
Methods for Approximating Integrals in Statistics with SpecialEmphasis on Bayesian Integration ProblemsMichael EvansDepartment of StatisticsUniversity of TorontoToronto, Ontario M5S 1A1Canada Tim SwartzDepartment of Mathematics and StatisticsSimon Fraser UniversityBurnaby, British Columbia V5A 1S6CanadaAbstractThis paper is a survey of the major techniques and approaches available for the numericalapproximation of integrals in statistics. We classify these into �ve broad categories; namely,asymptotic methods, importance sampling, adaptive importance sampling, multiple quadratureand Markov chain methods. Each method is discussed giving an outline of the basic supportingtheory and particular features of the technique. Conclusions are drawn concerning the relativemerits of the methods based on the discussion and their application to three examples. Thefollowing broad recommendations are made. Asymptotic methods should only be consideredin contexts where the integrand has a dominant peak with approximate ellipsoidal symmetry.Importance sampling, and preferably adaptive importance sampling, based on a multivariateStudent should be used instead of asymptotics methods in such a context. Multiple quadra-ture, and in particular subregion adaptive integration, are the algorithms of choice for lowerdimensional integrals. Due to the di�culties in assessing convergence to stationarity and theerror in estimates, Markov chain methods are recommended only when there is no adequate1



alternative. In certain very high-dimensional problems, however, Markov chain methods are theonly hope. The importance of the parameterization of the integral is noted for the success of allthe methods and several useful reparameterizations are presented.Keywords and phrases : asymptotics, importance sampling, adaptive importance sampling,multiple quadrature, subregion adaptive integration, Markov chain methods.1. IntroductionReliably approximating the values of integrals is a problem of substantial concern for statisti-cians. We will refer to this problem hereafter as the integration problem. As the dimension of theseintegrals rises, the di�culty of the integration problem increases. Even in relatively low dimensions,however, approximating these values can be di�cult.A wide variety of methods are aimed at solving the integration problem. However, novices canbe confused about which method to use. There are advantages and disadvantages to each of themethods, and it is part of our purpose to elucidate these. Further, we hope that the paper leavesa potential practitioner with the con�dence to begin using these methods.In many statistical problems we need to approximate a number of integrals where only part ofthe integrand changes from one problem to another. Often it is the common part of the integrandthat is of primary importance in choosing an approximation technique. For this reason we denotethe integrals of interest as I(m) = ZRk m(�)f(�)d� (1)where m : Rk ! R, f : Rk ! R+ and f represents the common part. For example, in Bayesiancontexts f is the product of the likelihood and prior and m is some function whose posteriorexpectation R(m) = I(m)=I(1) is required. An arbitrary integration problem can be representedas in (1) by taking f = 1. We assume hereafter that the integrand mf is integrable, however, the2



veri�cation of this in a particular problem can be di�cult.A characteristic of many of the integrals encountered in statistical practice is the dependenceof the integrand on sample data. In this situation we encounter a di�erent integral for each dataset. This dependence inuences the degree of accuracy that we require in our approximations. Forexample, suppose that we wish to approximate a posterior mean and we have only two-decimalaccuracy in the data. Then it makes no sense to require accuracy in the approximation higherthan the amount of variation we would observe in the posterior mean if the data were variedin the third decimal place. This is in sharp contrast to the attitude commonly encountered inthe numerical analysis community where the goal is high accuracy. High accuracy is relevant,however, to certain problems encountered in statistics. An example is given by the evaluation ofthe multivariate normal distribution function; i.e. m is the indicator function for Qki=1(�1; xi] andf is the Nk(�;�) density. For high-dimensions and a requirement of low relative error, evaluationof the multivariate normal distribution function is still a largely unsolved problem; see for exampleSchervish (1984) and Genz (1992a).A very important aspect of the integration problem is the assessment of error in an approxima-tion. The only absolutely certain method is to compare the approximation with the correct answer,but this is impossible in practice. The various integration methods that we discuss each have specialcharacteristics with respect to error assessment. In general, there is no guaranteed method for errorassessment. With iterative methods, we have the natural method of examining the approximationsat successive stages and stopping the iteration when the changes become small for a number ofiterations. For a discussion of this issue in the general context of iterative algorithms, see Linz(1988). Further discussion on error assessment can be found in Lyness (1983) where automaticand standard quadrature are contrasted with respect to the behaviour of the error. Also Bernsten(1989) discusses methods for improving error assessment when using adaptive multiple quadrature3



routines. Perhaps the best way to be con�dent that we have accurately approximated a particularintegral is to use two very di�erent methods and see if the results agree.This paper is a substantial ampli�cation of Evans and Swartz (1992). That paper outlined themajor methods used in approximating integrals in statistics but did not consider speci�c examplesand did not attempt to provide conclusions concerning the relative merits of the methods. A reviewpaper by Haber (1970) reects the views of the numerical analysis community on the integrationproblem at that time and in particular emphasizes multiple quadrature approaches. By contrastthis paper is much more heavily weighted towards Monte Carlo methods. Also Thisted (1988),Flournoy and Tsutakawa (1989), Smith (1991) and Tanner (1993) contain general discussions ofthe integration problem.In Section 2 we present some statistical examples where the integration problem is relevant.In Section 3 we discuss the use of asymptotic approximations. Section 4 is devoted to importancesampling and Section 5 to adaptive importance sampling. Section 6 reviews multiple quadratureand subregion adaptive methods. In Section 7 we discuss Markov chain methods. A �nal sectionsummarizes our conclusions. All computation times in the paper refer to work carried out on aSparc 20 workstation.2. ExamplesAn issue of fundamental importance to the success of any of the integration techniques that wediscuss is the parameterization chosen for the integral. By a reparameterization we mean any one-to-one, continuously di�erentiable transformation of the variables of integration. As we will see,certain parameterizations are preferable to others for particular methods. For example, choosing aparameterization that makes a normalized f as much like a multivariate normal density as possibleis important for the success of asymptotic methods. Transformations that locate and scale variablesappropriately and reduce correlations are important for all Monte Carlo and multiple quadrature4



methods. Some methods require that variables range over speci�c sets; e.g. [0; 1] or R1, and soa transformation is essential. In general, however, the choice of a parameterization to ensure thesuccess of a particular method of integration is an unsolved problem. Helpful comments on thisproblem can be found in Achcar and Smith (1990) and Hills and Smith (1992). Throughout thispaper we provide further comments on the choice of parameterization for an integral.The following examples are used in subsequent sections.Example 1. The integrals in this example arise from a Bayesian analysis of a linear model withsimulated data. The statistical model for the observed response value y is speci�ed as follows. Wehave y = X�+�z where y 2 R45; X 2 R45�9 has xij = 1 for i and j satisfying 5(j�1)+1 � i � 5jand 0 otherwise, � 2 R9; � 2 (0;1) and z 2 R45 is a sample of 45 from the Student�(3) distributionwhere Student�(�) denotes the Student(�) distribution standardized to have variance 1. The datay were obtained by setting �i = 0 for every i 6= 1, �1 = 1:8, � = 1 and the z's were generated froma Student�(3) distribution using the S generator for the Student(3) distribution and dividing eachof these values by p3. We denote the y-value corresponding to the j-th observation in the i-th cellby yij . Table 1 gives the generated zij values.We place a at prior on the �'s and independently the prior 1=� on � and �x � = 3. Usinga Student distribution for the error is what makes this analysis di�cult because nothing can beworked out in closed form. Rather we are forced to use numerical techniques to implement theinference methods. It is convenient to transform from � to � = log � as � is unconstrained inR1. Thus the integrals that we wish to evaluate take the form given by (1) where � 2 R10 withcomponents �i = �i for i = 1; : : : ; 9 and �10 = �, f(�) = expf�9n �10gQ9i=1Qnj=1 g� � yij��iexp(�10)� isthe likelihood times the prior, m is a function on R10 such that (1) is �nite andg�(z) = �(�+12 )�(12)�(�2 )  1 + z2�� 2!��+12 1p�� 25



