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Abstract

This paper is a survey of the major techniques and approaches available for the numerical
approximation of integrals in statistics. We classify these into five broad categories; namely,
asymptotic methods, importance sampling, adaptive importance sampling, multiple quadrature
and Markov chain methods. Each method is discussed giving an outline of the basic supporting
theory and particular features of the technique. Conclusions are drawn concerning the relative
merits of the methods based on the discussion and their application to three examples. The
following broad recommendations are made. Asymptotic methods should only be considered
in contexts where the integrand has a dominant peak with approximate ellipsoidal symmetry.
Importance sampling, and preferably adaptive importance sampling, based on a multivariate
Student should be used instead of asymptotics methods in such a context. Multiple quadra-
ture, and in particular subregion adaptive integration, are the algorithms of choice for lower
dimensional integrals. Due to the difficulties in assessing convergence to stationarity and the

error in estimates, Markov chain methods are recommended only when there 1s no adequate



alternative. In certain very high-dimensional problems, however, Markov chain methods are the
only hope. The importance of the parameterization of the integral is noted for the success of all

the methods and several useful reparameterizations are presented.

Keywords and phrases : asymptotics, importance sampling, adaptive importance sampling,

multiple quadrature, subregion adaptive integration, Markov chain methods.

1. Introduction

Reliably approximating the values of integrals is a problem of substantial concern for statisti-
cians. We will refer to this problem hereafter as the integration problem. As the dimension of these
integrals rises, the difficulty of the integration problem increases. Even in relatively low dimensions,
however, approximating these values can be difficult.

A wide variety of methods are aimed at solving the integration problem. However, novices can
be confused about which method to use. There are advantages and disadvantages to each of the
methods, and it is part of our purpose to elucidate these. Further, we hope that the paper leaves
a potential practitioner with the confidence to begin using these methods.

In many statistical problems we need to approximate a number of integrals where only part of
the integrand changes from one problem to another. Often it is the common part of the integrand
that is of primary importance in choosing an approximation technique. For this reason we denote

the integrals of interest as

1(m)= [ m(8)5(8)a8 (1)

where m : R* — R, f: R* — RT and f represents the common part. For example, in Bayesian
contexts f is the product of the likelihood and prior and m is some function whose posterior
expectation R(m) = I(m)/1(1)is required. An arbitrary integration problem can be represented

as in (1) by taking f = 1. We assume hereafter that the integrand mf is integrable, however, the



verification of this in a particular problem can be difficult.

A characteristic of many of the integrals encountered in statistical practice is the dependence
of the integrand on sample data. In this situation we encounter a different integral for each data
set. This dependence influences the degree of accuracy that we require in our approximations. For
example, suppose that we wish to approximate a posterior mean and we have only two-decimal
accuracy in the data. Then it makes no sense to require accuracy in the approximation higher
than the amount of variation we would observe in the posterior mean if the data were varied
in the third decimal place. This is in sharp contrast to the attitude commonly encountered in
the numerical analysis community where the goal is high accuracy. High accuracy is relevant,
however, to certain problems encountered in statistics. An example is given by the evaluation of
the multivariate normal distribution function; i.e. m is the indicator function for Hle(—oo, x;] and
f is the Ny(p, X) density. For high-dimensions and a requirement of low relative error, evaluation
of the multivariate normal distribution function is still a largely unsolved problem; see for example
Schervish (1984) and Genz (1992a).

A very important aspect of the integration problem is the assessment of error in an approxima-
tion. The only absolutely certain method is to compare the approximation with the correct answer,
but this is impossible in practice. The various integration methods that we discuss each have special
characteristics with respect to error assessment. In general, there is no guaranteed method for error
assessment. With iterative methods, we have the natural method of examining the approximations
at successive stages and stopping the iteration when the changes become small for a number of
iterations. For a discussion of this issue in the general context of iterative algorithms, see Linz
(1988). Further discussion on error assessment can be found in Lyness (1983) where automatic
and standard quadrature are contrasted with respect to the behaviour of the error. Also Bernsten

(1989) discusses methods for improving error assessment when using adaptive multiple quadrature



routines. Perhaps the best way to be confident that we have accurately approximated a particular
integral is to use two very different methods and see if the results agree.

This paper is a substantial amplification of Evans and Swartz (1992). That paper outlined the
major methods used in approximating integrals in statistics but did not consider specific examples
and did not attempt to provide conclusions concerning the relative merits of the methods. A review
paper by Haber (1970) reflects the views of the numerical analysis community on the integration
problem at that time and in particular emphasizes multiple quadrature approaches. By contrast
this paper is much more heavily weighted towards Monte Carlo methods. Also Thisted (1988),
Flournoy and Tsutakawa (1989), Smith (1991) and Tanner (1993) contain general discussions of
the integration problem.

In Section 2 we present some statistical examples where the integration problem is relevant.
In Section 3 we discuss the use of asymptotic approximations. Section 4 is devoted to importance
sampling and Section 5 to adaptive importance sampling. Section 6 reviews multiple quadrature
and subregion adaptive methods. In Section 7 we discuss Markov chain methods. A final section
summarizes our conclusions. All computation times in the paper refer to work carried out on a
Sparc 20 workstation.

2. Examples

An issue of fundamental importance to the success of any of the integration techniques that we
discuss is the parameterization chosen for the integral. By a reparameterization we mean any one-
to-one, continuously differentiable transformation of the variables of integration. As we will see,
certain parameterizations are preferable to others for particular methods. For example, choosing a
parameterization that makes a normalized f as much like a multivariate normal density as possible
is important for the success of asymptotic methods. Transformations that locate and scale variables

appropriately and reduce correlations are important for all Monte Carlo and multiple quadrature



methods. Some methods require that variables range over specific sets; e.g. [0,1] or R!, and so
a transformation is essential. In general, however, the choice of a parameterization to ensure the
success of a particular method of integration is an unsolved problem. Helpful comments on this
problem can be found in Achcar and Smith (1990) and Hills and Smith (1992). Throughout this
paper we provide further comments on the choice of parameterization for an integral.

The following examples are used in subsequent sections.
Example 1. The integrals in this example arise from a Bayesian analysis of a linear model with
simulated data. The statistical model for the observed response value y is specified as follows. We
havey = X3+ 0z wherey € R*, X € R**? has x;; = 1 for i and j satisfying 5(j —1)+1 < i < 55
and 0 otherwise, 3 € R?, 0 € (0,00) and z € R*® is a sample of 45 from the Student™(3) distribution
where Student™(A) denotes the Student()) distribution standardized to have variance 1. The data
y were obtained by setting 3; = 0 for every ¢ # 1, 81 = 1.8, 0 = 1 and the z’s were generated from
a Student™(3) distribution using the S generator for the Student(3) distribution and dividing each
of these values by /3. We denote the y-value corresponding to the j-th observation in the i-th cell
by y;;. Table 1 gives the generated z;; values.

