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Abstract

This paper considers the problem of determining optimal substitution times in soccer.

We review the substitution rule proposed by Myers (2012) and provide a discussion of

the results. An alternative analysis is then presented that is based on Bayesian logistic

regression. We find that with evenly matched teams, there is a goal scoring advantage

to the trailing team during the second half of a match. In addition, we provide a

different perspective with respect to the substitution guidelines advocated by Myers

(2012). Specifically, we observe that there is no discernible time during the second half

when there is a benefit due to substitution.
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1 INTRODUCTION

In the game of soccer (known as football outside of North America), teams are allowed three

player substitutions in a match. The timing of the substitutions is strategic. For example,

if a team is losing, the manager (coach) may want to replace a player with a more attacking

player. On the other hand, teams should be wary of early substitutions. Once a team has

made their three substitutions, a subsequent injury on the field may force the team to play

the remainder of the match with 10 players instead of 11.

Myers (2012) proposed a substitution scheme based on regression tree methodology that

analyzed data from the top four soccer leagues in the world: the 2009/2010 seasons of

the English Premier League (EPL), the German Bundesliga, the Spanish La Liga and the

Italian Serie A. In addition, data were analyzed from the 2010 season of North America’s

Major League Soccer (MLS) and from the 2010 FIFA World Cup. The decision rule for

substitutions (page 11 of Myers, 2012) was succinctly stated as follows:

• if losing:

– make the 1st substitution prior to the 58th minute

– make the 2nd substitution prior to the 73rd minute

– make the 3rd substitution prior to the 79th minute (1)

• if tied or winning:

– make substitutions at will

The subsequent analysis in Myers (2012) demonstrated that teams that followed the

decision rule improved their goal differential 42.27 percent of the time. For teams that did

not follow the decision rule, they improved their goal differential only 20.52 percent of the

time.

The decision rule (1) is attractive both in its apparent simplicity and also due to the

benefits from following the rule. Consequently, the decision rule has received considerable

attention in the mainstream media. For example, a quick Google search reveals YouTube

interviews, blogs and newspaper articles concerning the study, many of which marvel at the

findings (e.g. Diamond 2011 and Cholst 2013). Chapter 9 of Anderson and Sally (2013)

endorses the results in Myers (2012). They argue that by the time managers observe that a
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player is tired, it is already too late. The substitution of the player ought to have occurred

earlier. They suggest that the substitution rule proposed by Myers (2012) is an analytics-

based approach that provides prescience beyond what managers are able to ascertain.

In this paper, we provide both a review of Myers (2012) and an alternative analysis of

the soccer substitution problem. At a surface level, the results appear contradictory as our

analysis indicates that there is no discernible time during the second half when there is a

benefit due to substitution. However, as we discuss, the two approaches are not directly

comparable as they use different statistical methodologies, different response variables and

different explanatory variables. Our analysis also indicates that with evenly matched teams,

the trailing team is more likely to score the next goal during the second half. This observation

has implications for the game of soccer. Teams that are leading may be “parking the bus” or

failing to send attackers forward in sufficient numbers. These tentative reactions or strategies

are seemingly detrimental.

In Section 2, we carefully review the paper by Myers (2012). We begin by providing two

examples where there are subtleties associated with the decision rule. In the first exam-

ple, we note that the proposed substitution scheme is not entirely practical as it provides

substitution directives that refer to earlier stages of a match. The two examples lead to a

formal characterization of the decision rule. We then discuss various aspects of the analysis

in Myers (2012). In Section 3, we present an alternative analysis that is based on Bayesian

logistic regression where team strength is considered and subjective priors are utilized. The

prior specification facilitates the smoothing of temporal parameters. We conclude with a

short discussion in Section 4.

There are at least two other papers in the literature that have addressed substitution

issues in soccer. Hirotsu and Wright (2002) use hypothetical soccer results to demonstrate

the estimation of a four-state Markov process model. With such a model (which requires the

estimation of player specific parameters), optimal substitution times may be obtained, op-

timal in the sense of maximizing league points. In Del Corral, Barros and Prieto-Rodriguez

(2008), the substitution patterns from the 2004-2005 Spanish First Division are studied.