i j=1 j=2 j=3 j=4 j=51 0.152 1.086 0.591 -0.068 -0.3782 -0.638 0.187 -0.010 0.495 0.2623 2.833 1.098 -0.476 -0.383 1.1294 0.042 0.174 -0.582 0.447 -0.0715 -0.616 -0.514 -1.321 0.043 0.0736 -0.817 0.935 -0.156 -0.172 -0.1747 -0.879 0.028 -0.110 -1.193 0.9748 -0.611 -0.549 -0.545 -0.403 -1.3009 0.290 0.755 -0.150 0.746 -3.001Table 1: The values of zij used in the example.with � = 3 and n = 5. We will approximate the posterior expectations R(m) corresponding tom(�) = �i and m(�) = �2i for i = 1; 2; 4 and 10. The exact values of these quantities are given inTable 2 and were computed by an extensive computation described in Section 4.Example 2. In this example, we carry out a Bayesian analysis of a contingency table using datafromWing (1962). The data involves the cross-classi�cation of 132 long-term schizophrenic patientsinto three row categories concerning the frequency of hospital visits and three column categoriesconcerning the length of stay. The (i; j)-th cell probability takes the form pij = ��i(1)�j(1) +(1 � �)�i(2)�j(2) where � 2 [0; 1=2] and both (�1(i); �2(i); �3(i)) and (�1(i); �2(i); �3(i)) com-prise probability distributions for i = 1; 2. This is known as a latent class model where rowsand columns are statistically independent given a single latent variable and we have only thecount data. For further discussion of this model see Evans, Gilula and Guttman (1989) and thereferences therein. The likelihood function equals Q3i=1Q3j=1 (��i(1)�j(1) + (1� �)�i(2)�j(2))fijwhere fij is the count in the (i; j)-th cell. For the prior distribution we take � � U(0; 1=2),(�1(i); �2(i); �3(i)) � Dirichlet(1; 1; 1) and (�1(i); �2(i); �3(i)) � Dirichlet(1; 1; 1) for i = 1; 2 andassume independence. Therefore f in (1) equals the likelihood multiplied by these priors. We areinterested in the posterior expectations R(�) = :422 and R(�2) = :181. These values were obtained6



via an extensive computation described in Section 4.While the above parameterization is the natural one, it is not useful for any of the integrationmethods we discuss. Rather we use a probability transform to transform to [0; 1]9. We de�ne thistransformation generally. Let x = (x1; : : : ; xk) 2 Rk have density w and let Wi(xijx1; : : : ; xi�1) bethe conditional distribution function of xi given x1; : : : ; xi�1. Then putting �i = Wi(xijx1; : : : ; xi�1)we have that � � U([0; 1]k) and this is the probability transform. Of course any permutation ofthe coordinates can be used. For this example, following Evans, Gilula and Guttman (1989), wetransform to [0; 1]9 using the probability transform of the prior with the natural ordering of thevariables.Example 3. In this example, we consider the computation of an orthant probability in R6; i.e.k = 6, with high accuracy. For this integral m(�) = I[0;1)6(�) is the indicator function of [0;1)6and f is the density of the N6(0;�) distribution where ��1=2 = diag(0; 1; 2; 3; 4; 5)+ ee0 and e =(1; 1; 1; 1; 1; 1)0. The exact value of this integral to 10 decimal places is I(m) = :166625� 10�4 andthis was computed via an extensive computation described in Section 4. We make use of a sequenceof reparameterizations discussed in Genz (1992a). The �rst transformation is from � 2 [0;1)6 tou = C�1� where C is the lower triangular Cholesky factor of �. The second transformation isfrom u 2 R6 to v = �(u) where � is the N(0; 1) distribution function applied coordinate-wise.The interval of integration for vi is (ai; 1) where a1 = 1=2 and ai = �(f�ci1��1(v1) � : : : �cii�1��1(vi�1)g=cii) for i > 1. The third transformation is given by wi = (vi � ai)=(1 � ai) fori = 1; : : : ; 6. The integral now has a constant integrand with domain of integration for w equaling[0; 1]6 and the integration with respect to w6 can be carried out exactly.3. AsymptoticsOne of the most commonly used asymptotic approximation techniques is the Laplace method.For this we suppose that (1) can be written in the form I(m) = RDm(�)e��h(�)d� where D is7



open, h has a continuous Hessian matrix H on D, h has a strict global minimum at �̂ 2 D and mis continuous in a neighbourhood of �̂ with m(�̂) 6= 0. We then approximate (1) using Laplace'sformula Î(m) = m(�̂)(2�)k=2j�H(�̂)j�1=2 expf��h(�̂)g (2)since lim�!1 I(m)=Î(m) = 1; for a proof see Wong (1989). Under slightly more restrictiveconditions the proof follows from a form of Taylor's Theorem which says we can write h(�) =h(�̂)+ 12(�� �̂)0H(�̂)(�� �̂)+ 12r(�)jj�� �̂jj2 where r is continuous and r(�)! 0 as � ! �̂. Thus weare e�ectively approximating (1) by (2�)k=2j�H(�̂)j�1=2 expf��h(�̂)g times the expectation of mwith respect to the Nk(�̂; (�H(�̂))�1) distribution for large � . Intuitively Laplace's formula is sayingthat as � !1; i.e. as the variance of the multivariate normal goes to 0, most of the contribution toI(m) is occuring near the maximum of expf��h(�)g. Under additional assumptions Wong (1989)establishes that the relative error in (2) is O(��1).It is not always possible to transform an integral to the requisite form for the use of (2).In Bayesian contexts, however, we can write h�(�) = � 1� log f(�) where � ! 1 as the size ofthe data set grows. Recall that f depends implicitly on the data here. Strictly speaking wecannot apply Laplace's formula because of the dependence of h� on the data and of course on �as well. As it is typical, however, for h� (�) to converge almost surely as � ! 1, it is intuitivelyreasonable that (2) should still provide a good approximation. This was part of the insight inLindley (1961, 1980). Applying Laplace's formula to R(m) = I(m)=I(1) gives the approximationR̂1(m) = Î(m)=Î(1) = m(�̂�) where �̂� maximizes �h� .The use of Laplace's formula is closely related to approximating a distribution via a normaldistribution. Chen (1985) provides conditions for the asymptotic normality of a sequence of pos-terior densities expf��h�(�)g= R expf��h� (�)gd�. These conditions also establish the validity of8



Laplace's formula for the inverse norming constant I(1) and, with some additional mild conditions,also establish the validity of Laplace's formula for I(m). The asymptotic normality criterion ap-proximates R(m) by the expectation of m using the Nk(�̂� ; (�H�(�̂� ))�1) distribution. We denotethis approximation by R̂(m).A formal asymptotic error order for R̂1(m), and generalizations of this estimate, are obtainedby performing the following operations on the integrals I(m) and I(1):(i) formally expand m and h� in a Taylor series about �̂� ,(ii) make the transformation � ! v = ��H�(�̂� )��1=2 (� � �̂� ),(iii) keep the �rst three terms of the expansion for h� in the exponent, factor this out, noting that�@h� (�̂� )@�i � = 0, and expand the remaining exponential about 0,(iv) express all expansions and products of expansions in powers of ��1=2,(v) formally evaluate the integrals by taking expectations term by term with respect to the Nk(0; I)distribution and note that terms involving odd powers of ��1=2 disappear,(vi) formally expand the ratio of the expansions in powers of ��1.To see clearly how these operations work the reader need only try a simple example. These op-erations give that the formal absolute error in R̂1(m) is O(��1). When m is bounded away from0 the relative error is also O(��1). An estimate with formal asymptotic error equal to O(��2) isobtained by taking the �rst two terms in the �nal expansion. This is equal toR̂2(m) = R̂1(m)� 12� Xi;j "h(i;j)� (�̂�) @m(�̂� )@�i Xr;s h(r;s)� (�̂� ) @3h� (�̂� )@�r@�s@�j � @2m(�̂�)@�i@�j !#where �H�(�̂� )��1 = �h(i;j)� (�̂� )�. A similar analysis, that does not involve expandingm, establishesthat the formal asymptotic error in R̂(m) is O(��1=2). It would appear that R̂1(m) is a betterapproximation than R̂(m). On the other hand the Laplace approximation requires some regularity9



conditions on the function m whereas nothing is required in the normal approximation beyondintegrability; e.g. the Laplace approximation does not apply if m is an indicator function since itis not continuous.In Tierney and Kadane (1986) this technique is modi�ed for the case when m > 0 by takingh�� (�) = � 1� [log f(�) + logm(�)] and �nding ��� which maximizes �h�� . The �rst order estimate isR�(m) = jH�� (��� )j�1=2 expf��h�� (��� )gjH�(�̂� )j�1=2 expf��h� (�̂� )gand this is called the fully exponential Laplace approximation. Tierney and Kadane (1986) argueformally as above that, when m is bounded away from 0, the absolute and relative errors in R�(m)are O(��2) because of a cancellation between the numerator and denominator. The R� approxi-mation requires second order derivatives and two maximizations. This is a distinct advantage overR̂2 which requires third order derivatives. For a nonpositive m Tierney, Kass and Kadane (1989a)recommend using the fully exponential approach to approximate R(expfsm(�)g), the moment gen-erating function of m, for several values of s about 0 and then numerically di�erentiating to get anestimate of R(m).Reviews of asymptotic methods in Bayesian contexts can be found in Kass, Tierney and Kadane(1988, 1991). Kass, Tierney and Kadane (1990) provide conditions for the validity of these approx-imations and asymptotic errors. Tierney, Kass and Kadane (1989b) use the Laplace approach toestimate the marginal density function of �(�) for any function � having a Jacobian of full rank lon a neighbourhood of the posterior mode �̂� . When l = 1, DiCiccio, Field and Fraser (1990) es-tablish asymptotic approximations for tail probabilities. Fraser, Lee and Reid (1990) discuss someasymptotic methods with particular relevance to Example 1. Morris (1988) provides an approachto asymptotic approximations in one dimension using the Pearson family. Discussions of other10



