-strongly agree. Student

feedback on course evaluation surveys represents a modern approach for measuring quality.

Nowadays, a growing number of websites use student feedback as their main performance

indicator in teaching evaluations. As an example, http://www.ratemyprofessors.com/

rate over one million professors based on student feedback on a five-point ordinal scale.

The scenario is similar in customer satisfaction surveys and social science surveys.

The simplest method of summarizing ordinal response data is to report the means

corresponding to the ordinal scores for each survey question. At a slightly higher level of

statistical sophistication, standard ANOVA methods may be applied to the ordinal scores

by treating the data as continuous. However, the standard models for the analysis of

ordinal data are logistic and loglinear models (Agresti 2010, McCullagh 1980 and Good-

mann 1979). These models correctly take into account the true measurement scales for

ordinal data and permit the use of statistical inference procedures for assessing population

characteristics. An overview of the methodologies for ordered categorical data is given by

Liu and Agresti (2005).

The approach in this paper is Bayesian and considers an aspect of ordinal survey data

that is sometimes overlooked. It is widely recognized that respondents may have differing

personalities. For example, consider a company which conducts a customer satisfaction
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survey where there is a respondent with a negative attitude. The respondent may complete

the survey with a preponderance of responses in the 1-2 range. In this case, a response of

1 may not truly represent terrible performance on the part of the company. The response

may reflect more on the disposition of the individual than on the performance of the

company. As another example of an atypical personality, consider an individual who only

provides extreme responses of 1’s and 5’s. It would be useful if statistical analyses could

adjust for personalities. This is the motivation of the paper, and the tool which we use to

account for personalities is the Dirichlet process, first introduced by Ferguson (1973). As a

by-product of the proposed methodology, we attempt to identify areas (survey questions)

where performance has been poor or exceptional. In addition, we attempt to identify

questions that are highly correlated. Clearly, surveyors desire accurate responses and by

identifying highly correlated questions, it allows surveyors to remove redundant questions

from the survey which in turn reduces fatigue on the part of the respondents.

Our paper is not the first Bayesian paper to consider this problem. Alternative

Bayesian approaches include Johnson (1996), Johnson (2003), Dolnicar and Grun (2007),

Rossi, Gilula and Allenby (2001), Kottas, Mueller and Quintana (2005), Javaras and

Ripley (2007) and Emons (2008). Johnson (2003) uses a hierachical ordinal regression

model with heterogenious thresholds structure. Dolnicar and Grun (2007) use a ANOVA

approach to assess the inter-cultural differences in responses. Rossi, Gilula and Allenby

(2001) address nonidentifiability and parsimony by imposing various complex constraints

on the unknown cut-points. Kottas, Mueller and Quintana (2005) propose a nonparamet-

ric Bayesian approach to model multivariate ordinal data recorded in contingency tables.

One of the main features of this paper is that there is a mechanism to cluster subjects

based on personalities. Most importantly, in our approach, clustering takes place as a

part of the model and data determine the clustering structure. Often, clustering is done
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in a post hoc fashion, following some fitting procedure.

In addition to the methodological contribution provided in this paper, issues related to

scaling are also considered. Not only does the approach attempt to remove idiosyncratic

scaling, assumptions are made about the manner in which individuals transform latent

continuous scores to discrete scores. There is a considerable literature on the psychology

of survey response, the impact of survey question format, the effect of scales, etc. For

a brief introduction to some of these topics, the reader is referred to Tourangeau et al.

(2000), Fanning (2005) and Dawes (2008). For an introduction to the analysis of ordinal

data in the applied fields of education and medicine, the reader is referred to Cohen,

Manion and Morrison (2007), and Forrest and Andersen (1986) respectively.

In section 2, we provide a detailed development of the Bayesian latent variable model

proposed in the paper. The model assumes that ordinal response data arise from con-

tinuous latent variables with known cut-points. Furthermore, each respondent is charac-

terized by two parameters that have a Dirichlet process as their joint prior distribution.

The mechanism adjusts for classes of personalities leading to standardized scores for re-

spondents. Prior distributions are defined on the model parameters. We provide details

about nonidentiability in our model and we overcome nonidentifiability issues by assigning

suitable prior distributions. Computation is discussed in section 3. As the resulting pos-

terior distribution is complex and high-dimensional, we approximate posterior summary

statistics which describe key features in the model. In particular, posterior expectations

are obtained via MCMC methods using WinBUGS software (Spiegelhalter, Thomas and

Best 2003). In section 4, the model is applied to actual student survey data obtained in

course evaluations. A comparison is made with an analysis based on the methodology of

Rossi, Gilula and Allenby (2001). We then demonstrate the reliability of the approach

via simulation. In section 5, goodness-of-fit procedures are developed for assessing the
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validity of the model. The proposed procedures are simple, intuitive and do not seem to

be a part of current Bayesian practice. We conclude with a short discussion in section 6.