We place a flat prior on the ’s and independently the prior 1/0 on ¢ and fix A = 3. Using
a Student distribution for the error is what makes this analysis difficult because nothing can be
worked out in closed form. Rather we are forced to use numerical techniques to implement the
inference methods. It is convenient to transform from ¢ to v = logo as v is unconstrained in

R'. Thus the integrals that we wish to evaluate take the form given by (1) where # € R!® with

components §; = 3; for i = 1,...,9 and 819 = v, f(#) = exp{=9n 610} [T'-, [T/=1 92 (ei/(’;(_é,fé)) is

the likelihood times the prior, m is a function on R'® such that (1) is finite and




=1  j=2  j=3 j=4 j=b
0.152 1086 0.591 -0.068 -0.378
-0.638  0.187 -0.010 0.495  0.262
2.833  1.098 -0.476 -0.383 1.129
0.042 0.174 -0.582 0.447 -0.071
-0.616 -0.514 -1.321  0.043 0.073
-0.817  0.935 -0.156 -0.172 -0.174
-0.879  0.028 -0.110 -1.193 0.974
0.611 -0.549 -0.545 -0.403 -1.300
0.290  0.755 -0.150  0.746 -3.001
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Table 1: The values of z;; used in the example.

with A = 3 and n = 5. We will approximate the posterior expectations R(m) corresponding to
m(0) = 0; and m(8) = 6?7 for i = 1,2,4 and 10. The exact values of these quantities are given in

Table 2 and were computed by an extensive computation described in Section 4.

Example 2. In this example, we carry out a Bayesian analysis of a contingency table using data
from Wing (1962). The data involves the cross-classification of 132 long-term schizophrenic patients
into three row categories concerning the frequency of hospital visits and three column categories
concerning the length of stay. The (7, j)-th cell probability takes the form p;; = fo;(1)5;(1) +
(1 — 0)a;(2)3;(2) where 8 € [0,1/2] and both (aq(¢), az(t), as(2)) and (B1(7), B2(¢), F3(7)) com-
prise probability distributions for ¢ = 1,2. This is known as a latent class model where rows
and columns are statistically independent given a single latent variable and we have only the
count data. For further discussion of this model see Evans, Gilula and Guttman (1989) and the
references therein. The likelihood function equals []7_, H;’:l (B (1)5:(1) + (1 — )i (2)5;(2))7
where f;; is the count in the (¢, j)-th cell. For the prior distribution we take § ~ U(0,1/2),
(a1(7), az(i), as(i)) ~ Dirichlet(1,1,1) and (f1(7), B2(i), F3(7)) ~ Dirichlet(1,1,1) for 7 = 1,2 and
assume independence. Therefore f in (1) equals the likelihood multiplied by these priors. We are

interested in the posterior expectations R(#) = .422 and R(#*) = .181. These values were obtained



via an extensive computation described in Section 4.

While the above parameterization is the natural one, it is not useful for any of the integration
methods we discuss. Rather we use a probability transform to transform to [0,1]°. We define this
transformation generally. Let 2 = (21,...,7;) € R* have density w and let W;(x;|21,...,2;,_1) be
the conditional distribution function of z; given #1,...,2;-1. Then putting 8, = W;(x;|x1,...,zi-1)
we have that § ~ U([0,1]¥) and this is the probability transform. Of course any permutation of
the coordinates can be used. For this example, following Evans, Gilula and Guttman (1989), we
transform to [0, 1] using the probability transform of the prior with the natural ordering of the
variables.
Example 3. In this example, we consider the computation of an orthant probability in R; i.e.
k = 6, with high accuracy. For this integral m(8) = Ijg .ye(6) is the indicator function of [0, 00)°
and f is the density of the Ng(0,Y) distribution where vo/2 = diag(0,1,2,3,4,5) + e¢’ and e =
(1,1,1,1,1,1)". The exact value of this integral to 10 decimal places is I(m) = .166625 x 10™* and
this was computed via an extensive computation described in Section 4. We make use of a sequence
of reparameterizations discussed in Genz (1992a). The first transformation is from 6 € [0, ) to
w = C~'0 where (' is the lower triangular Cholesky factor of ¥. The second transformation is
from u € R® to v = ®(u) where ® is the N(0,1) distribution function applied coordinate-wise.
The interval of integration for v; is (a;,1) where a; = 1/2 and a; = ®({—cy® 1(vy) — ... -
ciic1®7Y(v;_1)} /i) for i > 1. The third transformation is given by w; = (v; — a;)/(1 — a;) for
t=1,...,6. The integral now has a constant integrand with domain of integration for w equaling
[0,1]° and the integration with respect to wg can be carried out exactly.
3. Asymptotics

One of the most commonly used asymptotic approximation techniques is the Laplace method.

For this we suppose that (1) can be written in the form I(m) = [ m(0)e”"Ddf where D is



open, h has a continuous Hessian matrix H on D, h has a strict global minimum at 6 €D and m
is continuous in a neighbourhood of 8 with m(8) # 0. We then approximate (1) using Laplace’s

formula

I(m) = m(8)(2m)**rH(6)| 7/ exp{~h(0)} (2)

since lim, o I[(m)/I(m) = 1; for a proof see Wong (1989). Under slightly more restrictive
conditions the proof follows from a form of Taylor’s Theorem which says we can write h(8) =
h(8) + 10— ) H(6)(6—0)+ (9]0 — 0|2 where 7 is continuous and r(8) — 0 as # — §. Thus we
are effectively approximating (1) by (27)%/2|7H()|"Y/%exp{—7h(#)} times the expectation of m
with respect to the Ni(6, (r H(#))™") distribution for large 7. Intuitively Laplace’s formula is saying
that as 7 — oc; i.e. as the variance of the multivariate normal goes to 0, most of the contribution to
I(m) is occuring near the maximum of exp{—7h(#)}. Under additional assumptions Wong (1989)
establishes that the relative error in (2)is O(r71).

It is not always possible to transform an integral to the requisite form for the use of (2).
In Bayesian contexts, however, we can write h.(6) = —Llog f(#) where 7 — oo as the size of
the data set grows. Recall that f depends implicitly on the data here. Strictly speaking we
cannot apply Laplace’s formula because of the dependence of h; on the data and of course on 7
as well. As it is typical, however, for h.(0) to converge almost surely as 7 — oo, it is intuitively
reasonable that (2) should still provide a good approximation. This was part of the insight in
Lindley (1961, 1980). Applying Laplace’s formula to R(m) = I(m)/1(1) gives the approximation
Ry(m) = I(m)/I(1) = m(8,) where 8, maximizes —h..