i R(�i) R̂(�i) R̂1(�i) R(�2i ) R̂(�2i ) R̂1(�2i ) R�(�2i )1 2.043 2.018 2.018 4.263 4.141 4.073 4.3132 0.095 0.116 0.116 0.081 0.061 0.014 0.0624 0.018 0.029 0.029 0.069 0.046 0.001 0.03910 -0.073 -0.232 -0.232 0.033 0.079 0.054 0.033Table 2: Asymptotic estimates for Example 1 where R denotes the exact value of the posteriorexpectation, R̂ denotes the normal approximation, R̂1 denotes the Laplace approximation and R�denotes the fully exponential Laplace approximation.asymptotic methods with relevance for statistical applications can be found in Barndor�-Nielsenand Cox (1989, 1994) and Reid (1988).We now apply some of these approximations to the examples of Section 2.Example 1. Here we have that � = n and recall from Section 2 that n = 5 in this example.In Table 2 we give the estimates. The R̂(�i) and R̂1(�i) approximations are reasonable exceptfor i = 10 where the relative error is 218%. A similar comment applies to R̂(�2i ). The R̂1(�2i )approximations are generally not as good as the relative errors for i = 2; 4 and 10 are 83%, 99%and 64% respectively. The R�(�2i ) approximations are generally better except for i = 4. Themaximizations were of necessity done numerically. We coded the �rst and second derivatives in thisexample and used the IMSL function optimization routine DUMIAH. The R� computations weresensitive to the choice of initial value as the function maximized for the numerator is multimodal.For the last column of Table 2 we started DUMIAH at the posterior mode. In general multimodalitycan cause di�culties for all of the asymptotic methods.Example 2. Here � = 132 is the total of the cell frequencies. We used the reparameterizationdiscussed in Section 2 and further transformed to R9 using the N9(0; I) inverse probability trans-form. We obtained the approximations R̂1(�) = :402; R̂1(�2) = :162 and R�(�2) = :186. Recallingthat R(�) = :422 and R(�2) = :181 we see that these approximations perform well. We used whatwe believe to be the global maximum based on the results from several starting values for the11



optimization routines. Calculating the approximations at other modes gave very di�erent answers.We only coded �rst derivatives in this problem as coding second derivatives was exceedingly timeconsuming.Example 3. For this example we could not �nd an approach using asymptotics that we felt wasapplicable. In particular the regularity conditions of Erkanli (1994) are not satis�ed.4. Importance Sampling and Variance Reduction TechniquesSuppose that w is a density function on Rk such that supp(f) � supp(w) where supp(f) is theclosure of the set of points where f is nonzero, and �1; : : : ; �N is a sample from w. Then sinceI(m) = RRk m(�)f(�)w(�) w(�)d�, (1) can be estimated by Îw(m) = 1N PNi=1 m(�i)f(�i)w(�i) . The justi�cationfor this estimate lies in the Strong Law of Large Numbers which implies that Îw(m)! I(m) almostsurely as N ! 1. The density w is referred to as an importance sampler. The basic idea is tochoose w so that it generates values that are in the region where the integrand is large as thisregion is where the most important contributions are made to the value of the integral. For generaldiscussions on importance sampling see Hammersley and Handscomb (1964), van Dijk, Kloek andLouter (1986), Glynn and Iglehart (1989), Hesterberg (1990) and Wolpert (1991). Objections tothe use of Monte Carlo methods have been raised by O'Hagan (1987).We choose w so that the rate of convergence of Îw(m) to I(m) is as fast as possible. The Lawof the Iterated Logarithm, see Durrett (1991), suggests that we can do no better than require thatÎw(m) have as small a variance as possible. This is equivalent to minimizingVarw �mfw � = Z m2(�)f2(�)w(�) d� � �Z m(�)f(�)d��2 : (3)By the Central Limit Theorem Îw(m) � AN �I(m); N�1Varw[mf=w]� when (3) is �nite andXN � AN(�; �2=N) means that pN(XN � �)=� converges in distribution to a N(0; 1) random12



variable as N ! 1. If we put qm(�) = jm(�)jf(�)= R jm(�)jf(�)d� then we have Varw hmfw i =I2(jmj) Ew �� qm�ww �2� + �I2(jmj)� I2(m)�. Therefore (3) is uniquely minimized when w = qmsince then the Chisquare distance between qm and w is 0; i.e. Ew �� qm�ww �2� = 0. If I(m) 6= 0 thena useful representation of the Chisquare distance, in terms of the coe�cient of variation of mf=w,is given by Ew "�qm � ww �2# = � I(m)I(jmj)�2CV2w �mfw �+ � I(m)I(jmj)�2 � 1:We assess the e�ectiveness of w for R jm(�)jf(�)d�, rather than for (1), as these integrals have thesame optimal importance sampler. WritingWi = jm(�i)jf(�i)=w(�i) andW �i = Wi=(W1+: : :+WN)as the i-th normalized sample weight, it is easy to show that the method of moments estimator ofCVw hÎw(jmj)i is given by 1pN nNPNi=1W �2i � 1o1=2. Therefore we have that 1N �PNi=1W �2i � 1,with the lower bound attained if and only if all the weights are equal and the upper bound attainedif and only if all but one of the weights is 0. From this we see that quoting the estimated coe�cientof variation to assess accuracy is equivalent to examining the normalized weights to determine ifany are relatively large. Rather than the coe�cient of variation appearing to be too large, however,the more frequent, and dangerous, phenomenon is for it to be too low for small N . This occurswhen w samples only over a sub-region where the integrand is nearly constant.The optimal w is typically not a possible choice because it requires that we be able to samplefrom this density and have a closed form expression. In general we are restricted to using those wfor which e�cient generating algorithms and exact expressions exist. In fact there is no automaticalgorithm we can use to generate a sample from an arbitrary multidimensional distribution let alonedo this e�ciently; see Devroye (1986) for a thorough discussion of random variate generation. Ingeneral, however, we try to choose w to agree with jmjf as closely as possible.There are very few families of distributions in the multidimensional context that are in common13



use as importance samplers. When the problem is to integrate over Rk virtually the only familyused is the multivariate Student family. This family has unimodal densities with ellipsoidal contoursand varying tail-lengths. If we choose to mimic f , and this function has approximately thesecharacteristics, then we take w as the density of � = �̂ + C! where �̂ is the mode of f , C isthe Cholesky factor of the inverse Hessian of � log f at the mode and ! � Student�k(�) for some� > 2 where Student�k(�) denotes a standardized Studentk(�) distribution. In Bayesian contexts thisimplies that w and the posterior have approximately the same mean and variance. The parameter� is chosen low enough so that the estimate Îw(m) has �nite variance. Typically it is not possibleto say exactly what � has to be to guarantee this. For an exception to this see Evans and Swartz(1994).There is a great need to develop families of multivariate distributions that exhibit a widevariety of shapes, have e�cient algorithms for random variate generation and can be easily �ttedto a speci�c integrand. Geweke (1989) developed the split-t family by modifying the Studentk(�)distribution, via rescaling the density for ! di�erentially along each of the 2k rays from 0 following acoordinate direction, to allow for skewness. The tail behaviour of this w is the same as a Studentk(�)distribution but it has a discontinuity at the mode. A closely related generalized Student familywas developed in Evans (1988) by joining Student1(�1) and Student1(�2) densities at the origin by arescaling and standardizing so that the distribution has mean 0 and variance 1. In k dimensions wetake the product of such densities. This family allows for di�erent tail-lengths along each ray fromthe mode and is everywhere di�erentiable, but has the disadvantage of having much shorter tailsalong rays from the mode that lie between coordinate directions. Oh and Berger (1993) modifyStudent importance sampling by allowing for mixtures of multivariate Students. For example, if fhas modes at �̂(1); : : : ; �̂(c) and the Cholesky factor of the inverse Hessian of � log f at �̂i is given byCi then we take w = �1w1+ : : :+ �cwc where wi is the density of �̂(i)+Ci!i with !i � Student�k(�i)14