2 MODEL DEVELOPMENT

Consider a survey where the observed data are described by a matrix X : (n×m) whose

entries Xij are the ordinal responses. The n rows of X correspond to the individuals who

are surveyed and the m columns refer to the survey questions. Without loss of generality,

we assume that the responses are taken on a five-point scale.

We assume that the discrete response Xij of individual i to survey question j arises

from an underlying continuous variable Yij. We consider a cut-point model which converts

the latent variable Yij to the observed Xij as follows:

Xij = 1⇐⇒ λ0 < Yij ≤ λ1

Xij = 2⇐⇒ λ1 < Yij ≤ λ2

Xij = 3⇐⇒ λ2 < Yij ≤ λ3

Xij = 4⇐⇒ λ3 < Yij ≤ λ4

Xij = 5⇐⇒ λ4 < Yij ≤ λ5

(1)

Up until this point, our approach is identical to that of Rossi, Gilula and Allenby

(2001). Our approach now deviates as we assume that the cut-points are known and are

given by λ0 = −∞, λ1 = 1.5, λ2 = 2.5, λ3 = 3.5, λ4 = 4.5 and λ5 = ∞. We suggest

that the chosen cut-points correspond to the way that respondents actually think. When

asked to supply information on a five-point scale, we hypothesize that respondents make

assessments on the continuum where the values 1.0, . . . , 5.0 have precise meaning. The

respondents then implicitly round the continuous score to the nearest of the five integers.

Although our methodology can be modified using unknown cut-points, the estimation of
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cut-points introduces difficulties involving nonidentifiability. Rossi, Gilula and Allenby

(2001) address nonidentifiability and parsimony by imposing numerous constraints on the

cut-points.

It is interesting to compare our rationale for the Yij → Xij transformation with the

range-frequency model proposed by Parducci (1965). The range principle suggests that a

respondent uses extreme stimuli to fix the interpretation of endpoints on a discrete scale,

and these endpoints provide reference for intermediate scale values. The principle is

consistent with our transformation rationale as rounding is a subsequent step to marking

latent variables on a continuum. On the other hand, the frequency principle appears to

be violated as there is no reason to expect constant frequencies between scales values.

This departure may be expected on the grounds of a reference point effect where Likert

scale values, for example, have specific meanings. The frequency-range model and various

departures from the model are discussed in Tourangeau et al. (2000).

Using the notation Yi = (Yi1, . . . , Yim)′, Rossi, Gilula and Allenby (2001) consider

Yi ∼ Normal(µ+ τi1, σ
2
i Σ) (2)

for i = 1, . . . , n where τi and σi are respondent-specific parameters used to address scale

usage heterogeneity. For example, a large τi and small σi > 0 characterize a respondent

who uses the top end of the scale. Further, the model (2) implies a standardized response

(Yij−µj−τi)/σi through which the correlation between survey questions may be assessed.

A consequence of the model is that correlation inferences between survey questions may

differ considerably when scale usage characteristics are considered.

Although (2) contains many of the features we desire, it cannot, for example, ade-

quately model an individual whose responses are mostly intermediate values such as 2’s
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and 4’s. We instead consider a structure that has similarities to (2). We propose

Yi ∼ Normal(bi(µ+ ai1− 31) + 31, b2i Σ) (3)

where we adjust for personalities via a “pure” or standardized score for the ith individual

given by Zi = (Zi1, . . . , Zim)′ ∼ Normal(µ, Σ) such that

Yij = bi(Zij + ai − 3) + 3 (4)

for i = 1, . . . , n, j = 1, . . . ,m.

It is (4) that provides an interpretation for the latent responses Zi and Yi, and for

the parameters ai and bi corresponding to the ith individual. We observe that Zi is a

standardized latent score which is independent and identically distributed across respon-

dents. The vector µ corresponds to the mean response of standardized scores over the

population of respondents, and the matrix Σ describes the variability of these scores and

the correlation between survey questions. The latent score Yi is obtained from Zi via (4)

where Yi includes the personality characteristics (ai, bi) of the ith respondent. Unlike the

Zi, we note that the Yi in (3) are not identically distributed. Therefore, the learning of

(ai, bi) can be thought of as a denoising method where the pure response Zi is derived

from the noisy Yi which includes personality traits.