They determine that the score of the match is the most important factor affecting substitu-

tions. In addition, they find that defensive substitutions occur later in a match than offensive

substitutions.
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In our analysis, we consider the probability that the trailing team scores the next goal.

However, scoring intensity is also relevant to soccer. It is well known that scoring intensity

increases throughout a match (Morris 1981). For example, Ridder, Cramer and Hopstaken

(1994) provided the total goals scored during the six 15-minute segments in a 90 minute

match corresponding to the 340 matches played during the 1992 season in the two professional

Dutch soccer divisions. Based on 952 goals, the percentages in the six segments were 13.4,

14.7, 15.4, 17.8, 17.9 and 20.8. They also demonstrated that after a red card is issued,

the scoring intensity of the 11-man team increased by a factor of 1.88 whereas the scoring

intensity of the 10-man team decreased only slightly by a factor of 0.95. Increased scoring

intensity towards the end of matches was corroborated by Armatas, Yiannakos and Sileloglou

(2007) who studied the 1998, 2002 and 2006 World Cups.

2 THE ORIGINAL DECISION RULE

To gain a better understanding of the decision rule (1) proposed by Myers (2012), we consider

two illustrative examples.

Example 1: Team A scores in the 50th minute. Team B substitutes in the 45th minute,

substitutes in the 70th minute and then scores in the 75th minute.

Discussion: In this match, the conditions for use of the decision rule are applicable. The

reason is that Team B is losing at the critical 73rd minute. Therefore, we see that the rule

is not prospective - based on the score in the 73rd minute, it tells us how we should have

substituted previously in the match. From a management perspective, it would be preferable

to have a rule that provides decision guidelines at any point in time. We also see that the

simple formulation (1) is not entirely clear in defining an instance of “when” a team is losing.

In this example, Team B followed the decision rule and improved their goal differential.

Example 2: In an actual match (March 10, 2009) between Burnley and Birmingham in the

English Premier League, the home team Burnley scored goals in the 53rd and 62nd minutes.

Birmingham substituted in the 45th minute, the 45th minute, the 67th minute and then

scored in the 90th minute.
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Discussion: Here, Birmingham falls behind in the 53rd minute and remains behind for the

entire match. Birmingham substitutes in accordance with the decision rule. The question

arises as to whether Birmingham improved their goal differential. The final score of 2-1 (for

Burnley) represents no change in differential from the 53rd minute (the time of Burnley’s first

goal to make the score 1-0). However, from the time of Birmingham’s third substitution in

the 67th minute when the score was 2-0 for Burnley, there is a positive change in differential

by the end of the match. In a personal communication with Myers, he indicates that indeed

Birmingham should be credited with an improved goal differential.

Therefore, the decision rule is more complex in its implementation than as simply spec-

ified by (1). Given that the rule has gained some traction in soccer, it is useful to have

an unambiguous specification of the rule. We consider a formulation which is unfortunately

more complicated than (1) but facilitates statistical analysis.

Accordingly, observe the first time t0 that a team has fallen behind in a match and let

j(t0) be the number of substitutions that the team has made prior to t0. We define si as

the time of the ith substitution and let SL(t) be true (false) if the team is losing (no longer

losing) at time t. We further define the next substitution time sn = s1+j(t0) and the next

critical time

t∗ =


58 if t0 ≤ 58

73 if 58 < t0 ≤ 73

79 if 73 < t0 ≤ 79

Table 1 provides a breakdown of the 9 situations where the decision rule is applicable

and the corresponding substitution patterns under which the decision rule is followed. When

following the decision rule, a success in reducing the goal differential is defined by observing

the change in goal differential between sn and the 90th minute. When not following the

decision rule, a success in reducing the goal differential is defined by observing the change

in goal differential between t∗ and the 90th minute.
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Situations DR Applicable Substitution Pattern Required to Follow DR
t0 ≤ 58, j(t0) = 0, SL(s1) = T s1 ≤ 58, s2 ≤ 73 (if SL(73)=T), s3 ≤ 79 (if SL(79)=T)
t0 ≤ 58, j(t0) = 1, SL(s2) = T s2 ≤ 73, s3 ≤ 79 (if SL(79)=T)
t0 ≤ 58, j(t0) = 2, SL(s3) = T s3 ≤ 79