The use of Laplace’s formula is closely related to approximating a distribution via a normal

distribution. Chen (1985) provides conditions for the asymptotic normality of a sequence of pos-

terior densities exp{—7h,(0)}/ [exp{—7h,(6)}df. These conditions also establish the validity of



Laplace’s formula for the inverse norming constant /(1) and, with some additional mild conditions,
also establish the validity of Laplace’s formula for I(m). The asymptotic normality criterion ap-
proximates R(m) by the expectation of m using the Ny (6, (rH,(6,))"") distribution. We denote
this approximation by R(m)

A formal asymptotic error order for Rl(m), and generalizations of this estimate, are obtained

by performing the following operations on the integrals I(m) and I(1):

(i) formally expand m and h, in a Taylor series about éT,
. N-1/2 .
(ii) make the transformation § — v = (THT(OT)) (0—6.),

(iii) keep the first three terms of the expansion for h; in the exponent, factor this out, noting that

(Mgeé—fl) = 0, and expand the remaining exponential about 0,

(iv) express all expansions and products of expansions in powers of r1/2,

(v) formally evaluate the integrals by taking expectations term by term with respect to the Ny(0,1)

~1/2 disappear,

distribution and note that terms involving odd powers of 7
(vi) formally expand the ratio of the expansions in powers of 771.

To see clearly how these operations work the reader need only try a simple example. These op-
erations give that the formal absolute error in Ry(m) is O(7~'). When m is bounded away from

0 the relative error is also O(77!). An estimate with formal asymptotic error equal to O(772) is

obtained by taking the first two terms in the final expansion. This is equal to

oo [ Om(8;) - Pho(0;)  *m(d,)
— I (i,3) (r,5) _
fa(m) = Fa(m) 272[’” (07)( o6, 2" 5 5,98, .00,

.y —1 N
where (HT(HT)) = (h(TZ’])(OT)). A similar analysis, that does not involve expanding m, establishes
that the formal asymptotic error in R(m) is O(7='/2). Tt would appear that Ry(m) is a better

approximation than fi(m) On the other hand the Laplace approximation requires some regularity



conditions on the function m whereas nothing is required in the normal approximation beyond
integrability; e.g. the Laplace approximation does not apply if m is an indicator function since it
is not continuous.

In Tierney and Kadane (1986) this technique is modified for the case when m > 0 by taking

RX(0) = —Lllog f(6) + log m(#)] and finding 6* which maximizes —h*. The first order estimate is

- T

[H2(87)] 71/ exp{—rhz(67)}

R'(m)= 8 8
() |HT(07)|_1/2eXP{_ThT(eT)}

and this is called the fully exponential Laplace approximation. Tierney and Kadane (1986) argue
formally as above that, when m is bounded away from 0, the absolute and relative errors in R*(m)
are O(77%) because of a cancellation between the numerator and denominator. The R* approxi-
mation requires second order derivatives and two maximizations. This is a distinct advantage over
R, which requires third order derivatives. For a nonpositive m Tierney, Kass and Kadane (1989a)
recommend using the fully exponential approach to approximate R(exp{sm(8)}), the moment gen-
erating function of m, for several values of s about 0 and then numerically differentiating to get an
estimate of R(m).

Reviews of asymptotic methods in Bayesian contexts can be found in Kass, Tierney and Kadane
(1988, 1991). Kass, Tierney and Kadane (1990) provide conditions for the validity of these approx-
imations and asymptotic errors. Tierney, Kass and Kadane (1989b) use the Laplace approach to
estimate the marginal density function of 5(6) for any function § having a Jacobian of full rank [
on a neighbourhood of the posterior mode .. When [ = 1, DiCiccio, Field and Fraser (1990) es-
tablish asymptotic approximations for tail probabilities. Fraser, Lee and Reid (1990) discuss some
asymptotic methods with particular relevance to Example 1. Morris (1988) provides an approach

to asymptotic approximations in one dimension using the Pearson family. Discussions of other
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i | R()  R(O:) Ri(6) R(O7) R(67) Ri(67) R(67)
1 | 2,043 2018 2018 4263 4.141 4.073 4313
2 | 0.095 0.116 0.116 0.081 0.061  0.014  0.062
4 | 0.018 0.029 0.029 0.069 0.046 0.001  0.039
10 | -0.073 -0.232 -0.232 0.033 0.079  0.054  0.033

Table 2: Asymptotlc estimates for Example 1 where R denotes the exact value of the posterior
expectation, R denotes the normal approximation, Ry denotes the Laplace approximation and R*
denotes the fully exponential Laplace approximation.

asymptotic methods with relevance for statistical applications can be found in Barndorff-Nielsen
and Cox (1989, 1994) and Reid (1988).
We now apply some of these approximations to the examples of Section 2.

Example 1. Here we have that 7 = n and recall from Section 2 that » = 5 in this example.
In Table 2 we give the estimates. The R(6;) and Ry(6;) approximations are reasonable except
for i = 10 where the relative error is 218%. A similar comment applies to R(6?). The R;(6?)
approximations are generally not as good as the relative errors for i = 2,4 and 10 are 83%, 99%
and 64% respectively. The R*(6?) approximations are generally better except for i = 4. The
maximizations were of necessity done numerically. We coded the first and second derivatives in this
example and used the IMSL function optimization routine DUMIAH. The R* computations were
sensitive to the choice of initial value as the function maximized for the numerator is multimodal.
For the last column of Table 2 we started DUMIAH at the posterior mode. In general multimodality
can cause difficulties for all of the asymptotic methods.

Example 2. Here 7 = 132 is the total of the cell frequencies. We used the reparameterization
discussed in Section 2 and further transformed to R? using the Ng(0, ) inverse probability trans-
form. We obtained the approximations R() = .402, R;(6?) = .162 and R*(6%) = .186. Recalling
that R(#) = .422 and R(#*) = .181 we see that these approximations perform well. We used what

we believe to be the global maximum based on the results from several starting values for the
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optimization routines. Calculating the approximations at other modes gave very different answers.
We only coded first derivatives in this problem as coding second derivatives was exceedingly time
consuming.

Example 3. For this example we could not find an approach using asymptotics that we felt was
applicable. In particular the regularity conditions of Erkanli (1994) are not satisfied.

4. Importance Sampling and Variance Reduction Techniques

Suppose that w is a density function on R* such that supp(f) C supp(w) where supp(f) is the
closure of the set of points where f is nonzero, and 6y,...,0y5 is a sample from w. Then since
I(m) = [px %w(@)d@, (1) can be estimated by I,(m) = Ly %. The justification
for this estimate lies in the Strong Law of Large Numbers which implies that I,,(m) — I(m) almost
surely as N — oo. The density w is referred to as an importance sampler. The basic idea is to
choose w so that it generates values that are in the region where the integrand is large as this
region is where the most important contributions are made to the value of the integral. For general
discussions on importance sampling see Hammersley and Handscomb (1964), van Dijk, Kloek and
Louter (1986), Glynn and Iglehart (1989), Hesterberg (1990) and Wolpert (1991). Objections to
the use of Monte Carlo methods have been raised by O’Hagan (1987).