For an interpretation of the disposition parameter ai ∈ R in (4), it is initially helpful

to consider ai conditional on bi = 1. In this case, when ai = 0, the ith respondent has

a neutral disposition and the latent response Yij is equal to the standardized score Zij.

When ai > 0 (ai < 0), the ith respondent has a positive (negative) attitude since Zij is

adjusted by ai to give Yij.

For an interpretation of the extremism parameter bi > 0 in (4), it is helpful to consider

bi conditional on ai = 0. In this case, when bi > 1, the amount by which Zij exceeds 3.0

is magnified and is added to 3.0 and gives a more extreme result towards the tails on the
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five-point scale. When 0 ≤ bi < 1, the extremism parameter has the effect of pulling the

latent response Yij closer to the middle. A respondent whose bi ≈ 0 might be described as

moderate and we impose the constraint bi > 0 to avoid nonidentifiability. Note that the

parameter σi in (2) addresses variability which is somewhat different from our concept of

extremism.

To provide a little more clarity, when Zij + ai− 3 > 0, the ith respondent is positively

inclined towards survey question j. When Zij + ai − 3 < 0, the i-th respondent is

negatively inclined towards survey question j. The quantity Zij + ai− 3 is then scaled by

bi to account for extremism on the part of the i-th respondent. The personality differential

bi(Zij + ai − 3) is then added to 3 to yield the latent variable Yij. Note that whereas a

zero score for bi(Zij + ai − 3) represents ambivalence (neither agree nor disagree in the

Likert setting), Yij = 3 represents ambivalence in the latent variable. Having adjusted for

respondent personalities, we are interested in the average response µ for the m questions

and the corresponding correlation structure Σ. We recognize that not all individuals share

the same temperment. The i-th respondent is characterized by the parameters ai and bi

where ai is the disposition parameter and bi is the extremism parameter.

As the proposed approach is Bayesian, prior distributions are required for the model

parameters in (3). Specifically, we assign moderately diffuse priors

Σ−1 ∼ Wishartm(I,m)

µj ∼ Uniform(0, 6)

where the components of µ = (µ1, . . . , µm)′ are apriori independent. The Wishart distri-

bution is the standard and conjugate prior distribution for the inverse covariance matrix

in normal models (Bernardo and Smith 1994) where the identity matrix and degrees of

freedom parameter m are convenient choices in the absence of subjective prior informa-

tion. Regarding the parameters µj, although it is tempting to assign flat improper priors,
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our rationale for the Uniform(0, 6) prior distribution is based on the observed response

Xij constrained to the five-point scale. It is thought that Xij represents the rounded score

of the continuous latent variable Yij whose mean is µj when bi = 1 and ai = 0. For the

personality parameters ai and bi, the prior assignment is based on the supposition that

there are classes of personalities. We therefore consider the Dirichlet process

(ai, bi)
′ iid∼ G

G ∼ DP(α, tr-Normal2 (µG,ΣG))
(5)

for i = 1, . . . , n. The specification in (5) states that (ai, bi) arises from a distribution G

but G itself arises from a distribution of distributions known as the Dirichlet process. The

Dirichlet process in (5) consists of the concentration parameter α and baseline distribution

tr-Normal2 (µG,ΣG)) where tr-Normal refers to the truncated bivariate Normal whose

second component bi is constrained to be positive. The baseline distribution serves as an

initial guess of the distribution of (ai, bi) and the concentration parameter determines our

confidence in the baseline distribution with large values of α > 0 corresponding to greater

degrees of belief. Prior distributions can be assigned to the hyperparameters in (5). Our

analyses involving course evaluation surveys on a five-point scale give sensible results

with α ∼ Uniform(0.4, 10) (Ohlssen, Sharples and Spiegelhalter, 2007), µG = (0, 1)′ and

ΣG = (σij) where σ11 = 1.0, σ22 = 0.5 and σij = 0 for i 6= j. Note that the choice of

1.0 and 0.5 are sufficiently diffuse in the range of parameters ai and bi. The key aspect

of the Dirichlet process in our application is that the personality parameters (ai, bi) have

support on a discrete space and this enables the clustering of personality types. An

advantage of the Dirichlet process approach is that clustering is implicitly carried out in

the framework of the model and the number of component clusters need not be specified in

advance. Once a theoretical curiousity, the Dirichlet process and its extensions are finding

diverse application areas in nonparametric modelling (e.g. Qi, Paisley and Carin 2007,
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Dunson and Gelfand 2009, Gill and Casella 2009). The nonparametric prior specification

in our model and the associated clustering of subjects provides another essential difference

between our approach and that of Rossi, Gilula and Allenby (2001).