58 < t0 ≤ 73, j(t0) = 0, SL(s2) = T s2 ≤ 73, s3 ≤ 79 (if SL(79)=T)
58 < t0 ≤ 73, j(t0) = 1, SL(s2) = T s2 ≤ 73, s3 ≤ 79 (if SL(79)=T)
58 < t0 ≤ 73, j(t0) = 2, SL(s3) = T s3 ≤ 79
73 < t0 ≤ 79, j(t0) = 0, SL(s3) = T s3 ≤ 79
73 < t0 ≤ 79, j(t0) = 1, SL(s3) = T s3 ≤ 79
73 < t0 ≤ 79, j(t0) = 2, SL(s3) = T s3 ≤ 79

Table 1: The 9 situations under which the decision rule (DR) is applicable and the corre-
sponding conditions under which the DR is followed.

2.1 Examination of the Original Decision Rule

In this subsection, we provide a discussion of various aspects of the analysis related to Myers

(2012).

Recall, we have re-formulated the original decision rule (1) proposed by Myers (2012) with

the description provided in Table 1. To check our characterization, we attempted to replicate

the analysis in Myers (2012) using the formulation in Table 1. We aggregated results over

the same six competitions as Myers (2012); namely the English Premier League 2009-2010

season, the German Bundesliga 2009-2010 season, the Spanish La Liga 2009-2010 season,

the Italian Serie A 2009-2010 season, North America’s Major League Soccer 2010 season and

the 2010 World Cup held in South Africa. We obtained an improved goal differential 40.07

percent of the time when following the decision rule and 17.90 percent of the time when not

following the decision rule. These results are very close to the values 42.27 percent and 20.52

percent reported by Myers (2012). Because of our limited data sources, we excluded matches

with red cards and matches where substitutions occurred in the first half. These decisions

likely account for the small discrepancies in the two analyses. Our replicated analysis was

based on 292 occasions where teams followed the decision rule and 620 occasions where teams

did not follow the decision rule.

We were concerned with sample size inadequacies in the above analysis, especially the

292 instances where the decision rule was followed. We therefore augmented the dataset

by including three more English Premier League seasons (2010-2011, 2011-2012 and 2012-
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2013). This provided a total of 446 occasions where the decision rule was followed and

1,118 occasions where the decision rule was not followed. With the larger dataset, improved

goal differential was achieved 39.01 percent of the time when following the decision rule

and 20.48 percent of the time when not following the decision rule. We therefore observe

that the difference between following the rule and not following the rule is slightly less than

previously reported. In Section 3, an alternative analysis is presented which is based on a

much larger dataset.

One of the assumptions of analyses based on regression trees is that observations are

statistically independent. According to the formulation of the decision rule in Table 1, it is

possible that both teams in a match may be subject to the decision rule. In this case, the

two situations are not statistically independent. For example, if one team improves its goal

differential, it is less likely that the opponent will improve its goal differential. The lack of

independence is not taken into account in the analysis by Myers (2012). We note that the

analysis presented in Section 3 does not have such issues.

In the analysis presented in Myers (2012), the decision rule is based on whether a team

follows the 58-73-79 substitution pattern. It seems to us that any possible advantage due to

a team’s substitution pattern should also depend on their opponent’s substitution pattern.

The analysis in Myers (2012) does not take the opponent’s substitution pattern into account.

However, we note that the opponent’s substitution pattern is considered in the analysis

presented in Section 3.

A nuanced consideration of Myers (2012) is that the analysis is based on a comparison

of following the 58-73-79 rule versus not following the 58-73-79 rule. There are many ways

that teams can fail to follow the decision rule. For example, a team could follow a 60-73-79

rule but fail to follow the 58-73-79 rule. However, it is doubtful that there would be much

difference in team performance between the recommended 58-73-79 rule and a 60-73-79 rule.

When the 58-73-79 rule is compared against all other substitution patterns, it is possible

that the rule is compared against some “bad” substitution patterns. Therefore, it would

be preferable if substitutions could be compared at different points in time. The analysis

presented in Section 3 provides such comparisons.

There is an aspect of the substitution analysis in Myers (2012) that is nonstandard and

is highlighted in the following example.
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Example 3: Team A scores in the 50th minute and Team B scores in the 56th minute.