and the �i are mixture probabilities determined by the requirement that �i / f(�̂(i))=wi(�̂(i)) fori = 1; : : : ; c. The di�culty with the use of mixtures lies in determining the parameters of themixture when the modes are unknown.The estimate R̂w(m) = Îw(m)=Îw(1) converges almost surely to R(m). If R(m) 6= 0 and Îw(m)and Îw(1) have �nite variances, then the delta method gives that R̂w(m) is asymptotically normalwith asymptotic coe�cient of variation equal tosgn(R(m))pN �CV2w �mfw �+CV2w � fw�� 2CVw �mfw �CVw � fw�Corrw �mfw ; fw��1=2and this is estimated in the obvious way. An alternative estimator of R(m) can be obtained asfollows using sampling/importance resampling or SIR; see Rubin (1988) and Smith and Gelfand(1992). Let W �1 ; : : : ;W �N be the normalized weights obtained from estimating I(1) based on asample �1; : : : ; �N from w. Then these weights can be used to approximately sample from thedensity f= R f(�)d� when N is large. For this we resample N� � N values ��1 ; : : : ; ��N� fromf�1; : : : ; �Ng using the W �i probabilities. We can then estimate R(m) by 1N� PN�i=1m(��i ) but thisestimator always has variance at least as large as R̂w(m).There are many variance reduction techniques that can be used in conjunction with importancesampling. This is an extensive area of research and so we briey discuss just control variates andsystematic sampling. Discussion of a wider class of techniques can be found in Hammersley andHandscomb (1964), Powell and Swann (1966), Cranley and Patterson (1970) and Ripley (1987).The use of control variates requires that there be a closely related integral whose value is known.As an example of this, suppose that we have a function g such that R m(�)g(�)d� is known. For asingle � generated from w we estimate (1) by m(�) (f(�)�g(�))w(�) + R m(�)g(�)d� and this has varianceR m2(�) (f(�)�g(�))2w(�) d�� (I(m)� R m(�)g(�)d�)2. With a good choice of g this will be much smaller15



than (3). A sensible choice for g in Bayesian contexts will be the normal approximation to theposterior times the Laplace estimate Î(1). We refer to this as the asymptotic normality controlvariate. Using this control variate when the posterior is asymptotically normal leads to an estimateof R(m) with asymptotic variance 0.For systematic sampling, or antithetic variates, let Ti : supp(f) ! supp(f) for i = 1; : : : ; t beone-to-one transformations with Jacobian determinants at � denoted by JTi(�). Then a systematicsampling estimator for (1), corresponding to the set T = fT1; : : : ; Ttg, is obtained by generating �from w and calculating (mf)T (�)=w(�) = t�1Pti=1m(Ti(�))f(Ti(�))JTi(�)=w(�). This formulationgeneralizes the antithetic variable techniques presented in Hammersley and Handscomb (1964),Fishman and Huang (1983) and Geweke (1988). Note that when t = 1 the choice of T is essentiallythe problem of choosing an appropriate parameterization. Latin hypercube sampling is closelyrelated to systematic sampling. For a discussion of this see McKay, Conover and Beckman (1979),Stein (1987), Owen (1992) and Tang (1993).We now use importance sampling on the examples of Section 2.Example 1. We used Student importance sampling with the mode and Hessian computed inSection 3 and � = 5. The results are reported in Table 3 for a Monte Carlo sample size of N = 105.These computations took about 50 seconds of CPU time. The estimates are accurate but thecoe�cient of variation for R̂w(�4) is quite high. We tried importance sampling using di�erentchoices of � 2 (2; 20) but the di�erences in the e�ciencies were not large. We also computed theseintegrals using N = 8 � 107 iterations and have taken these throughout as the exact values. Wefeel con�dent that these results have 3 decimal places of accuracy. We implemented the asymptoticnormality control variate but this resulted in a reduction in the variance of the estimates of thenorming constants by only 3.2%. We note that I(1) = :131 � 10�21 is poorly approximated byÎ(1) = :527� 10�22. 16



i R(�i) R̂w(�i) R(�2i ) R̂w(�2i )1 2.043 2.043 (.001) 4.263 4.265 (.002)2 0.095 0.096 (.023) 0.081 0.080 (.014)4 0.018 0.017 (.127) 0.069 0.070 (.015)10 -0.073 -0.073 (.017) 0.033 0.033 (.008)Table 3: Importance sampling estimates and estimated absolute coe�cients of variation for Example1 where R denotes the exact value of the posterior expectation and R̂w denotes the importancesampling estimate.Example 2. For this example we used the parameterization, mode and Hessian of Section 3 andStudent importance sampling with � = 5. Based on a sample of N = 105 which took 2.5 minutesof CPU time, the estimates together with their estimated absolute coe�cients of variation areR̂w(�) = :423(:003) and R̂w(�2) = :182(:007). The exact values R(�) = :422 and R(�2) = :181 arebased on a sample of N = 108 which took 41 hours of CPU time.Example 3. For this example we implemented the obvious importance sampling algorithm basedon the N6(0;�) distribution where � is speci�ed in Section 2. Sometimes this is called the hit-or-miss estimator. For N = 106 the estimate and its estimated absolute coe�cient of variation equalÎw(m) = :190000� 10�4(:229) and this took 1 minute of CPU time. For N = 108 we obtainedÎw(m) = :163000� 10�4(:025) and this took about 100 minutes of CPU time. In Evans and Swartz(1988a) a much more accurate importance sampling approach was developed and this method wasused to obtain the exact answer I(m) = :166625� 10�4.5. Adaptive Importance SamplingThroughout this section we assumem � 1 for convenience. For a given problem there is typicallya class W = fw� j � 2 Ag of candidate importance samplers and we must select one. For example,W could be the set of all distributions on Rk obtained from �+�1=2! where � 2 Rk, � 2 Rk�k ispositive de�nite, ! � Student�k(�) for some �xed � and thus � = (�;�) is k+k(k+1)=2 dimensional.The optimal choice of � is the value minimizing v(�) = R f2(�)=w�(�)d�. Of course evaluating v(�),17



let alone minimizing this function, is at least as hard as calculating (1). The compromise suggestedin Section 4 is to select � so that w� and f have some characteristics in common. For example,with Student importance sampling we chose � and � so that w� has mean and variance equal to theapproximate mean and variance of p = f= R f(�)d�. The general principle then is to approximatecharacteristics of p and choose w 2 W so that its corresponding characteristics match.There is no reason why we have to restrict ourselves to a single w 2 W . For if we have initiallyselected w�1 then we can estimate characteristics of p, that can be represented as expectations,using a sample �1; : : : ; �N from w�1 . This information can then be used to make an improvedchoice w�2. To be more precise, let C : Rk ! Rl and let R(C) = Ep[C] be a vector of suchcharacteristics of p. Then estimate R(C) by R̂(1)(C) = Îw�1 (C)=Îw�1(1) and obtain w�2 2 W byminimizing jjEw�[C]� R̂(1)(C)jj. For example, if W is the Student family described above then asensible choice for C is the vector giving rise to means, variances and covariances. In this case theminimization problem can be easily solved. If the estimate R̂(1)(C) is reasonable then p and w�2should be more alike than p and w�1. We then generate �N+1; : : : ; �2N from w�2 , compute the newestimate R̂(2)(C) = (Îw�1 (C) + Îw�2 (C))=(Îw�1(1)+ Îw�2 (1)) and minimize jjEw� [C]� R̂(2)(C)jj toobtain w�3 . This process is continued until the estimates R̂(i)(C) change very little, say at the n-thiteration, whence we take w�n as the importance sampler for subsequent simulations. Note that wehave suppressed the dependence of �i on �1; : : : ; �(i�1)N . We call this algorithm adaptive importancesampling by matching characteristics. Several authors have considered algorithms closely related tothis; see, for example, Kloek and van Dijk (1978), Smith, Skene, Shaw and Naylor (1987), Naylorand Smith (1988), Evans (1988, 1991a), Oh (1991) and Oh and Berger (1992).Typically we want to compute many of the components of R(C) so this approach can be viewedas a way of simultaneously improving the importance sampler and estimating quantities of interest.Of course the e�ectiveness of the algorithm is strongly inuenced by the choice of C. While we have18