3 COMPUTATION

The model described in section 2 is generally referred to as a Dirichlet process mix-

ture model, and various Markov chain methodologies have been developed to facilitate

sampling-based analyses (Neal 2000). However, these algorithms require considerable

sophistication on the part of the programmer.

A goal in this paper is to simplify the programming aspect of the analysis by carrying

out computations in WinBUGS. The basic idea behind WinBUGS is that the program-

mer need only specify the statistical model, the prior and the data. The Markov chain

calculations are done in the background whereby the user is then supplied with Markov

chain output. Markov chain output is then conveniently averaged to give approximations

of posterior means.

To implement the analysis of our model in WinBUGS, we make use of the constructive

definition of the Dirichlet process given by Sethuraman (1994). The definition is known

as the stick breaking representation, and in the context of our problem, it is given as

follows: Generate a set of iid atoms (a∗i , b
∗
i ) from tr-Normal2 (µG,ΣG) and generate a set

of weights wi = yi
∏i−1

j=1(1− yj) where the yi are iid with yi ∼ Beta(1, α) for i = 1, . . . ,∞.

Then

G =
∞∑
i=1

wiδ(a∗i ,b∗i ) (6)

where δ(a∗i ,b∗i ) is the point mass at (a∗i , b
∗
i ).
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For programming in WinBUGS, the Sethurman (1994) construction is most useful as

it allows us to approximately specify the prior. We see that the stick breaking mechanism

creates smaller and smaller weights wi. This suggests that at a certain point we can

truncate the sum (6) and obtain a reasonable approximation to G (Muliere and Tardella

1998). Ishwaran and Zarepour (2002) suggest that the number of truncation points be n

when the sample size is small and
√
n when the sample size is large. The stick breaking

construction clearly shows that a generated G is a discrete probability distribution which

implies that there is non-negligible probability that (ai, bi)’s generated from the same G

have the same value. This facilitates the clustering of personalities in ordinal survey data.

We note that the original definition of the Dirichlet process (Ferguson 1973) does not

provide a WinBUGS-tractable expression for the prior.

4 EXAMPLES

4.1 Course Evaluation Survey Data

The proposed model is fit to data obtained from teaching and course evaluations in the

Department of Statistics and Actuarial Science at Simon Fraser University (SFU). The

standard questionnaire at SFU contains m = 15 questions with responses on a five-point

scale ranging from 1 (a very negative response) to 5 (a very positive response) where

the specific interpretation of responses are question dependent. The survey questions are

given as follows:

1. The course text or supplementary material was

2. I would rate this course as

3. The assignments and lectures were

4. The assignments and exams were on the whole
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5. The marking scheme was on the whole

6. How informative were the lectures

7. The Instructor’s organization and preparation were

8. The Instructor’s ability to communicate material was

9. The Instructor’s interest in the course content appeared to be

10. The Instructor’s feedback on my work was

11. Questions during class were encouraged

12. Was the Instructor accessible for extra help

13. Was the Instructor responsive to complaints/suggestions

14. Overall, the Instructor’s attitude towards students was

15. I would rate the Instructor’s teaching ability as

Data were collected from n = 75 students pertaining to an introductory Statistics

course. Posterior means and standard deviations corresponding to the parameter µ are

given in Table 1. These are based on a MCMC simulation using WinBUGS with a

burn-in period of 1000 iterations followed by 4000 iterations, taking roughly 2 hours of

computation on a personal computer. The WinBUGS code is provided in the Appendix.

The highest posterior mean was recorded for the 9th question which asked about “the

Instructor’s interest in the course material”. The smallest mean was recorded for the

10th question which asked about “the Instructor’s feedback on work”. These results

are consistent with past surveys taken in the same course with the same Instructor. In

particular, the Instructor does not grade assignments and this yields some criticisms from

the students. Note that the posterior standard deviations are sufficiently small such that

we can sensibly discuss the posterior means.

To investigate the clustering effect, we recorded the number of clusters in each of the
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Markov chain simulations. The resulting histogram is given in Figure 1. We observe that

there are quite a few clusters, and there is considerable uncertainty about the number of

clusters. More specifically, the number of clusters appears roughly uniform between 3 and

18, with approximately 10 clusters on average. This implies that there is a substantial

number of personality types amongst the n = 75 students. The clustering effect is cor-

roborated in Figure 2 where we provide a plot of the posterior means of the (ai, bi) pairs.