Discussion: We consider the substitution problem from Team B’s perspective. We therefore

have t0 = 50, j(t0) = 0, sn = s1 and t∗ = 58. Following Table 1, if Team B substitutes in

the 54th minute, we refer to the first row and note that the decision rule is applicable since

SL(s1 = 54) = T . However, if Team B substitutes in the 57th minute, then the decision rule

is not applicable since SL(s1 = 57) = F . What makes the analysis nonstandard is that the

substitution protocol determines whether the match is a case in question.

2.2 Accounting for Team Strength

A final discussion point concerning Myers (2012) relates to the well-known fact that the

assessment of cause and effect is best investigated using randomized experiments. However,

in the soccer dataset, the decisions to follow the 58-73-79 rule were not randomized. It is

possible that some confounding factor could have been involved, a factor that is related to

the success of the decision rule.

When studying the decision rule, it is apparent that teams essentially follow the decision

rule when they make their substitutions early, and we hypothesize that strong teams are

more likely to substitute early. Strong teams tend to have “deeper” benches and are better

able to replace players with quality players. Obviously, stronger teams are more able to

improve goal differential.

To investigate the hypothesis, we define a variable that describes a team’s relative

strength in a given match. When determining the team’s strength, we also account for

home team advantage. Here we consider a balanced schedule where each team in a league

plays every other team the same number of times, both home and away. For a given league

in a given season, let HTA denote the league-wide home team advantage calculated as

HTA =
total home goals− total away goals

total matches
.

For Team j, define its average goal differential during a season by

Dj =
Team j’s total goals scored− Team j’s total goals allowed

total matches by Team j
.
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Then, if Team j is playing Team k, we define the relative strength of Team j as

z =

 Dj −Dk +HTA if j’s home field

Dj −Dk −HTA if k’s home field
(2)

where a positive (negative) value of z suggests that Team j (k) is favored to win the match.

The value z in (2) has a straightforward interpretation as the number of goals by which

Team j is expected to defeat Team k. This interpretation is useful for the subjective priors

that are developed in Section 3.1. Alternative measures of team strength have been developed

for soccer including latent variable probit models (Koning 2000), extended dynamic models

(Knorr-Held 2000) and various Poisson-type models (Karlis and Ntzoufras 2003). There are

also alternative measures of the home team advantage. For example, Clarke and Norman

(1995) use regression methods to obtain team specific measures for English soccer. Issues

surrounding the use of team specific measures versus a single league-wide measure is discussed

in Swartz and Arce (2014).

Having developed the team strength parameter z, we now return to the question of

whether team strength is confounded with success of the decision rule. We use the dataset

from Myers (2012) but exclude the 2010 World Cup results where the strength parameter z

is unavailable. When teams are stronger, they follow the decision rule 37 percent of the time

(105 times out of 283 opportunities). When teams are weaker, they follow the decision rule

30 percent of the time (177 times out of 589 opportunities). Moreover, stronger teams that

followed the decision rule improved their goal differential in 56.19 percent of the cases (59

out of 105 times). This is a much higher value than the previously reported 40.07 percent

success rate for following the decision rule.

It therefore appears that team strength is relevant to the success of the decision rule.

Although team strength was not considered by Myers (2012), the analysis in Section 3 takes

team strength into account.

3 AN ALTERNATIVE ANALYSIS

In Myers (2012), regression trees were used to search over potential substitution times to

determine an optimal substitution rule. Recall that optimality was based on improving
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goal differential. We consider a related approach that considers whether the trailing team

scores the next goal. Therefore, the response variables are different in the new analyses.

In addition, we use more data, we take into account the relative strength of the trailing

team and we also consider the time of the match. Our analysis is based on Bayesian logistic

regression using informative prior distributions.

We consider goals scored during all matches in the dataset where a team was trailing prior

to the goal being scored. Recall that Myers (2012) considered the change in goal differential

for which a team could have at most one observation per game. Accordingly, let Yi = 1(0)

denote that the ith goal was scored by the trailing (leading) team where i = 1, . . . , n. Then

Yi ∼ Bernoulli(pi). Therefore, we do not consider goals that occur when the score is tied.