We choose w so that the rate of convergence of I,,(m) to I(m) is as fast as possible. The Law
of the Iterated Logarithm, see Durrett (1991), suggests that we can do no better than require that

I,,(m) have as small a variance as possible. This is equivalent to minimizing

Var,, [%f] :/%d@ - (/ m(0)f(0)d0)2. (3)

By the Central Limit Theorem I,(m) ~ AN (I(m), N~'Var,[mf/w]) when (3) is finite and

XyN ~ AN(p,0%/N) means that v/ N(Xx — p)/o converges in distribution to a N(0,1) random

12



variable as N — oo. If we put ¢, (0) = |m(0)|f(0)/ [ |m(8)|f(6)dd then we have Var, [%f] =

w

2
I*(|m|) E,, [(M) ] + (I*(Jm|) = I*(m)). Therefore (3) is uniquely minimized when w = g,
2
since then the Chisquare distance between ¢, and w is 0; i.e. E,, [(%) ] = 0. If I(m) # 0 then

a useful representation of the Chisquare distance, in terms of the coefficient of variation of m f/w,

E. Kf]m; wy] _ (%)ZC\@ [%f] n (%)2_

We assess the effectiveness of w for [ |m(8)|f(6)d, rather than for (1), as these integrals have the

is given by

same optimal importance sampler. Writing W; = |m(6;)| f(6;)/w(8;) and W} = W; /(Wi +...+Wn)
as the i-th normalized sample weight, it is easy to show that the method of moments estimator of
. 1/2

CVy [Iw(|m|)] is given by \/Lﬁ {N SN W — 1} . Therefore we have that 37 < SN W<,
with the lower bound attained if and only if all the weights are equal and the upper bound attained
if and only if all but one of the weights is 0. From this we see that quoting the estimated coefficient
of variation to assess accuracy is equivalent to examining the normalized weights to determine if
any are relatively large. Rather than the coefficient of variation appearing to be too large, however,
the more frequent, and dangerous, phenomenon is for it to be too low for small N. This occurs
when w samples only over a sub-region where the integrand is nearly constant.

The optimal w is typically not a possible choice because it requires that we be able to sample
from this density and have a closed form expression. In general we are restricted to using those w
for which efficient generating algorithms and exact expressions exist. In fact there is no automatic
algorithm we can use to generate a sample from an arbitrary multidimensional distribution let alone
do this efficiently; see Devroye (1986) for a thorough discussion of random variate generation. In
general, however, we try to choose w to agree with |m|f as closely as possible.

There are very few families of distributions in the multidimensional context that are in common

13



use as importance samplers. When the problem is to integrate over R* virtually the only family
used is the multivariate Student family. This family has unimodal densities with ellipsoidal contours
and varying tail-lengths. If we choose to mimic f, and this function has approximately these
characteristics, then we take w as the density of 8§ = 9 + C'w where § is the mode of f, Cis
the Cholesky factor of the inverse Hessian of —log f at the mode and w ~ Student}(¢) for some
¢ > 2 where Student}(¢) denotes a standardized Studenty(() distribution. In Bayesian contexts this
implies that w and the posterior have approximately the same mean and variance. The parameter
¢ is chosen low enough so that the estimate fw(m) has finite variance. Typically it is not possible
to say exactly what ¢ has to be to guarantee this. For an exception to this see Fvans and Swartz
(1994).

There is a great need to develop families of multivariate distributions that exhibit a wide
variety of shapes, have efficient algorithms for random variate generation and can be easily fitted
to a specific integrand. Geweke (1989) developed the split-t family by modifying the Studenty(()
distribution, via rescaling the density for w differentially along each of the 2k rays from 0 following a
coordinate direction, to allow for skewness. The tail behaviour of this w is the same as a Student(()
distribution but it has a discontinuity at the mode. A closely related generalized Student family
was developed in Evans (1988) by joining Studentq(¢;) and Studentq((2) densities at the origin by a
rescaling and standardizing so that the distribution has mean 0 and variance 1. In k dimensions we
take the product of such densities. This family allows for different tail-lengths along each ray from
the mode and is everywhere differentiable, but has the disadvantage of having much shorter tails
along rays from the mode that lie between coordinate directions. Oh and Berger (1993) modify
Student importance sampling by allowing for mixtures of multivariate Students. For example, if f
has modes at é(l), .. .,é(c) and the Cholesky factor of the inverse Hessian of — log f at §; is given by

C; then we take w = ¢qwq + ...+ ¢.w, where w; is the density of é(z) + Ciw; with w; ~ Studentz((;)

14



and the ¢ are mixture probabilities determined by the requirement that ¢ o f(8(i))/w;(8(i)) for
v = 1,...,c. The difficulty with the use of mixtures lies in determining the parameters of the
mixture when the modes are unknown.

The estimate R, (m) = I,(m)/1,(1) converges almost surely to R(m). If R(m) # 0 and I,,(m)
and I,,(1) have finite variances, then the delta method gives that R, (m) is asymptotically normal
with asymptotic coefficient of variation equal to

sgn(f(m)) {CV2 [m—] L Oov? H — 20V, [m—f] CV, H Corr,, [m—fi] }1/2

VN Yl w Ylw w w ww
and this is estimated in the obvious way. An alternative estimator of R(m) can be obtained as
follows using sampling/importance resampling or SIR; see Rubin (1988) and Smith and Gelfand
(1992). Let Wy, ...,Wx be the normalized weights obtained from estimating /(1) based on a
sample 64,...,0x from w. Then these weights can be used to approximately sample from the
density f/ [ f(6)d§ when N is large. For this we resample N* < N values 67,...,0%. from
{61,...,6n} using the W7 probabilities. We can then estimate R(m) by 7= SN m(87) but this
estimator always has variance at least as large as Ry, (m).

There are many variance reduction techniques that can be used in conjunction with importance
sampling. This is an extensive area of research and so we briefly discuss just control variates and
systematic sampling. Discussion of a wider class of techniques can be found in Hammersley and
Handscomb (1964), Powell and Swann (1966), Cranley and Patterson (1970) and Ripley (1987).

The use of control variates requires that there be a closely related integral whose value is known.
As an example of this, suppose that we have a function ¢ such that [ m(6)g(6)d6 is known. For a

(S(

single @ generated from w we estimate (1) by m(@)% + [ m(6)g(6)df and this has variance

(O g9 — (I(m) — [m(0)g(0)df)*. With a good choice of g this will be much smaller

20 (f(8)—g
S m?(0) w(0)
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than (3). A sensible choice for ¢ in Bayesian contexts will be the normal approximation to the
posterior times the Laplace estimate f(l) We refer to this as the asymptotic normality control
variate. Using this control variate when the posterior is asymptotically normal leads to an estimate
of R(m) with asymptotic variance 0.