By looking closely along both vertical and horizontal strips, there are approximately 10

classes of personalities, some of which do not differ greatly. In Figure 2, the clustering is

more difficult to distinguish with respect to the disposition parameter a, suggesting more

variability in a than in b. We observe that roughly 50% of the ai’s are greater than 0.0,

and roughly 50% of the bi’s are greater than 1.0.

For small values of b, the corresponding students tend to have responses which are

often the same, and this may be due to a desire to finish the questionnaire as quickly

as possible. With b = 1.0, the interpretation is that these students do not distort their

responses in an inflationary/deflationary sense, and there are roughly 20 students of this

type. For large values of b, the corresponding students inflate their responses; they make

harsher decisions near both ends of the scale (1’s and 5’s).

Note that one of the respondents provided a score of 5.0 for all m = 15 questions. It

turns out that the corresponding posterior mean of (ai, bi) for this student was (0.36, 1.09).

Based on an average posterior response µ̄ = 4.1, this student’s mean latent Y-score is

1.09(µ̄ + 0.36 − 3) + 3 = 4.59 which rounds to a respondent X-score of 5.0 according

to the cut-point model (1). This provides some evidence that the (ai, bi) parameters

are estimated sensibly. For this student, we note that the variance 1.09Σ of the latent

response Yi which includes personality traits exceeds the variance Σ of the standardized

response Zi. This is because the student in question is “extreme”, and has the capacity
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for extreme responses of 0’s and 5’s. This case highlights a distinction between our notion

of extremism and variability.

As another example of the adjustment made for personalities, the smallest posterior

mean for the disposition parameter corresponds to ai = −0.30 which was recorded for a

student with an average observed response X̄i = 2.06 over all m = 15 questions. This

student has a corresponding extremism parameter b = 1.01. The question arises as

to whether 2.06 is a measurement that should be taken at face value when the average

response and standard deviation over all students are 3.89 and 1.02 respectively. It appears

that 2.06 is an extreme score lying 1.8 standard deviations from the mean. However, when

we adjust for the personality of the student via (4), we obtain Yi = 1.01(Zi − 0.301 −

31) + 31 ≈ Zi − 0.31. This implies that the standardized but latent response Zi is larger

than Yi. The student has a negative disposition, and when we account for the negative

disposition, the de-noised score Zi is not as extreme as the raw data Xi.

It is also instructive to look at the posterior mean of the variance-covariance matrix

Σ which describes the relationships amongst the m = 15 survey questions. The largest

correlation 0.63 occurred between survey questions 14 and 15. This is consistent with

our intuition and personal teaching experience whereby students think highly of their

instructors when they believe that their instructors care about them. The second highest

correlation 0.57 occurred between survey questions 6 and 7 which is also believable from

the view that learning is best achieved when material is clearly presented. However, we

emphasize that the elimination of questions on the basis of redundancy should not be

done solely on the basis of high correlations. In addition to high correlations, we should

also have similar posterior means. With the estimated posterior means µ14 = 4.57 and

µ15 = 4.52, SFU may feel comfortable in dropping either question 14 or question 15 from

the survey. Furthermore, we note that there were no negative posterior correlations and
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Table 1: Posterior means and posterior standard deviations for the SFU survey data.

Parameter Posterior Mean Posterior SD

µ1 3.69 0.19
µ2 3.53 0.15
µ3 4.04 0.18
µ4 3.45 0.17
µ5 3.85 0.17
µ6 4.54 0.19
µ7 4.33 0.18
µ8 4.41 0.17
µ9 4.78 0.15
µ10 3.23 0.17
µ11 4.51 0.19
µ12 4.01 0.18
µ13 4.11 0.17
µ14 4.57 0.19
µ15 4.52 0.18

µ̄ 4.10

the minimum correlation 0.11 occurred between question 1 and question 13. Our intuition

accordingly suggests that these two questions are independent. For comparison, we have

also calculated the sample correlation matrix based on the raw scores X. The values align

with the posterior mean of Σ. For example, the smallest sample correlation is 0.10 and

this is observed between question 1 and question 13. The largest sample correlation is

0.78 and this occurs between questions 14 and 15.

It is good statistical practice to look at various plots related to the MCMC simulation.

Trace plots for the parameters appear to stabilize immediately and hence provide no
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indication of lack of convergence in the Markov chain. Furthermore, autocorrelation plots

appear to dampen quickly. This provides added evidence of the convergence of the Markov

chain and also suggests that it may be appropriate to average Markov chain output as

though the variates are independent. In addition to the diagnostics described, multiple

chains were generated to provide further assurance of the reliability of the methods.

For example, the Brooks-Gelman-Rubin statistic (Brooks and Gelman 1997) gave no

indication of lack of convergence.