no formal theory to determine C, using means, variances, covariances and probability contents forcentral regions is preferable to choosing tail-sensitive measures such as high-order moments.The analysis of convergence for adaptive importance sampling is more di�cult than importancesampling because of the dependence between iterations. Almost sure convergence of R̂(n)(C) toR(C), almost sure convergence of �n to a unique �� 2 A, an asymptotic normality result forR̂(n)(C) and a consistent estimator for the asymptotic variance were all established in Oh andBerger (1992). However, these results require the uniform boundedness of the weight function;namely, there must exist B such that f(�)=w�(�) � B for every � and �, and this almost neverholds in an application. It is possible to state much weaker conditions under which these resultswill hold.Of some practical importance is the estimation of the asymptotic variance. Assuming forconvenience that l = 1 it can be shown under weak conditons that R̂(n)(C) � AN(R(C); �2=nN)where �2 equals R2(C) timesCV2w�� � Cfw�� �+ CV2w�� � fw�� �� 2CVw�� � Cfw�� �CVw�� � fw�� �Corrw�� � Cfw�� ; fw�� � : (4)An almost sure consistent estimate of (4) is obtained by estimating Ew�� [mf=w��] by1n Pni=1 Îw�i (m), for m = 1 and m = C, where n is the number of adaptive steps and Îw�i (m) isthe importance sampling estimate based on the i-th importance sampler. We then substitute theseexpressions into (4).One di�culty with the adaptive approach is the necessity of obtaining a good starting value�1 2 A. With a poor choice convergence will not take place for a practical number of iterations. Thetechnique of chaining can be useful in dealing with this problem, see Evans(1988, 1991a, 1991b).For this suppose we have an additional parameter � 2 N such that f = f�� and a good starting19



importance sampler w�1 for the problem R f�1(�)d�. We run adaptive importance sampling for thisproblem and obtain the updated importance sampler w�2 . We then make a small change in � to�2 and run adaptive importance sampling for R f�2(�)d�, starting with w�2 and this leads to theupdated importance sampler w�3 . We continue this process constructing a chain from �1 to ��where �� speci�es the problem of interest. In a general problem we can chain on � = (�1; �2) 2 R2where f� = f1=�1w1=�2�1 . For large �1 and �2 = 1, f� is like w�1. For large �2, f� is like f . Wemention a simple use of chaining in Example 1.There are other approaches to adaptive importance sampling. A very natural approach is touse Monte Carlo to try to minimize v(�) or at least obtain a relatively small value. There areseveral papers where this approach has been considered; see, for example, Oh and Berger (1993)and Piccioni and Ramponi (1993). In West (1993) and Givens and Raftery (1993) another approachis taken using ideas from kernel density estimation. This results in importance samplers that aremixtures of many multivariate Student densities.We now consider the application of adaptive importance sampling to the examples.Example 1. For this example we tookW to be the Student family with � = 5. For R(C) we usedthe vector of posterior means, variances and covariances. We started with the importance samplerof Section 4 and used a sample of N = 1000 from each w�i for i = 1; : : : ; n adaptive steps. Table 4contains the results at the end of the 100-th iteration. These computations took about 50 secondsof CPU time and thus the adaptation added no real computational burden. There is a clear bene�tto adaptation as the estimated absolute coe�cients of variation are lower than in Table 3. This isparticularly noteworthy for i = 4 where the reductions exceed 50%. We note that in general, withthe model of this example, it will make more sense to treat � as a nuisance parameter varying in(2;1) rather than �xed at some value. In this case it makes sense to use the marginal density of thedata; i.e. the inverse norming constant, to select a value for � where the inverse norming constant20



i R(�i) R̂(100)(�i) R(�2i ) R̂(100)(�2i )1 2.043 2.042 (.001) 4.263 4.262 (.001)2 0.095 0.093 (.013) 0.081 0.080 (.007)4 0.018 0.020 (.057) 0.069 0.070 (.007)10 -0.073 -0.073 (.011) 0.033 0.033 (.008)Table 4: Adaptive importance sampling estimates and estimated absolute coe�cients of variationfor Example 1 where R denotes the exact value of the posterior expectation and R̂(100) denotes theadaptive importance sampling estimate.is high. Also for � large it easy to get good starting values for the posterior mean and variancematrix using least-squares theory and this avoids the need to numerically optimize. Therefore wecan chain on the parameter � by starting with � large and then reducing it it in stages to obtainestimates of the inverse norming constant as a function of �.Example 2. We used the same algorithm as in Example 1, with appropriate adjustments, buttook N = 20; 000 and n = 5. We obtained the estimates and estimated absolute coe�cients ofvariation R̂(5)(�) = :421(:002) and R̂(5)(�2) = :180(:003). Comparing with the results of Section 4adaptation has resulted in increased accuracy by about 33-50%. For other variables the increase inaccuracy was even greater.Example 3. For this example we used the parameterization discussed in Section 2 followed bythe N5(0; I) inverse probability transform. We then used adaptive importance sampling with amultivariate Student based on 5 degrees of freedom adapting to the mean and variance. We startedthe adaptive importance sampling by computing the mode and the inverse Hessian at the modeof the transformed integrand. By necessity all derivatives were computed numerically because ofthe complexity of the expressions. Based on N = 104 and n = 10 adaptive steps we obtainedÎ(10)(m) = :166672� 10�4 with coe�cient of variation .002. This took .9 minutes of CPU time.This is an improvement over hit-or-miss by a factor of 366.6. Multiple Quadrature and Subregion Adaptive Integration21



First we discuss quadrature rules; i.e. rules for dimension k = 1. A quadrature rule of ordern, for approximating (1), takes the form Pni=1 wih(�i) where h = mf=w, w is a density functionand the points �i and weights wi are determined by some criterion. As with importance samplingw is chosen so that mf=w or f=w is approximately constant. Given that we have selected distinctpoints �1; : : : ; �n a common method of determining the wi is to integrate the product of w and thedegree n � 1 Lagrange interpolating polynomials corresponding to the �i, assuming of course thatw has its �rst n�1 moments; i.e. wi = R1�1 pi(x)w(x)dx where pi(x) = Qj 6=i(x��j)=Qj 6=i(�i��j).Such a rule is called an interpolatory rule and it calculates the integral exactly whenever h is apolynomial of degree less than n. For example, when w is the uniform density on some interval andthe �i are equispaced and include the end-points, we get the trapezoid rule for n = 2 and Simpson'srule for n = 3. Rules that are based on a density w with a �nite interval for support are oftencompounded; i.e. the interval is divided into subintervals and the rule is applied in each subintervalwith the appropriate location and scale changes being made to w. It can be shown that, if thebasic rule integrates constants exactly and the maximum length of a subinterval goes to 0, thenthe compounded rule converges to (1) as the number of subintervals increases. An optimal choiceof the n points can be made so that the rule exactly integrates all polynomials up to the maximaldegree 2n � 1 provided that w has 2n moments. These are called Gauss rules. When w is theN(0; 1) density we get the Hermite rules, when w is the Gamma(�) density we get the Laguerrerules and when w is the Beta(�; �) density, after a location-scale transformation to the interval[�1; 1], we get the Jacobi rules. In general it is not an easy numerical problem to obtain these rulesaccurately but for the common densities they are tabulated in software libraries such as IMSL andNAG. Davis and Rabinowitz (1984) gives a thorough treatment of quadrature rules.The simplest method of constructing multiple quadrature rules; i.e. k > 1, is to form productrules. If h(�1; : : : ; �k) = m(�1; : : : ; �k)f(�1; : : : ; �k)=w1(�1) � � �wk(�k), where the wi are densities,22



then a product rule approximates (1) byn1Xi1=1 � � � nkXik=1w1;i1 � � �wk;ikh(�1;i1 ; : : : ; �k;ik) (5)where the �i;ji and wi;ji are the points and weights of a quadrature rule associated with wi. Suchrules su�er from the curse of dimensionality; namely to implement this rule requires N = n1 � � �nkfunction evaluations. Further it can be shown that if we take all the rules in (5) to be the com-pounded trapezoid rule then the error in (5) is O(1=N2=k). It would appear that the producttrapezoid rule is not competitive with importance sampling whenever k > 4.An integrand typically will not be well-approximated by a Nk(0; I) density times a low degreepolynomial. Asymptotics in Bayesian problems suggest, however, that this will often be the case ifwe standardize the posterior density by the posterior mean and variance. Naylor and Smith (1982),Smith, Skene, Shaw, Naylor and Drans�eld (1985) and Naylor and Smith (1988) use an adaptiveapproach which computes an approximation to the posterior means, variances and covariances,using product Hermite rules. They then transform the integrand using these quantities, so thatthe transformed posterior has approximate mean 0 and variance matrix I . This is iterated untilthe process stabilizes. In general, successful application of multiple quadrature requires that theintegrand be appropriately located, scaled and not have the bulk of its mass concentrated near ahyperplane.Various attempts have been made to avoid the curse of dimensionality. Hammersley (1960)suggests estimating (5) by sampling the terms in this sum. When each rule in the product is aGauss rule then wi;ji > 0 and wi;1 + � � � + wi;ni = 1 for i = 1; : : : ; k. Then we can sample theterms of (5) using the weights as a discrete probability distribution. Evans and Swartz (1988b)give an extensive analysis of this technique including a comparison with the analogous importance23