For systematic sampling, or antithetic variates, let T; : supp(f) — supp(f) for i = 1,...,¢ be
one-to-one transformations with Jacobian determinants at # denoted by Jr,(6). Then a systematic
sampling estimator for (1), corresponding to the set 7 = {71,...,T}}, is obtained by generating 6
from w and calculating (mf)7(0)/w(8) = =1 Sty m(T:(0)) f(T:(8))J1,(0)/w(8). This formulation
generalizes the antithetic variable techniques presented in Hammersley and Handscomb (1964),
Fishman and Huang (1983) and Geweke (1988). Note that when ¢ = 1 the choice of 7 is essentially
the problem of choosing an appropriate parameterization. Latin hypercube sampling is closely
related to systematic sampling. For a discussion of this see McKay, Conover and Beckman (1979),
Stein (1987), Owen (1992) and Tang (1993).

We now use importance sampling on the examples of Section 2.

Example 1. We used Student importance sampling with the mode and Hessian computed in
Section 3 and ¢ = 5. The results are reported in Table 3 for a Monte Carlo sample size of N = 10°.
These computations took about 50 seconds of CPU time. The estimates are accurate but the
coefficient of variation for Rw(04) is quite high. We tried importance sampling using different
choices of { € (2,20) but the differences in the efficiencies were not large. We also computed these
integrals using N = 8 x 107 iterations and have taken these throughout as the exact values. We
feel confident that these results have 3 decimal places of accuracy. We implemented the asymptotic
normality control variate but this resulted in a reduction in the variance of the estimates of the
norming constants by only 3.2%. We note that /(1) = .131 x 107%! is poorly approximated by

I(1) = 527 x 10722
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i | R Ro(0:) R(62)  Ru(6?)
1 2.043  2.043 (.001) 4.263 4.265 (.002)
2 | 0.095 0.096(.023) 0.081 0.080 (.014)
4 | 0.018 0.017 (.127) 0.069 0.070 (.015)
10 | -0.073  -0.073 (.017) 0.033 0.033 (.008)

Table 3: Importance sampling estimates and estimated absolute coeflicients of variation for Example
1 where R denotes the exact value of the posterior expectation and R,, denotes the importance
sampling estimate.

Example 2. For this example we used the parameterization, mode and Hessian of Section 3 and
Student importance sampling with ( = 5. Based on a sample of N = 10° which took 2.5 minutes
of CPU time, the estimates together with their estimated absolute coefficients of variation are
R, (0) = .423(.003) and R,,(6%) = .182(.007). The exact values R(#) = .422 and R(6?) = .181 are
based on a sample of N = 10® which took 41 hours of CPU time.

Example 3. For this example we implemented the obvious importance sampling algorithm based
on the Ng(0,Y) distribution where ¥ is specified in Section 2. Sometimes this is called the hit-or-
miss estimator. For N = 10° the estimate and its estimated absolute coefficient of variation equal
L,(m) = .190000 x 107%(.229) and this took 1 minute of CPU time. For N = 10® we obtained
I,(m) = .163000 x 10~%(.025) and this took about 100 minutes of CPU time. In Evans and Swartz
(1988a) a much more accurate importance sampling approach was developed and this method was

used to obtain the exact answer I(m) = .166625 x 107%.

5. Adaptive Importance Sampling

Throughout this section we assume m = 1 for convenience. For a given problem there is typically
a class W = {w,, | @ € A} of candidate importance samplers and we must select one. For example,
W could be the set of all distributions on R* obtained from p + %/%w where p € RF, & € RF¥F is
positive definite, w ~ Student(() for some fixed ¢ and thus o = (g, ¥)is k+k(k+1)/2 dimensional.

The optimal choice of a is the value minimizing v(a) = [ f?(8)/w,(0)d6. Of course evaluating v(a),
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let alone minimizing this function, is at least as hard as calculating (1). The compromise suggested
in Section 4 is to select a so that w, and f have some characteristics in common. For example,
with Student importance sampling we chose g and ¥ so that w, has mean and variance equal to the
approximate mean and variance of p = f/ [ f(#)df. The general principle then is to approximate
characteristics of p and choose w € W so that its corresponding characteristics match.

There is no reason why we have to restrict ourselves to a single w € W. For if we have initially
selected w,, then we can estimate characteristics of p, that can be represented as expectations,
using a sample 6;,...,0y from w,,. This information can then be used to make an improved
choice w,,. To be more precise, let C' : R¥ — R' and let R(C) = E,[C] be a vector of such
characteristics of p. Then estimate R(C') by R(l)(C) = jwal (C)/fwal(l) and obtain w,, € W by
minimizing ||E,, [C] — R(l)(C)H. For example, if W is the Student family described above then a
sensible choice for C' is the vector giving rise to means, variances and covariances. In this case the
minimization problem can be easily solved. If the estimate R(l)(C) is reasonable then p and w,,

should be more alike than p and w,,. We then generate On4,...,0:x from w,,, compute the new

estimate R(z)(C) = (Lue (C) + I,

Way

(C’))/(IA%Z1 (1) + Ly, (1)) and minimize ||E,,[C] - R(z)(C)H to
obtain w,,. This process is continued until the estimates R(i)(C) change very little, say at the n-th
iteration, whence we take w,,,, as the importance sampler for subsequent simulations. Note that we
have suppressed the dependence of a; on 0y, ..., 0;_1)n. We call this algorithm adaptive importance
sampling by matching characteristics. Several authors have considered algorithms closely related to
this; see, for example, Kloek and van Dijk (1978), Smith, Skene, Shaw and Naylor (1987), Naylor
and Smith (1988), Evans (1988, 1991a), Oh (1991) and Oh and Berger (1992).

Typically we want to compute many of the components of R(C') so this approach can be viewed

as a way of simultaneously improving the importance sampler and estimating quantities of interest.

Of course the effectiveness of the algorithm is strongly influenced by the choice of '. While we have

18



no formal theory to determine (', using means, variances, covariances and probability contents for
central regions is preferable to choosing tail-sensitive measures such as high-order moments.

The analysis of convergence for adaptive importance sampling is more difficult than importance
sampling because of the dependence between iterations. Almost sure convergence of R(n)(C) to
R(C), almost sure convergence of a,, to a unique a, € A, an asymptotic normality result for
R(n)(C) and a consistent estimator for the asymptotic variance were all established in Oh and
Berger (1992). However, these results require the uniform boundedness of the weight function;
namely, there must exist B such that f(8)/w,(0) < B for every a and 6, and this almost never
holds in an application. It is possible to state much weaker conditions under which these results
will hold.