We now consider the analysis of the SFU survey data using the methodology of RGA

(Rossi, Gilula and Allenby 2001). Whereas our model uses known cut-points which convert

the latent variable Yij to the observed Xij, RGA have cut-points that are determined via

constraints and a single unknown parameter e. For the RGA analysis, λi = c + di + ei2,

i = 1, . . . , 4, and the constraints
∑4

i=1 λi = 12 and
∑4

i=1 λ
2
i = 41 were imposed such

that the cut-points are apriori centred about the known cut-points in our model where

e ∼ Uniform(−0.2, 0.2).

Fitting the RGA model, we obtained posterior means e = −0.003, λ1 = 1.50, λ2 =

2.51, λ3 = 3.51 and λ4 = 4.48 where we observe that the RGA cut-points are very close

to the fixed cut-points used in our model. To compare the fit of the RGA model with

our model using the SFU survey data, we calculated the posterior mean of the diagnostic

D =
∑

(yij − βij)2 where βij denotes the mean of yij and the summation is taken over

all pairs (i, j) where xij 6= 1 and xij 6= 5 (see (1)). The restricted summation is imposed

since the RGA model does not impose lower and upper values for yij, and consequently

small/large posterior variates yij greatly inflate the diagnostic D. The diagnostic D is

in the spirit of deviances (McCullagh and Nelder 1989) where yij denotes the underlying

latent score in both the RGA model and in our model. In the RGA model (2), βij = µj+τi,

and in our model (3), βij = bi(µj + ai − 3) + 3. Whereas the RGA model gave D = 936,
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our model gave D = 891. In both the RGA model and in our model, µ denotes the vector

of standardized scores.

For the sake of comparison, the posterior means and posterior standard deviations of

µ15 (the standardized score for the 15th survey question) are 4.38(0.15) and 4.52(0.18) for

the RGA model and for our model respectively. We also consider a particular student;

one who recorded low values (six 1’s, two 2’s and seven 3’s) on the course evaluation

survey. This student has posterior means a = −0.30 and b = 1.01 indicating that the

student has a negative disposition but typical extremism. In the RGA model, the student

has posterior characteristics τ = −0.13, and σ = 0.99. Although (a, b) and (τ, σ) are

not directly comparable, it seems that both models captured the essence of this student.

Therefore, from various perspectives, the RGA model and our model give comparable

results in this example.

To investigate an aspect of the internal consistency of the methodology, we collapse

the five-point scale to a three-point scale. The original data matrix X is recoded so that

negative scores (1’s and 2’s) are coded as 1’s, moderate scores (3’s) are coded as 2’s, and

positive scores (4’s and 5’s) are coded as 3’s. Accordingly, we set cut-points λ0 = −∞,

λ1 = 1.5, λ2 = 2.5 and λ3 = ∞. Following (4), a standardized score Zi = (Zi1, . . . , Zim)′

is defined via Yij = bi(Zij + ai − 2) + 2. And in a similar fashion to the model based

on the five-point scale, we consider the prior µj ∼ Uniform(0, 3). To get a sense of

agreement between the model based on the five-point scale and the collapsed model based

on the three-point scale, we calculate the difference dai = a5i − a3i where a5i and a3i

are the corresponding posterior means of the disposition parameter for the ith subject,

i = 1, . . . , n. We then calculate the sample standard deviation sa = 0.16. Similarly,

we calculate the sample standard deviation sb = 0.09 corresponding to the extremism

parameter. Referring to Figure 2, the sample standard deviations suggest reasonable
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agreement between the model based on the five-point scale and the collapsed model based

on the three-point scale. Of course, we should not expect perfect agreement, especially

on the b-parameter (extremism), since it is difficult to be characterized as extreme when

there are only three possible responses.

4.2 Simulated Data

Several simulation studies were carried out to investigate the model. We report on one

such simulation. A dataset corresponding to n = 150 subjects with m = 10 questions was

simulated using R code. In this example, the mean vector µ = (3, 3, 3, 3, 3, 4, 4, 4, 4, 4)′

and variance covariance matrix Σ = (σij) with σii = 4 and σij = 2 for i 6= j were used to

generate the latent matrix Z. The personality parameters ai and bi were set according to

(ai, bi) = (0.0, 1.0) for the first 75 subjects and (ai, bi) = (0.2, 0.8) for the remaining 75

subjects. Having generated Z as described, we then obtained Y via (4) and then obtained

the observed data matrix X using the cut-point model (1).