Our focus is on the behavior of the trailing team.

Following (2), we let zi denote the strength parameter of the trailing team which takes

into account the home team advantage. We introduce the substitution variable si where the

underlying assumption is that extra substitutions refresh or infuse energy to a team in the

same way across all teams. Corresponding to the ith goal, we define

si =


1 trailing team has made more substitutions than the leading team

-1 trailing team has made fewer substitutions than the leading team

0 trailing team has made the same number of substitutions as the leading team .

This leads to the logistic model

log

(
pi

1− pi

)
= λzi + β0t + β1tsi . (3)

In (3), we have attempted to incorporate the relevant factors that affect the probability of

a goal being scored by the trailing team. The relative strength of the trailing team including

the home team advantage is expressed through λzi. It is also well-known that trailing teams

become more desperate to score as the match progresses. We therefore see that the term β0t

includes a subscript for time where the number of minutes played is given by t = 1, . . . , 90.

The substitution parameter β1t also includes a time subscript where our intention is to assess

the most beneficial times for substitution.

Again, our dataset corresponds to all of the matches considered in Myers (2012) except

for the World Cup matches for which the strength variable zi is not available. In addition, we
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supplement the dataset with English Premier League matches from three additional seasons,

2010-2011, 2011-2012 and 2012-2013. This leads to a dataset with n = 4, 226 observations.

A first attempt in fitting model (3) is straightforward logistic regression. In Figure 1,

we have plotted the estimates β̂0t + β̂1ts with respect to the time index t for s = −1, 0, 1.

The plots correspond to the log-odds of the probability that the trailing team scores the

next goal when teams are equally matched (i.e. z = 0). We have plotted the values for the

second half only (i.e. t ≥ 46) as this is the most interesting part of the match. We note that

prior to halftime, substitutions are typically made only when there is an injury. In all three

plots, we observe that the estimates are mostly positive which implies that the trailing team

has a greater chance of scoring next. This suggests that the common strategy of playing

defensively given the lead is counter-productive. Conversely, teams that fall behind are more

likely to play more aggressively, and this behaviour appears to have merit. A value β0t = 0.2

which appears typical from Figure 1 translates to p = 0.55. This implies that the next goal

will be scored by the trailing team 55 percent of the time compared to 45 percent of the time

by the leading team. We also observe that the substitution covariate s does not appear to

have much impact on which team scores the next goal.

Figure 1: Estimates of the parameters β0t + β1ts based on logistic regression for the second
half of play. The three plots correspond to the the substitution covariate s = −1, 0, 1. The
lines β0t + β1ts = 0 are superimposed.

A main purpose in displaying Figure 1 is to observe the variability of the estimates. We

would like to reduce the variability by taking into account prior knowledge. For example,

we know that there should be only a small difference in the parameters β0t at adjacent times

t and t + 1. To improve the smoothness in the estimates with respect to time, we next
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consider a Bayesian approach where parameters borrow information from one another. The

variability in Figure 1 obscures potential trends with respect to time. For example, it may

be possible that there is a decreasing trend in the final minutes of a match. This may be

due to increased risk taking by the trailing team which is now more exposed to goals on the

counter-attack. It is also possible that β0t has larger values for times slightly greater than

t = 45. This may be due to inspirational instruction at halftime by the manager.

3.1 The Prior Distribution

We take a Bayesian approach and require the specification of the prior distribution for the

parameters in (3). Although many Bayesian statisticians advocate a subjective formulation

of prior opinions (Goldstein 2006, Lindley 2000), most practitioners avoid the challenge

involved in the elicitation of prior opinions. In many applications, priors of convenience are

chosen which are often diffuse and improper.

One of the advantages in sports analytics is that researchers typically have good instincts.

For example, the known objectives for winning, the rules of the game and the limited dura-

tions of matches give sport a simplicity when compared to the investigation of more complex

phenomena. When processes are well understood, this facilitates the use of subjective pri-

ors. We consider subjective priors for the parameters in model (3). Subjective priors are

particularly important for logistic regression; it is well known that diffuse default priors on

the coefficients in logistic regression induce probability distributions on p that are convex

and are typically inappropriate (Baskurt and Evans 2015).