Of some practical importance is the estimation of the asymptotic variance. Assuming for

convenience that [ = 1 it can be shown under weak conditons that }A{(n)(C) ~ AN(R(C),0?/nN)

where 02 equals R*(C') times

v [Q]Jrcvfu [i
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An almost sure consistent estimate of (4) is obtained by estimating F,,,, [mf/wa,] by
Ly, fwai(m), for m = 1 and m = (', where n is the number of adaptive steps and fwai(m) is
the importance sampling estimate based on the ¢-th importance sampler. We then substitute these
expressions into (4).

One difficulty with the adaptive approach is the necessity of obtaining a good starting value
a1 € A. With a poor choice convergence will not take place for a practical number of iterations. The
technique of chaining can be useful in dealing with this problem, see Evans(1988, 1991a, 1991b).

For this suppose we have an additional parameter € A such that f = f,, and a good starting
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importance sampler w,, for the problem [ f, (#)df. We run adaptive importance sampling for this
problem and obtain the updated importance sampler w,,. We then make a small change in 75 to
ne and run adaptive importance sampling for [ f,,(8)d#, starting with w,, and this leads to the
updated importance sampler w,,. We continue this process constructing a chain from 1y to 7.
where 7, specifies the problem of interest. In a general problem we can chain on 5 = (1, 72) € R?
where f, = fl/mwiy{nz). For large m and n, = 1, f, is like w,,. For large 7, f, is like f. We
mention a simple use of chaining in Example 1.

There are other approaches to adaptive importance sampling. A very natural approach is to
use Monte Carlo to try to minimize v(a) or at least obtain a relatively small value. There are
several papers where this approach has been considered; see, for example, Oh and Berger (1993)
and Piccioni and Ramponi (1993). In West (1993) and Givens and Raftery (1993) another approach
is taken using ideas from kernel density estimation. This results in importance samplers that are
mixtures of many multivariate Student densities.

We now consider the application of adaptive importance sampling to the examples.

Example 1. For this example we took W to be the Student family with { = 5. For R(C') we used
the vector of posterior means, variances and covariances. We started with the importance sampler
of Section 4 and used a sample of N = 1000 from each w,, for « = 1,...,n adaptive steps. Table 4
contains the results at the end of the 100-th iteration. These computations took about 50 seconds
of CPU time and thus the adaptation added no real computational burden. There is a clear benefit
to adaptation as the estimated absolute coeflicients of variation are lower than in Table 3. This is
particularly noteworthy for ¢ = 4 where the reductions exceed 50%. We note that in general, with
the model of this example, it will make more sense to treat A as a nuisance parameter varying in
(2, 00) rather than fixed at some value. In this case it makes sense to use the marginal density of the

data; i.e. the inverse norming constant, to select a value for A where the inverse norming constant
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i | R(6) Raoo)(6:) R(67)  Roo)8?)
1 2.043 2.042 (.00 ) 4.263 4.262 (.001)
2 | 0.095 0.093(.013) 0.081 0.080 (.007)
4| 0.018 0.020 (.057) 0.069 0.070 (.007)
10 [ -0.073 -0.073 (.011) 0.033 0.033 (.008)

Table 4: Adaptive importance sampling estimates and estimated absolute coefficients of variation
for Example 1 where R denotes the exact value of the posterior expectation and R(;og) denotes the
adaptive importance sampling estimate.

is high. Also for A large it easy to get good starting values for the posterior mean and variance
matrix using least-squares theory and this avoids the need to numerically optimize. Therefore we
can chain on the parameter A by starting with A large and then reducing it it in stages to obtain
estimates of the inverse norming constant as a function of A.

Example 2. We used the same algorithm as in Example 1, with appropriate adjustments, but
took N = 20,000 and n = 5. We obtained the estimates and estimated absolute coefficients of
variation R(5)(0) = .421(.002) and }%(5)(02) = .180(.003). Comparing with the results of Section 4
adaptation has resulted in increased accuracy by about 33-50%. For other variables the increase in
accuracy was even greater.

Example 3. For this example we used the parameterization discussed in Section 2 followed by
the N5(0,7) inverse probability transform. We then used adaptive importance sampling with a
multivariate Student based on 5 degrees of freedom adapting to the mean and variance. We started
the adaptive importance sampling by computing the mode and the inverse Hessian at the mode
of the transformed integrand. By necessity all derivatives were computed numerically because of
the complexity of the expressions. Based on N = 10* and n = 10 adaptive steps we obtained
f(lo)(m) = .166672 x 10™* with coefficient of variation .002. This took .9 minutes of CPU time.
This is an improvement over hit-or-miss by a factor of 366.

6. Multiple Quadrature and Subregion Adaptive Integration
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First we discuss quadrature rules; i.e. rules for dimension & = 1. A quadrature rule of order
n, for approximating (1), takes the form >, w;h(6;) where h = mf/w, w is a density function
and the points #; and weights w; are determined by some criterion. As with importance sampling
w is chosen so that mf/w or f/w is approximately constant. Given that we have selected distinct
points 6y, ....80, a common method of determining the w; is to integrate the product of w and the
degree n — 1 Lagrange interpolating polynomials corresponding to the 8;, assuming of course that
w has its first n — 1 moments; i.e. w; = [7 pi(z)w(z)dz where p;(z) = [, ;(z —0;)/ I1,2(6: —0;).
Such a rule is called an interpolatory rule and it calculates the integral exactly whenever L is a
polynomial of degree less than n. For example, when w is the uniform density on some interval and
the 6; are equispaced and include the end-points, we get the trapezoid rule for n = 2 and Simpson’s
rule for n = 3. Rules that are based on a density w with a finite interval for support are often
compounded; i.e. the interval is divided into subintervals and the rule is applied in each subinterval
with the appropriate location and scale changes being made to w. It can be shown that, if the
basic rule integrates constants exactly and the maximum length of a subinterval goes to 0, then
the compounded rule converges to (1) as the number of subintervals increases. An optimal choice
of the n points can be made so that the rule exactly integrates all polynomials up to the maximal
degree 2n — 1 provided that w has 2n moments. These are called Gauss rules. When w is the
N(0,1) density we get the Hermite rules, when w is the Gamma(a) density we get the Laguerre
rules and when w is the Beta(a, 3) density, after a location-scale transformation to the interval
[—1, 1], we get the Jacobi rules. In general it is not an easy numerical problem to obtain these rules
accurately but for the common densities they are tabulated in software libraries such as IMSL and
NAG. Davis and Rabinowitz (1984) gives a thorough treatment of quadrature rules.