The model was fit using WinBUGS software where 1000 iterations were used for burn-

in. The posterior statistics in Table 2 were based on 4000 iterations. We observe that the

posterior means of the mean vector are in rough agreement with the true µ. The posterior

means of Σ are also consistent with the underlying values. The level of agreement is high

because we have many subjects (n = 150) relative to questions (m = 10). The level of

agreement improved as we increased the number of respondents n.

In another simulation, we considered large m (number of survey questions) relative to

n (number of subjects). As anticipated, the posterior means of the personality parameters

(ai, bi) were in agreement with the true model parameters, i = 1, . . . , n.
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Table 2: Posterior means and posterior standard deviations for the simulated data.

Parameter Posterior Mean Posterior SD

µ1 3.08 0.15
µ2 3.00 0.12
µ3 3.17 0.16
µ4 3.14 0.17
µ5 2.96 0.18
µ6 4.10 0.14
µ7 4.19 0.17
µ8 3.98 0.19
µ9 3.92 0.15
µ10 4.10 0.20

5 GOODNESS-OF-FIT

In Bayesian statistics, there is no consensus on the “correct” approach to the assessment

of goodness-of fit. When Bayesian model assessment is considered, it appears that the

prominent modern approaches are based on the posterior predictive distribution (Gelman,

Meng and Stern 1996). These approaches rely on sampling future variates y from the

posterior predictive density

f(y | x) =
∫
f(y | θ) π(θ | x) dθ (7)

where x is the observed data, f(y | θ) is the sampling density and π(θ | x) is the posterior

density. In MCMC simulations, approximate sampling from (7) proceeds by sampling

yi from f(y | θ(i)) where θ(i) is the ith realization of θ from the Markov chain. Model

assessment then involves a comparison of the future values yi versus the observed data

x. One such comparison involves the calculation of posterior predictive p-values (Meng
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1994). A major difficulty with posterior predictive methods concerns double use of the

data (Evans 2007). Specifically, the observed data x is used both to fit the model giving

rise to the posterior density π(θ | x) and then is used in the comparison of yi versus x. For

this reason, some authors prefer a cross-validatory approach (Gelfand, Dey and Chang

1992) where the data x = (x1, x2) are split such that x1 is used for fitting and x2 is used

for validation.

We take the view that in assessing a Bayesian model, the entire model ought to be

under consideration, and the entire model consists of both the sampling model of the

data and the prior. We also want a methodology that does not suffer from double use of

the data. For the models proposed here, we recommend an approach that is similar to

the posterior predictive methods but instead samples “model variates” y from the prior

predictive density

f(y) =
∫
f(y | θ) π(θ) dθ (8)

where π(θ) is a proper prior density. This approach was advocated by Box (1980) before

simulation methods were common. It is not difficult to write R code to simulate y1, . . . , yN

from the prior predictive density in (8). It is then a matter of deciding how to compare the

yi’s against the observed data matrix X. In our application, the data are high dimensional,

and we advocate a comparison of “features” that are of direct interest. This is an intuitive

and simple approach which is not part of current statistical practice. For example, one

might compare observed subject means X̄i =
∑m

j=1Xij/m with subject means generated

from the prior predictive simulation. A simple comparison of these vectors can be easily

carried out through the calculation of Euclidean distances. Naturally, as the priors become

more diffuse, it becomes less likely to find evidence of model inadequacy. We do not view

this as a failing of the methodology. Rather, if you really want to detect departures from

a model, it is necessary that you have strong prior opinion concerning your model.
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To provide a more stringent test, we consider a modification of our model where sub-

jective priors µj ∼ Uniform(2, 5) and ΣG = 0.01I are introduced. We assess goodness-of

fit on the SFU data discussed in section 4. With N simulated vectors from the prior pre-

dictive distribution, there are (N+1
2 ) Euclidean distances of interest; N of these distances

are between the observed mean vector and the simulated vectors, and the remaining (N2 )

distances correspond to distances between simulated vectors. These distances are dis-

played in a histogram with the N = 20 distances highlighted in Figure 3. Since these

distances appear typical, there is no evidence of lack of fit. In fact, we observe that most

of the Euclidean distances involving observed data lie on the left side of the histogram.

This suggests that the most extreme variates arose from the prior-predictive distribution.

Clearly, graphical displays for alternative features can also be produced.