sampling method. It is shown that accurate approximations can be obtained in samples where Nis much smaller than n1 � � �nk .Another attempt at avoiding the curse is to construct rules in Rk with a minimal number ofpoints that exactly calculate RRk �i11 � � ��ikk w(�1; : : : ; �k)d�1 : : : d�k for a class of monomials satisfyingi1+ � � �+ ik � d where w is a density. Such a rule is called a monomial rule of degree d for w. Fullysymmetricmonomial rules are obtained, when w is invariant under permutations and sign changes ofthe coordinates; e.g. the uniform density on [�1; 1]k, by performing permutations and sign changeson a set of generators to obtain the points and then solving a system of polynomial equationsfor the generators and weights. Fully symmetric rules with the minimal or close to the minimalnumber of points have been obtained for various w. These are in general not easy problems to solveand sometimes the rules su�er from having some of the points lying outside supp(w). Dellaportasand Wright (1991, 1992) discuss a related approach using fully symmetric rules constructed fromsubsets of the points in a product Hermite rule. Davis and Rabinowitz (1984), Stroud (1971) andCools and Rabinowitz (1993) are good references on multiple quadrature rules.To assess the error in a multiple quadrature approximation the calculation is typically repeatedwith a rule containing more points. Sometimes there are guaranteed error estimates availableinvolving bounds on derivatives of the integrand. These are generally felt to be far too conservativeand di�cult to implement.There are other approaches to constructing multiple quadrature rules. Bayesian quadratureis discussed in Diaconis (1985) and O'Hagan (1992). Quasirandom rules are discussed in Woz-niakowski (1991), Traub and Wozniakowski (1992), Niederreiter (1992) and Spanier and Maize(1994). Statistical applications of quasirandom rules are presented in Shaw (1988), Johnson (1992)and Fang, Wang and Bentler (1994). While it is sometimes argued that the quasirandom approachis superior to Monte Carlo the exibility of the latter method still provides substantial advantages24



in our opinion.Subregion adaptive algorithms are described in van Dooren and de Ridder (1976), Genz andMalik (1980), Bernsten, Espelid and Genz (1991) and Genz (1991, 1992b). For low dimensionalcontexts they are greatly recommended as they produce accurate answers over a wide class of prob-lems and are highly e�cient. Related algorithms are discussed in Lepage (1978) and Friedman andWright (1981). For these algorithms the problem is transformed so that the domain of integrationis [0; 1]k. The basic algorithm then proceeds iteratively as follows: let � > 0 be the global abso-lute error desired and let nmax be the maximum number of subregions where we start with oneregion R11 = [0; 1]k. At the n-th step [0; 1]k has been partitioned into n subregions Rn1; : : : ; Rnn.Multiple quadrature rules have been applied in each subregion to get estimates In1; : : : ; Inn of thecorresponding integrals and also error estimates En1; : : : ; Enn. The error estimate Eni is obtainedby computing Ini using rules of di�erent orders and comparing the results. If En1+ � � �+Enn < � orif n � nmax, the algorithm stops. Otherwise the region Rni is split if Eni = maxfEnj j 1 � j � ng.The partitioning algorithm takes the regions to be rectangles with sides parallel to the coordinateaxes and uses a criterion to choose which side of the chosen rectangle to split to form the subrect-angles. Di�erent criteria can be used but they are all based on selecting the coordinate direction,in the chosen subregion, where the integrand is most variable. Subregion adaptive integration hasbeen applied to a number of problems in statistics. See, for example, Genz and Kass (1991, 1994)and Genz (1992b).We now apply subregion adaptive integration to the examples of Section 2. For these computa-tions we used the routine ADBAYS supplied by A. Genz. This algorithm uses fully symmetric rulesof orders 5, 7 and 9 for subregion estimates and for error estimates; see Genz and Malik (1983) fora discussion of the particular rules. Further a criterion based on fourth di�erences is used to decidehow to split a chosen subregion. The program runs until a speci�ed relative error is attained or25



i R(�i) R̂(�i) R(�2i ) R̂(�2i )1 2.043 2.040 4.263 4.2372 0.095 0.094 0.081 0.0684 0.018 0.017 0.069 0.05510 -0.073 -0.102 0.033 0.032Table 5: Subregion adaptive estimates for Example 1 where R denotes the exact posterior expec-tation and R̂ denotes the subregion adaptive estimate.too many function evaluations have been carried out.Example 1. Table 5 gives the results of using subregion adaptive integration. Following Genz andKass (1991, 1994) and Genz (1992b) we �rst made the transformation � ! u where � = �̂ + Cu,�̂ is the mode and C is the lower triangular Cholesky factor of the inverse Hessian computed inSection 3. We then made the transformation u ! v where v = �(u) and � denotes the N(0; 1)distribution function applied component-wise to u. We speci�ed a relative error of .001 and set themaximum number of function evaluations to 2� 107. This maximum number was reached withoutthe error bound being attained. The computation took 2.75 hours. We repeated the calculationsallowing for a maximum of 108 function evaluations with the same relative error bound. The resultsimproved somewhat; e.g. the relative error in the estimate of R(�10) went from 40% to 33%, butthe computation time increased to 24 hours.Example 2. For this example we made the transformation discussed in Section 5, calculatedthe mode and inverse Hessian matrix corresponding to the transformed posterior, standardizedand then made the N9(0; I) probability transform. Then requesting a relative error of .1 we ranADBAYS. This computation required 5�106 function evaluations and 3.6 hours of CPU time. Theapproximations and relative errors are given by R̂sa(�) = :419(:007) and R̂sa(�2) = :178(:017). Inthis example the algorithm was successful but required a considerable amount of computation.Example 3. For this example we used the transformation discussed in Section 2. Based onN = 10526



function evaluations the approximation and its relative error are given by Î(m) = :166626�10�4(:6�10�6) and this required .2 minutes of CPU time. For N = 106 the approximation was exact to 10decimal places and required 3.4 minutes of CPU time.7. Markov Chain MethodsAnother class of Monte Carlo algorithms has come into prominence in statistical applicationsduring the past several years. These are collectively known as Markov chain methods. The char-acterizing feature of this approach is the construction of an ergodic Markov chain �1; �2; : : : onsupp(f) with unique stationary distribution having density p = f= R f(�)d�. Thus this approachprovides a method of approximately simulating from the probability distribution p. A strong lawthen gives the almost sure convergence of Îp(m) = 1N PNi=1m(�i) to I(m) as N ! 1. There aremany problems in statistics where the construction of an appropriate Markov chain is almost im-mediate. Some of these problems are so high-dimensional that it is hard to conceive of any othermethod working. Also, in certain examples, the convergence is very rapid. General references onMarkov chain algorithms include Hammersley and Handscomb (1964), Tierney (1991), Geyer andThompson (1992), Besag and Green (1993), Smith and Roberts (1993), Neal (1993) and Besag,Green, Higdon and Mengersen (1995).Markov chain methods are generally related to the Metropolis algorithm. The basic versionof this was �rst developed in Metropolis, Rosenbluth, Teller and Teller (1953). We present ageneralization due to Hastings (1970); see also Peskun (1973). For this we specify an initial timehomogeneous Markov chain on supp(f) with transition density functions r(�; �) for each � 2 supp(f)and an initial state �0 2 supp(f) which may be random. A new Markov chain is then generatedas follows: given that we are in state �n at time n, generate � from r(�n; �) and with acceptanceprobability �(�n; �) = min ff(�)r(�; �n)=f(�n)r(�n; �); 1g set �n+1 = � otherwise set �n+1 = �n.See Tierney (1991) for a discussion of conditions on r necessary for p to be the unique stationary27