Referring to the logistic model in (3), the parameters are λ, β0t and β1t for t = 1, . . . , 90.

To reduce parameter specification to situations of interest, we restrict the time variable

to t = 46, . . . , 90. This leaves us with 91 primary parameters. During this timeframe,

2,989 observations were recorded which provides a ratio of 2,989/91 ≈ 32.8 observations per

parameter. The time restriction also improves the speed of computation.

The parameter λ relates the strength of the trailing team to the probability that the

trailing team scores the next goal. We expect that as the strength of the trailing team

increases so should their probability of scoring the next goal (i.e. λ > 0). We therefore prefer

a prior distribution for λ that is defined onR+, and it is also intuitive that the density should

be concave. Therefore, we impose the prior λ ∼ Gamma(a0, b0). The specification of a0 and
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b0 are obtained by referring to gambling websites where soccer markets are thought to be close

to efficient (Nyberg 2014). In our dataset, the largest values of the relative team strength

covariate z are roughly z = 1.5. For most of the soccer matches considered in this analysis,

when an exceptionally strong team faces an exceptionally weak team, the handicap in favor

of the strong team is roughly 1.5 goals1 with roughly 2.5 total goals. This implies a scoreline

of 2.0-0.5 in favor of the strong team. Consequently, goal scoring in favor of the strong team

can be expected to occur in roughly a 4:1 ratio, i.e. with probability 0.80. When β0t = 0 and

s = 0 in (3), we solve the logit expression, log(p/(1 − p)) = log(0.80/0.20) = λz = λ(1.5),

yielding an expected value of λ = 0.92. We therefore select hyperparameters a0 = 10.0 and

b0 = 10.9 where we observe that the specified prior has E(λ) = 0.92 and there is sufficient

variability surrounding λ to allow for errors in our subjectivity.

Recall that when a goal is scored at time t, the parameter β0t relates the probability

that the trailing team scores the goal. It is conceivable that β0t could be either positive or

negative. It is also clear that β0t values are dependent in the sense that β0t1 and β0t2 should

be comparable when |t1 − t2| is small. This suggests that the multivariate distribution

β0 = (β046, . . . , β090)
′ ∼ Normal(µ0,Σ) (4)

provides a sensible subjective prior. When the two teams are evenly matched (i.e. z = 0) and

when the two teams have made the same number of substitutions (i.e. s = 0), we have little

intuition as to who will score the next goal. We therefore choose µ0 = (0, . . . , 0)′. We then

define Σ as a first order autoregressive covariance matrix where the (i, j)th element of Σ is

given by σ2ρ|i−j|. The remaining prior specification concerns the variance parameter σ2 > 0

and the correlation parameter ρ ∈ (0, 1). In an evenly contested match (i.e. z = 0) when

both teams have made the same number of substitutions (i.e. s = 0), we cannot imagine

the goal ratio for the trailing team at any time t varying beyond 1:2 or 2:1. Therefore

log(2) − log(1/2) = (β0t + 3σ) − (β0t − 3σ) which yields σ = 0.23. To introduce some

variability in σ, we assign σ ∼ Gamma(2.3, 10) where E(σ) = 0.23. For ρ, we assume that

there is no meaningful difference in goal scoring rates at times t and t+ 1. We express this

as imposing the correlation ρ = 0.97. We note that at five minute differences t and t + 5,

1In gambling circles, a 1.5 handicap means that a wager on the favorite team is successful if the team
wins by two or more goals, and the wager is unsuccessful otherwise.
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this implies a correlation of ρ|t+5−t| = 0.86. To introduce some variability in ρ, we assign

ρ ∼ Beta(38, 1) where E(ρ) = 0.97. We note that ρ serves as a smoothing parameter where

the variability in neighbouring β0t values is reduced as ρ→ 1.

Recall that when a goal is scored at time t, the parameter β1t relates the probability that

the trailing team scores the goal when they have made at least one more substitution than

the opposition. The arguments advanced in the prior specification of β0 can be repeated in

the case of β1 = (β146, . . . , β190)
′. Therefore β1 will also be assigned a multivariate normal

distribution with parameters that have the same hyperparameter specifications as in the case

of β0.