Another approach to Bayesian goodness-of-fit which appears promising in the context

of the proposed model is due to Johnson (2007). Let θ consist of all model parameters, let

Xi be the vector of discrete responses for the ith respondent and let βi = bi(µ+ai1−31)+31

denote the mean of the corresponding latent variable Yi, i = 1, . . . , n. Under the “true”

θ, we then note that S(Xi, θ) = (Yi − βi)′Σ−1(Yi − βi)/b2i is distributed as a Chi-square

variable with m = 15 degrees of freedom. Following Johnson (2007), S(Xi, θ) is pivotal

in the sense that its conditional distribution does not depend on θ and there are n = 75

values of S(Xi, θ) that can be calculated for a given θ. For a single sampled value θ from

the MCMC simulation, Figure 4 provides a plot of the ordered values of S(Xi, θ) versus

the theoretical Chi-square quantiles. The plotted points appear to be roughly scattered

about the line y = x and hence provide no strong indication of lack of fit.
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6 DISCUSSION

We have developed a Bayesian latent variable model to analyze ordinal response survey

data. We have also facilitated a clustering mechanism based on personalities. Most

importantly, clustering takes place as a consequence of Dirichlet process modelling of

the personality parameters. In a WinBUGS programming environment, the model is

succinctly formulated, and is not complicated by latent variables and missing data.

Our model identifies areas where performance has been poor or exceptional in a ordinal

survey data by investigating standardized parameters. It also allows us to check whether

some questions in a survey are redundant. A goodness-of-fit procedure is advocated that

is based on comparing prior-predictive output versus observed data. The approach is

intuitive and is flexible in the sense that one can investigate features which are relevant to

the particular model. Future enhancements may be considered such as including subject

covariates and handling longitudinal data structures.

One of the assumptions in our model concerns the use of fixed cut-points in trans-

forming the underlying continuous latent responses Yij to the observed discrete responses

Xij. Although it may have been preferable to allow variable cut-points, we were unable

to implement the generalization. Issues of non-identifiablility and model complexity lead

to Markov chains which did not achieve practical convergence.
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8 APPENDIX

We provide the WinBUGS code used in the analysis of the SFU survey data.

model

{

# cut point model as defined in (1)

alpha[1]<- -5; alpha[6]<-10; alpha[2]<- 1.5

alpha[3]<- 2.5; alpha[4]<-3.5; alpha[5]<-4.5

# multivariate normal structure as defined in (3) and (4)

for(i in 1:n) {for(j in 1:m)

{lo[i,j]<-((alpha[x[i,j]]-3)/b[i])+3 -a[i]

up[i,j]<-((alpha[x[i,j]+1]-3)/b[i])+3 -a[i]}}

for(i in 1:n) {z[i,1:m]~dmnorm(mu[],G[,])I(lo[i,],up[i,])}

# priors for mu and sigma

for(i in 1:m) {mu[i]~dunif(0,6)}

G[1:m,1:m]~dwish(R[,],m)

varcov[1:m,1:m]<-inverse(G[,])

for(j in 1:m) {cor[j,j]<-varcov[j,j]}

for(i in 1:m-1) {for(j in i+1:m)
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{cor[i,j]<-varcov[i,j]/(sqrt(varcov[i,i]*varcov[j,j])); cor[j,i]<-cor[i,j]}}

# DP Priors for a’s and b’s as in (6)

for(i in 1:n) {a[i]<-aa[i,1];b[i]<-(aa[i,2])}

for(j in 1:n) {for (kk in 1:2) {aa[j,kk]<-theta1[latent[j],kk]}}

for(i in 1:n) {latent[i]~dcat(pi[1:L1])} pi[1]<-r[1]

for(j in 2:(L1-1)) {log(pi[j])<-log(r[j])+sum(R1[j,1:j-1])

for(l in 1:j-1) {R1[j,l]<-log(1-r[l])}} pi[L1]<-1-sum(pi[1:(L1-1)])

for(j in 1:L1) {r[j]~dbeta(1,mm)}

# baseline distribution for DP as in (5)

for(i in 1:L1) {theta1[i,1:2]~dmnorm(zero[1:2],Sab[1:2,1:2])I(LB[],)}

zero[1]<-0; zero[2]<-1

Sab[1:2,1:2]~dwish(Omega[1:2,1:2],2); varcovab[1:2,1:2]<-inverse(Sab[,])

corab<-varcovab[1,2]/sqrt(varcovab[1,1]*varcovab[2,2])

# prior for concentration parameter

mm~dunif(0.4,10) }
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Figure 1: Histogram of the number of clusters for the SFU survey data.
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Figure 2: Plot of the posterior means of the personality parameters (ai, bi) for the SFU

survey data.
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2 )= 210 Euclidean distances with respect

to the prior-predictive check for the SFU survey data.
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Figure 4: Q-Q plot used to investigate model fit as proposed by Johnson (2007) for the
SFU survey data.
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