distribution of this chain. The original Metropolis algorithm required that r be symmetric whichimplies �(�n; �) = minff(�)=f(�n); 1g. Therefore a transition is made with high probability if �lies in a region of high density for p relative to �n.A user of the Metropolis algorithm must select an r. We want an r such that the chain wandersthoroughly and rapidly around the support of f . In general it is not clear how to make this choice.Tierney (1991) provides some suggestions for r. For example, we could take r(�n; �) = w(�) wherew is the Student importance sampler discussed in Section 4. This is an example of an independencechain. Alternatively r could be the transition function of a random walk based on a multivariateStudent density centered at 0 and with variance matrix equal to the inverse Hessian of � log f .This is an example of a random walk chain.A special case of the generalized Metropolis algorithm is the Gibbs sampling algorithm which wasintroduced in Geman and Geman (1984) and brought to the attention of the statistical communityby Gelfand and Smith (1990). For Gibbs sampling �(�n; �) � 1. We describe a particular version ofthe Gibbs algorithm. Let pi(� j �1; : : : ; �i�1; �i+1; : : : ; �k) denote the conditional posterior density ofthe i-th coordinate of � given the remaining coordinates. The algorithm then proceeds as follows.We specify an initial state �0. Then given the n-th state �n = (�n;1; : : : ; �n;k)0 we obtain the (n+1)-ststate in k steps :generate �n+1;1 � p1(� j �n;2; : : : ; �n;k)generate �n+1;2 � p2(� j �n+1;1; �n;3; : : : ; �n;k)...generate �n+1;k � pk(� j �n+1;1; : : : ; �n+1;k�1):There are numerous variations, such as replacing l < k steps with generation from a singlel�dimensional subvector; see Amit and Grenander (1991), which can be useful when the com-ponents of the subvector are highly correlated. 28



The Gibbs sampling algorithm has proven to be extremely useful in a wide variety of statis-tical contexts but particularly with hierarchical models in Bayesian analysis where it arises verynaturally. Integrals of enormous dimension have been successfully handled. For a number of ap-plications see Gelfand and Smith (1990), Gelfand, Hills, Racine-Poon and Smith (1990), Gelfand,Smith and Lee (1992) and Escobar (1994). Gibbs sampling requires algorithms for generating fromeach of a set of conditional distributions and obtaining such algorithms can be a very di�cultproblem. Sometimes, however, latent variables can be introduced, increasing the dimension of theintegral, but making the implementation of the algorithm much simpler. This technique is basedon ideas in Tanner and Wong (1987). Further Gilks and Wild (1992) have developed an e�cientadaptive rejection generating algorithm for log-concave densities. A number of the standard dis-tributions, and truncated versions of these, are log-concave. Algorithms which are a combinationof Metropolis and Gibbs steps can also be used to deal with the generating problem; see Mueller(1991). As pointed out in Gelfand And Smith (1990) Gibbs sampling leads to e�cient estimates ofmarginal densities via the technique of Rao-Blackwellization. For example, if we want to estimatethe marginal density p1 of the �rst coordinate then for realizations �1; : : : ; �n of the chain we usep̂1(x) = 1N PNi=1 p1(xj�i;2; : : : ; �i;k). In general the Metropolis algorithm does not seem to providesuch straight-forward density estimates.Various mathematical convergence results for Markov chain methods have been obtained; seeTierney (1991), Schervish and Carlin (1992), Polson (1993) and Baxter and Rosenthal (1994).Convergence can be very slow, however. For a simple example of this, involving Gibbs samplingand a function f with two modes, see Evans, Gilula and Guttman (1993). Typically when f isunimodal with roughly ellipsoidal contours, experience suggests that a reasonable Markov chainalgorithm will do well. Once again the issue of parameterization is extremely important; seeWake�eld (1992) for more discussion of this issue.29



The practical assessment of the convergence of the Markov chain to stationarity is a di�cultproblem. Typically this is done by monitoring estimates of characteristics of the stationary dis-tribution p that can be represented as expectations or monitoring estimates of marginal densities.Convergence is claimed when these estimates stabilize for a number of iterations. It is not un-common, however, for a chain to have appeared to have converged when in fact it is far from itsstationary distribution; see Gelman and Rubin (1992). If p is multimodal then the chain can spendlong periods in regions near a single mode. Further the outcomes in the Markov chain are corre-lated. If these serial correlations are high then we can see stable results even when we are far fromstationarity. To detect the problem it seems sensible to start chains at a variety of starting valuesand check to see if the characteristics being monitored agree. This is part of the recommendationin Gelman and Rubin (1992) and it is analogous to running an optimization routine with a numberof starting values to check for local optima. For an alternative view on this see Geyer (1992).The convergence diagnostics of Zellner and Min (1994), where we compare estimates with knownquantities such as a ratio p(�1)=p(�2), also seem very sensible. The methods described in Rosenthal(1994), for achieving a bound on the total variation distance between the stationary distributionand the distribution of the N � th state, also work in particular examples.Another issue is the choice of a method for assessing the accuracy of estimates. When theprocess m(�1); m(�2); : : : is stationary then results in Brockwell and Davis (1991) establish, withadditional conditions, that 1N PNi=1m(�i) � AN �R(m); 1N �2� where �2 =P1i=�1 m(i) and m(i)is the autocovariance at lag i. A relatively simple approach to estimating �2 is to use the methodof batching. For this we divide the series m(�1); : : : ; m(�N) into nonoverlapping batches of size l,calculate the mean in each batch and then estimate �2=l using the sample variance obtained fromthe batch means. The batch size l must be chosen large enough so that the batch means havelow serial correlations but not so large as to leave few degrees of freedom for the estimation of30



�2. Alternatively we can estimate R(m) by taking the average of every l � th value of the chainfor N iterations. The asymptotic variance of this estimate is m(0)=N , provided l is large enoughto eliminate correlations, and m(0) is estimated by the sample variance. If we must take l largethen this method can be very expensive. Also, as shown in MacEachern and Berliner (1994), thisestimate of R(m) always has variance at least as large as the estimate obtained from using thewhole chain. For more on these and other methods for estimating �2 see Bratley, Fox and Schrage(1983), Ripley (1987), Geweke (1991), Geyer (1992) and Mykland, Tierney and Yu (1992).We implemented several Markov chain algorithms on the examples of Section 2. It is oftenrecommended that an initial part of the chain be discarded before begining estimation so thatthe chain has approximately achieved stationarity. This is sometimes called burn-in. In all of theexamples this made very little di�erence and so it was ignored.Example 1. Table 6 gives the results of Gibbs sampling. The generating problem was solved, as inVerdinelli and Wasserman (1991), by adding the independent latent variables uij � N(0; 1); vij �Gamma(�=2) for i = 1; : : : ; 9 and j = 1; : : : ; 5 such that zij = q��22 uijpvij � Student�(�). Theposterior of (�1; : : : ; �9; �; v11; : : : ; v95) is proportional to��nk�1 9Yi=1 5Yj=1 exp(�12 � 2�� 2� vij �yij � �i� �2) v �+12 �1ij e�vij :Then denoting, for example, the conditional distribution of �1 given the remaining variables by�1j�, we have that�ij� � N  P5j=1 vijyijP5j=1 vij ; ��22 �P5j=1 vij��1 �2! ;1�2 j� � � 1��2P9i=1P5j=1 vij(yij � �i)2��1Gamma(45=2);vij j� � � 1��2 �yij��i� �2 + 1��1Gamma��+12 � :This Gibbs sampler ran for approximately 50 seconds so that it used an equivalent amount of time31



i R(�i) R̂(�i) R(�2i ) R̂(�2i )1 2.043 2.042 (.001) 4.263 4.260 (.002)2 0.095 0.094 (.015) 0.081 0.081 (.008)4 0.018 0.015 (.088) 0.069 0.069 (.008)10 -0.073 -0.073 (.019) 0.033 0.033 (.010)Table 6: Gibbs sampling estimates and the estimated absolute coe�cients of variation in Example1 where R denotes the exact posterior expectation and R̂ denotes the Gibbs sampling estimate.as the other Monte Carlo algorithms. This required N = 50; 000 steps in the chain. The standarderrors were estimated using batch size l = 100. We also tried l = 1000 and there was very littlechange in the estimates.We also ran the Metropolis independence chain, using the importance sampler of Section 4.To provide a fair comparison with other methods we ran this for N = 105 steps. The standarderrors were estimated using batch size l = 100 and the results were similar for l = 1000. Thisalgorithm was substantially less accurate than Gibbs sampling. For example, the estimates andestimated absolute coe�cients of variation, R̂(�4) = :015(:206) and R̂(�10) = �:071(:027) wereobtained. There was evidence of substantial serial correlation as the estimates of the standarderrors for l = 20 were very di�erent. This was not the case with the Gibbs sampling algorithm.The acceptance rate for this algorithm; i.e. the proportion of generated values that resulted ina move for the chain, was .28. We also ran the random walk Metropolis chain and rescaled thevariance by 2:4=p10, following the advice given in Gelman, Roberts and Gilks (1994). Again weran this for N = 105 steps and estimated the standard errors using batch size l = 100. The randomwalk chain gave less accuracy than the independence chain. The acceptance rate for this algorithmwas .33. Varying the degrees of freedom for the Student produced only minor di�erences.Example 2. For this problem we could not �nd an easily implemented Gibbs algorithm. We ranthe Metropolis independence chain based on the starting importance sampler used in Section 5 for32