We remark that sometimes statisticians entertain complex models where resulting esti-

mates are subsequently used in secondary analyses. Although sometimes this may be the

only viable route, these approaches may be viewed as somewhat ad-hoc where there is a

mixing of inferential procedures. For example, in this application, we could have taken the

β0t estimates from ordinary logistic regression and simply smoothed the estimates using some

sort of procedure such as lowess. Instead, we have proposed a comprehensive model where

the smoothing mechanism is facilitated through the prior specification. This strikes us as a

more appealing approach for statistical inference.

3.2 Results from Bayesian Logistic Regression

We implemented the Bayesian logistic regression model (3) via the WinBUGS programming

language (Spiegelhalter, Thomas, Best and Lunn 2003). WinBUGS is often convenient for

Bayesian analysis as the user only needs to specify the model and provide the data; the

associated and sometimes difficult Markov chain Monte Carlo operations are handled in the

background by WinBUGS. In our implementation, we carried out 5,000 burn-in iterations

followed by 10,000 iterations which were used to estimate posterior characteristics. Standard

diagnostic procedures were carried out which suggested practical convergence of the Markov

chain.

We first consider the parameter λ which relates the relative strength of the trailing team

to the probability that the trailing team scores the next goal. The posterior mean and

posterior standard deviation are given by E(λ | y) = 1.00 and SD(λ | y) = 0.05. The

posterior density of λ is provided in Figure 2. We see that the posterior distribution is
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roughly symmetric. In comparison to the subjective prior distribution for λ which had

mean E(λ) = 0.92, the posterior distribution is more concentrated and shifted further to the

right. The main message involving λ is as expected - with everything else being equal (i.e.

β0t = β1t = 0), the stronger team is more likely to score the next goal. Putting this into

greater context, imagine that the trailing team is expected to defeat the leading team by

one goal (i.e. z = 1). Then λ̂z = 1.00 and the probability that the next goal is scored by the

trailing team is p = exp(1.00)/(1 + exp(1.00)) = 0.73.

Figure 2: The posterior density of λ based on the Bayesian logistic regression model (3).

We now turn our attention to the parameter β0t + β1ts which relates the combined effect

of the time of the match t and the substitution advantage s to the probability that the

trailing team scores the next goal when teams are equally matched (i.e. z = 0). Figure 3

provides posterior means of β0t + β1ts in the second half for each of s = −1, 0, 1. In the

plot corresponding to s = 0, we first observe that the correlation structure introduced in

the prior specification (4) was successful in smoothing the β0t estimates when compared

to the extreme variability observed in Figure 1. From a practical point of view, the plots

reveal practices and consequences for the game of soccer. The positive estimates in Figure 3

suggest that during the second half there is a goal scoring advantage provided to the trailing

team. Why might this be? One explanation is tactical. Perhaps managers of teams that are

leading instruct players to play cautiously, to stay back, and consequently the leading team
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is defending more than attacking. In these situations, the trailing team is more likely to

score the next goal. Another explanation is psychological. Perhaps teams that are leading

are fearful of giving up the lead, and hence play with the cautious characteristics described

previously. In any case, the message is clear - teams that are leading should not play as

though they are leading. Generally, they should adopt the same style that allowed them to

obtain the lead. The tactical and psychological explanations are also relevant to the trailing

team. The trailing team may be taking chances, playing fearless and attacking.

Figure 3: Posterior means of the parameters β0t +β1ts based on the Bayesian logistic regres-
sion model (3) for the second half of play. The three plots correspond to the the substitution
covariate s = −1, 0, 1. The lines β0t + β1ts = 0 are superimposed as well as the 95 percent
posterior intervals.

From Figure 3, we are also able to quantify the scoring effect due to the time of the

match and the substitution covariate s. We observe that β0t ≈ 0.2 for most of the second

half. With β0t = 0.2, the probability that the trailing team team scores the next goal is a

substantial p = exp(0.2)/(1 + exp(0.2)) = 0.55. Also, it appears that the plot dips slightly

from roughly the 50-minute mark and dips again from roughly the 80-minute mark. A

possible explanation is that the manager of the trailing team provides an inspiring talk at

halftime, but the motivation begins to wear off beyond t = 50. Also, beyond t = 80, the

aggressive attacking style adopted by the trailing team becomes overly aggressive to the

extent that they become more vulnerable to the counter-attack.