The simplest method of constructing multiple quadrature rules; i.e. k > 1, is to form product

rules. If h(01,...,0) = m(b1,...,0k)f(01,...,0k)/w1(01) - -wi(0;), where the w; are densities,
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then a product rule approximates (1) by

1 g
Z Z wi i, ---wk7ikh(01,i17"'70k7ik) (5)
i1=1  dxp=1

where the 6; ;. and w; ;, are the points and weights of a quadrature rule associated with w;. Such
rules suffer from the curse of dimensionality; namely to implement this rule requires N = nq ---nyg
function evaluations. Further it can be shown that if we take all the rules in (5) to be the com-
pounded trapezoid rule then the error in (5) is O(l/Nz/k). It would appear that the product
trapezoid rule is not competitive with importance sampling whenever k > 4.

An integrand typically will not be well-approximated by a Ni(0, 1) density times a low degree
polynomial. Asymptotics in Bayesian problems suggest, however, that this will often be the case if
we standardize the posterior density by the posterior mean and variance. Naylor and Smith (1982),
Smith, Skene, Shaw, Naylor and Dransfield (1985) and Naylor and Smith (1988) use an adaptive
approach which computes an approximation to the posterior means, variances and covariances,
using product Hermite rules. They then transform the integrand using these quantities, so that
the transformed posterior has approximate mean 0 and variance matrix I. This is iterated until
the process stabilizes. In general, successful application of multiple quadrature requires that the
integrand be appropriately located, scaled and not have the bulk of its mass concentrated near a
hyperplane.

Various attempts have been made to avoid the curse of dimensionality. Hammersley (1960)
suggests estimating (5) by sampling the terms in this sum. When each rule in the product is a
Gauss rule then w;; > 0 and w;; +---+ w;,, = 1 for s = 1,...,k. Then we can sample the
terms of (5) using the weights as a discrete probability distribution. Evans and Swartz (1988b)

give an extensive analysis of this technique including a comparison with the analogous importance
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sampling method. It is shown that accurate approximations can be obtained in samples where N
is much smaller than ny ---ng.

Another attempt at avoiding the curse is to construct rules in R* with a minimal number of
points that exactly calculate [ 0? . -02’%0(01, oy 05)dOy ... df), for a class of monomials satisfying
114 -+, < d where w is a density. Such a rule is called a monomial rule of degree d for w. Fully
symmetric monomial rules are obtained, when w is invariant under permutations and sign changes of
the coordinates; e.g. the uniform density on [—1, 1]*, by performing permutations and sign changes
on a set of generators to obtain the points and then solving a system of polynomial equations
for the generators and weights. Fully symmetric rules with the minimal or close to the minimal
number of points have been obtained for various w. These are in general not easy problems to solve
and sometimes the rules suffer from having some of the points lying outside supp(w). Dellaportas
and Wright (1991, 1992) discuss a related approach using fully symmetric rules constructed from
subsets of the points in a product Hermite rule. Davis and Rabinowitz (1984), Stroud (1971) and
Cools and Rabinowitz (1993) are good references on multiple quadrature rules.

To assess the error in a multiple quadrature approximation the calculation is typically repeated
with a rule containing more points. Sometimes there are guaranteed error estimates available
involving bounds on derivatives of the integrand. These are generally felt to be far too conservative
and difficult to implement.

There are other approaches to constructing multiple quadrature rules. Bayesian quadrature
is discussed in Diaconis (1985) and O’Hagan (1992). Quasirandom rules are discussed in Woz-
niakowski (1991), Traub and Wozniakowski (1992), Niederreiter (1992) and Spanier and Maize
(1994). Statistical applications of quasirandom rules are presented in Shaw (1988), Johnson (1992)
and Fang, Wang and Bentler (1994). While it is sometimes argued that the quasirandom approach

is superior to Monte Carlo the flexibility of the latter method still provides substantial advantages
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in our opinion.

Subregion adaptive algorithms are described in van Dooren and de Ridder (1976), Genz and
Malik (1980), Bernsten, Espelid and Genz (1991) and Genz (1991, 1992b). For low dimensional
contexts they are greatly recommended as they produce accurate answers over a wide class of prob-
lems and are highly efficient. Related algorithms are discussed in Lepage (1978) and Friedman and
Wright (1981). For these algorithms the problem is transformed so that the domain of integration
is [0,1]%. The basic algorithm then proceeds iteratively as follows: let € > 0 be the global abso-
lute error desired and let n,q,; be the maximum number of subregions where we start with one
region Ryy = [0,1]%. At the n-th step [0,1])* has been partitioned into n subregions Ryi, ..., Rpp.
Multiple quadrature rules have been applied in each subregion to get estimates I,1, ..., I,, of the
corresponding integrals and also error estimates F,q,..., F,,. The error estimate F,; is obtained
by computing I,,; using rules of different orders and comparing the results. If £,y +---4+ F,, < € or
if n > nyae, the algorithm stops. Otherwise the region R, is split if £,; = max{F,; | 1 <j < n}.
The partitioning algorithm takes the regions to be rectangles with sides parallel to the coordinate
axes and uses a criterion to choose which side of the chosen rectangle to split to form the subrect-
angles. Different criteria can be used but they are all based on selecting the coordinate direction,
in the chosen subregion, where the integrand is most variable. Subregion adaptive integration has
been applied to a number of problems in statistics. See, for example, Genz and Kass (1991, 1994)
and Genz (1992b).

We now apply subregion adaptive integration to the examples of Section 2. For these computa-
tions we used the routine ADBAYS supplied by A. Genz. This algorithm uses fully symmetric rules
of orders 5, 7 and 9 for subregion estimates and for error estimates; see Genz and Malik (1983) for
a discussion of the particular rules. Further a criterion based on fourth differences is used to decide

how to split a chosen subregion. The program runs until a specified relative error is attained or
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i | R(6:) R(8:;) R(6?) R(6?)
1 2.043 2.040 4.263 4.237
2 0.095 0.094 0.081 0.068
4 0.018 0.017 0.069 0.055
10 | -0.073 -0.102 0.033 0.032

Table 5: Subregion adaptive estimates for Example 1 where R denotes the exact posterior expec-
tation and R denotes the subregion adaptive estimate.

too many function evaluations have been carried out.

Example 1. Table 5 gives the results of using subregion adaptive integration. Following Genz and
Kass (1991, 1994) and Genz (1992b) we first made the transformation § — u where § = 6 + C'u,
g is the mode and C is the lower triangular Cholesky factor of the inverse Hessian computed in
Section 3. We then made the transformation v — v where v = ®(u) and ¢ denotes the N(0,1)
distribution function applied component-wise to u. We specified a relative error of .001 and set the
maximum number of function evaluations to 2 x 107. This maximum number was reached without
the error bound being attained. The computation took 2.75 hours. We repeated the calculations
allowing for a maximum of 10® function evaluations with the same relative error bound. The results
improved somewhat; e.g. the relative error in the estimate of R(610) went from 40% to 33%, but
the computation time increased to 24 hours.