N = 105 steps and estimated standard errors using a batch size of l = 100. This produced theestimates and estimated coe�cients of variation, R̂(�) = :419(:002) and R̂(�2) = :179(:003). Notethat in both cases the true values of .422 and .181 are further than 3 standard errors from theestimate. This problem disappeared when we took l = 1000 as expected.Example 3. We could not �nd a feasible Markov chain algorithm for this problem.8. ConclusionsFirst we consider the relative performance of the various integration algorithms on the exam-ples; then we will draw some general conclusions from our study. In Example 1, all the methodsworked well except for subregion adaptive integration. Gibbs sampling and adaptive importancesampling were roughly equivalent with respect to e�ciency, but Gibbs sampling is arguably easierto code here. We recommend Gibbs sampling in this context but note that if there is interestin estimating the norming constant, then adaptive importance sampling is the better choice be-cause Gibbs sampling does not easily provide such an estimate. In Example 2, all the methodsworked reasonably well but the subregion adaptive algorithm was again time consuming and wecould not �nd an easily implemented Gibbs sampling algorithm. Adaptive importance samplingand the Metropolis independence chain were most e�cient and roughly equivalent. The Metropolisalgorithm su�ered from high correlations, however. There is no saving in computational time or inprogramming time for this Markov chain algorithm over adaptive importance sampling here as bothrequire maximizing f . In Example 3, subregion adaptive is by far the best and is our recommendedalgorithm although adaptive importance sampling also performed quite well.The Laplace approach works well when it is applicable. Example 3 indicates that it is notalways easy to apply the Laplace approximation in a given problem. Further it is clear thatthere is a close association between the success of the Laplace methods and the adequacy of thenormal approximation to the integrand. Reparameterizatons then are recommended to ensure, for33



example, that variables range over appropriate domains. At this point there is no methodologyspecifying a reparameterization for a particular problem. However, general recommendations, suchas taking logs of nonnegative variables, should be helpful. In some problems, such as Example2, more complicated reparameterizations are necessary. Computations are virtually instantaneous,but it can be extremely time consuming to code derivatives. Although there are optimizationroutines that numerically compute the derivatives, our experimentation with these sometimes leadto unsatisfactory results. In general, asymptotic methods require derivatives; this is a limitationof the methodology when the dimension is high and we do not have closed form expressions. Themost serious drawback of this method is the lack of error estimates. Further, to avoid the problemsassociated with multimodality - and these occurred with both Examples 1 and 2 - it is necessaryto try a number of di�erent starting values when searching for the global maximum.The success of the importance sampling algorithm that we have used is also highly dependenton having an integrand with a single dominant peak and approximately ellipsoidal contours. Ofcourse asymptotics suggest that this is not a rare occurrence in statistical contexts, but complicatedreparameterizations may often be necessary. It seems likely that Student importance samplingwill be successful in any context where the asymptotic methods work. Further it is likely thatthe importance sampling algorithm will be more robust to deviations from ideal conditions thanasymptotic methods. With this in mind, it is our recommendation that any time asymptoticmethods are contemplated, then, at the very least, the Student importance sampling algorithmshould be implemented as a check. There will be contexts where the asymptotic methods have adistinct practical advantage in terms of computation times, e.g. when there are many integrals toapproximate. But even in such an instance a few integrals should be checked. For us, the possibilityof obtaining useful assessments of the error in the approximation is an additional deciding factorin favour of importance sampling over asymptotics. Of course importance sampling su�ers from34



the same limitations with respect to derivatives as the asymptotic approaches, for it is alwaysrecommended that the importance sampler be centered at the mode and be scaled by the inverseHessian at the mode. If more than one mode is found, then the methods of Oh and Berger (1993)are a possibility. Further, and as our examples show, in any context where Student importancesampling is going to be used, adaptive importance sampling is recommended because it leadsto improvements in accuracy. The additional computational cost required to adapt to means,variances, and covariances is practically negligible.For relatively low-dimensional problems, say k � 6, multiple quadrature is a competitive tech-nique and is recommended for such problems. Again an appropriate parameterization is necessary.For example, the iterative product-rule approach described in Naylor and Smith (1982) dependson the validity of the normal approximation. When such an approximation is reasonable and thedimension is low, this approach is preferable to importance sampling because the convergence ismuch faster. The subregion adaptive algorithm is more robust to deviations in shape and yet isstill e�cient for most low dimensional problems. It is our recommended algorithm for low dimen-sions. As we have seen, particularily in Example 1, the curse of dimensionality remains a very bigstumbling block with this algorithm even when we seem to have an appropriate parameterization.Of some concern is the inability of the user to predict how long the algorithm will run and thefact that it sometimes indicates success when it has actually failed. Error estimates are extremelyconservative and for longer running examples, memory requirements can be substantial. We do notrecommend this algorithm for problems of even modest dimension.In many Bayesian problems Gibbs sampling arises very naturally. Sometimes these problemscan involve thousands of dimensions and in such contexts it hard to imagine a competitor, simplybecause of the di�culties of implementation. A distinct advantage for Gibbs sampling over adaptiveimportance sampling is that there is no need to optimize �rst. In contexts where we have e�cient35



algorithms for generating from the conditionals, we recommend Gibbs sampling but note that thisspecial structure is not enough to ensure rapid convergence. While there are many examples whereconvergence is extraordinarily rapid, there are others where it is so slow as to be impractical. Char-acterizing such contexts is an area of active and important research. Implementing Gibbs samplingis generally straightforward but sometimes requires the derivation of complicated conditional dis-tributions. Although the generality of Metropolis algorithms can provide decided advantages overGibbs sampling our experience with some of the more common implementations, as in Example1, shows that this is not always the case. At this point we do not see Metropolis algorithms asa general solution for high-dimensional integration problems, but research may lead to the designof very e�cient implementations for particular problems. Further we note that, as in Example 3,it is not always straightforward to �nd a reasonable Markov chain algorithm. Considerable dis-advantages of Markov chain algorithms include the need to diagnose convergence to stationarityand the existence of serial correlations, as these substantially complicate error assessment. Someof our examples indicated that large batch sizes are needed to avoid this e�ect when analyzing theoutput using batching. This lack of independence is also true of adaptive importance sampling,but in adaptive importance sampling a consistent estimator of the error is easily obtained. Werecommend parameterizing the problem to minimize the correlation e�ect, if possible.There is well-tested software available for doing integrations. The NAG and IMSL packagescontain routines, but also see Goel (1988) for a list of software primarly aimed at Bayesian problems.In particular we mention SBAYES which implements Bayesian asymptotic methods, BAYES FOURwhich implements adaptive Hermite integration and adaptive importance sampling, BUGS whichimplements Gibbs sampling, and ADBAYS for subregion adaptive integration. In general, it is ourview that a package aimed at solving practical integration problems should provide the user withthe option of using any of the methods we have discussed.36



Our study reveals advantages and disadvantages for each of the integration methods discussedin this paper. For low dimensions, a multiple quadrature approach is likely to be best. For modestdimensions, adaptive importance sampling or a Markov chain algorithm are good choices in well-behaved problems. For very high dimensions, an algorithm that can exploit special features of theintegrand seems essential; e.g. Gibbs sampling when the full conditionals can be easily generatedfrom. Of course other considerations beyond e�ciency, such as convenience, may inuence thechoice of an approach. As for the crucial aspect of error assessment perhaps the best approach isto approximate the integral by several very di�erent methods. This approach, however, leaves uswith the question of what to do when results di�er substantially.AcknowledgementsThe authors thank the editor, four referees and two additional readers for many constructivecomments that lead to substantial improvements. Both authors were partially supported by grantsfrom the Natural Sciences and Engineering Research Council of Canada.ReferencesAchcar, J.A. and Smith, A.F.M. (1990). Aspects of reparameterization in approximate Bayesianinference. Bayesian and Likelihood Methods in Statistics and Econometrics, eds. S. Geisser,J.S. Hodges, S.J. Press and A. Zellner, 439-452.Amit, Y. and Grenander, U. (1991). Comparing sweep strategies for stochastic relaxation. J.Mult. Anal., 37, 197-222.Barndor�-Nielsen, O.E. and Cox, D.R. (1989). Asymptotic Techniques for Use in Statistics.Chapman and Hall. 37
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