We now consider the parameter β1t which was the initial focus of our investigation. We

are interested in the relationship between the substitution time t and the probability that

the trailing team scores the next goal. The detailed effects due to β1t are not easily assessed

from Figure 3 as the plots corresponding to s = −1, 0, 1 are similar. Posterior means for β1t
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in the second half of a match are given in Figure 4. The noteworthy feature of Figure 4 is

that the estimates are not discernible from zero when looking at the 95 percent posterior

interval bands. That is, at any time t during the second half, if the trailing team has made

more substitutions than the leading team, there is no scoring benefit. This finding is in stark

contrast to Myers (2012) who claimed there is a strong benefit to the trailing team when

they substitute prior to the 58th, 73rd and 79th minutes.

Figure 4: Posterior means of the parameters β1t based on the Bayesian logistic regression
model (3) for the second half of play. The line β1t = 0 is superimposed as well as the 95
percent posterior intervals.

We have observed that the parameters β0t and β1t appear constant with respect to t

in the Bayesian analysis. For sake of comparison, we fit two sub-models of model (3) in

a classical logistical regression context, suppressing the dependence on the time variable t.

Under maximum likelihood estimation, we observed β̂0 = 0.200 with standard error 0.039,

and β̂1 = -0.088 with standard error 0.053. These results are consistent with the magnitude

of estimates obtained in the Bayesian analysis as seen in Figure 3.

4 DISCUSSION

This paper investigates various influences on scoring in soccer by considering a dataset

involving 2,989 second half goals when teams were trailing.
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An important result that does not seem to be widely recognized is that when teams are

of equal strength (i.e. z = 0), the trailing team is more likely to score the next goal during

the second half. This has implications for strategy. When teams are leading, managers

should encourage their teams to play the sort of style that allowed them to obtain the lead.

Going into a defensive shell (whether intentionally or as a psychological consequence) is not

optimal. A similar sentiment has been attributed to John Madden in reference to American

football: “All a prevent defense does is prevent you from winning.”

Even more surprising than the above result is the impact of substitutions. When the

strength of the teams and the time of the match have been considered, there is no discernible

benefit for the team that has made more substitutions. This observation needs to be assessed

carefully. We are not saying that there is no need to replace players. Instead, we believe

that managers are adept at observing player performance. For example, when a player is

injured or tired, this is noticed by the manager and they substitute accordingly. Managers

are essentially making good decisions, and there are no prolonged periods where teams are

significantly weakened. What has happened via substitution is that a quality player has been

replaced with another quality player, and there is little distinction. Therefore, in our analysis,

there are no times t in Figure 4 that appear advantageous with respect to substitution. In

fact, one may argue that managers typically put out their best teams at the start of a match,

and therefore substitutions are often cases of replacing quality with slightly lower quality.

Perhaps this is why we see the trend in Figure 4 falling slightly below the line β1t = 0. In

summary, we suggest that managers should substitute, especially when they see a drop in a

player’s performance. But there is no reason to tie these substitutions to critical times such

as the 58th, 73rd and 79th minutes as in Myers (2012).

We also remark that soccer matches are not randomized experiments where substitutions

are made according to some randomization protocol. As is well known, randomization helps

deal with the influence of confounding variables.

All soccer fans probably recall occasions when a substitute immediately made an impact

on the game, perhaps by scoring a critical goal. Was this managerial brilliance in terms

of knowing when to substitute? Perhaps it is simply a case of memory bias and confir-

mation bias (Schacter 1999). In sports (and in other activities), people tend to remember

outstanding events and use these occasions to solidify previously held opinions.
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Finally, in the comparison of our approach with Myers (2012), we note that different

response variables were used and that our approach introduced new covariates. Therefore,

although both analyses address the substitution problem, they do so in different ways and the

results are not directly comparable. In terms of practice, Myers (2012) states that managers

should substitute according to the 58-73-79 minute rule. On the other hand, our analysis

suggests that there is no discernible time during the second half where there is a clear benefit

due to substitution. What then is a manager to do? We leave this as a bit of a conundrum

that may be considered in future research.
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