Example 2. For this example we made the transformation discussed in Section 5, calculated
the mode and inverse Hessian matrix corresponding to the transformed posterior, standardized
and then made the Ng(0, 1) probability transform. Then requesting a relative error of .1 we ran
ADBAYS. This computation required 5 x 10° function evaluations and 3.6 hours of CPU time. The
approximations and relative errors are given by Ry (#) = .419(.007) and R,,(6?) = .178(.017). In
this example the algorithm was successful but required a considerable amount of computation.

Example 3. For this example we used the transformation discussed in Section 2. Based on N = 10°
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function evaluations the approximation and its relative error are given by I(m) = .166626x 10~%(.6x
107%) and this required .2 minutes of CPU time. For N = 10° the approximation was exact to 10

decimal places and required 3.4 minutes of CPU time.

7. Markov Chain Methods

Another class of Monte Carlo algorithms has come into prominence in statistical applications
during the past several years. These are collectively known as Markov chain methods. The char-
acterizing feature of this approach is the construction of an ergodic Markov chain 6,8,,... on
supp(f) with unique stationary distribution having density p = f/ [ f(6)df. Thus this approach
provides a method of approximately simulating from the probability distribution p. A strong law
then gives the almost sure convergence of I,(m) = ~ SN m(6;) to I(m) as N — oo. There are
many problems in statistics where the construction of an appropriate Markov chain is almost im-
mediate. Some of these problems are so high-dimensional that it is hard to conceive of any other
method working. Also, in certain examples, the convergence is very rapid. General references on
Markov chain algorithms include Hammersley and Handscomb (1964), Tierney (1991), Geyer and
Thompson (1992), Besag and Green (1993), Smith and Roberts (1993), Neal (1993) and Besag,
Green, Higdon and Mengersen (1995).

Markov chain methods are generally related to the Metropolis algorithm. The basic version
of this was first developed in Metropolis, Rosenbluth, Teller and Teller (1953). We present a
generalization due to Hastings (1970); see also Peskun (1973). For this we specify an initial time
homogeneous Markov chain on supp( f) with transition density functions (0, -) for each 6 € supp(f)
and an initial state 8y € supp(f) which may be random. A new Markov chain is then generated
as follows: given that we are in state 6, at time n, generate 6 from r(6,,-) and with acceptance
probability a(0,,,0) = min {f(0)r(8,0,,)/f(0.)r(6,,0),1} set 6,41 = 6 otherwise set 0,41 = 6,,.

See Tierney (1991) for a discussion of conditions on r necessary for p to be the unique stationary
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distribution of this chain. The original Metropolis algorithm required that r be symmetric which
implies a(6,,,0) = min{f(8)/f(6,),1}. Therefore a transition is made with high probability if ¢
lies in a region of high density for p relative to 6,,.

A user of the Metropolis algorithm must select an . We want an r such that the chain wanders
thoroughly and rapidly around the support of f. In general it is not clear how to make this choice.
Tierney (1991) provides some suggestions for r. For example, we could take r(6,,6) = w(f) where
w is the Student importance sampler discussed in Section 4. This is an example of an independence
chain. Alternatively r could be the transition function of a random walk based on a multivariate
Student density centered at 0 and with variance matrix equal to the inverse Hessian of —log f.
This is an example of a random walk chain.

A special case of the generalized Metropolis algorithm is the Gibbs sampling algorithm which was
introduced in Geman and Geman (1984) and brought to the attention of the statistical community
by Gelfand and Smith (1990). For Gibbs sampling a(#6,,,6) = 1. We describe a particular version of
the Gibbs algorithm. Let p;(- | 61,...,6;—1,0:41,...,0;) denote the conditional posterior density of
the i-th coordinate of # given the remaining coordinates. The algorithm then proceeds as follows.
We specify an initial state 6y. Then given the n-th state 8, = (6,1,...,0, )" we obtain the (n41)-st

state in £ steps :

generate 6,411 ~ p1(- | 0n2, .. 00 k)
genel’ate 0n+1,2 ~ p2( | On—l—l,lv 071,37 ceey en,k)
generate 0,11 5 ~ pr(- | Opg1,10 -+ Opg1 k—1)-

There are numerous variations, such as replacing [ < k steps with generation from a single
[—dimensional subvector; see Amit and Grenander (1991), which can be useful when the com-

ponents of the subvector are highly correlated.
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The Gibbs sampling algorithm has proven to be extremely useful in a wide variety of statis-
tical contexts but particularly with hierarchical models in Bayesian analysis where it arises very
naturally. Integrals of enormous dimension have been successfully handled. For a number of ap-
plications see Gelfand and Smith (1990), Gelfand, Hills, Racine-Poon and Smith (1990), Gelfand,
Smith and Lee (1992) and Escobar (1994). Gibbs sampling requires algorithms for generating from
each of a set of conditional distributions and obtaining such algorithms can be a very difficult
problem. Sometimes, however, latent variables can be introduced, increasing the dimension of the
integral, but making the implementation of the algorithm much simpler. This technique is based
on ideas in Tanner and Wong (1987). Further Gilks and Wild (1992) have developed an efficient
adaptive rejection generating algorithm for log-concave densities. A number of the standard dis-
tributions, and truncated versions of these, are log-concave. Algorithms which are a combination
of Metropolis and Gibbs steps can also be used to deal with the generating problem; see Mueller
(1991). As pointed out in Gelfand And Smith (1990) Gibbs sampling leads to efficient estimates of
marginal densities via the technique of Rao-Blackwellization. For example, if we want to estimate
the marginal density p; of the first coordinate then for realizations 64,...,8, of the chain we use
() =+ SN pi(x|0i g, ..., 0:%). In general the Metropolis algorithm does not seem to provide
such straight-forward density estimates.

Various mathematical convergence results for Markov chain methods have been obtained; see
Tierney (1991), Schervish and Carlin (1992), Polson (1993) and Baxter and Rosenthal (1994).
Convergence can be very slow, however. For a simple example of this, involving Gibbs sampling
and a function f with two modes, see Evans, Gilula and Guttman (1993). Typically when f is
unimodal with roughly ellipsoidal contours, experience suggests that a reasonable Markov chain
algorithm will do well. Once again the issue of parameterization is extremely important; see

Wakefield (1992) for more discussion of this issue.
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The practical assessment of the convergence of the Markov chain to stationarity is a difficult
problem. Typically this is done by monitoring estimates of characteristics of the stationary dis-
tribution p that can be represented as expectations or monitoring estimates of marginal densities.
Convergence is claimed when these estimates stabilize for a number of iterations. It is not un-
common, however, for a chain to have appeared to have converged when in fact it is far from its
stationary distribution; see Gelman and Rubin (1992). If p is multimodal then the chain can spend
long periods in regions near a single mode. Further the outcomes in the Markov chain are corre-
lated. If these serial correlations are high then we can see stable results even when we are far from
stationarity. To detect the problem it seems sensible to start chains at a variety of starting values
and check to see if the characteristics being monitored agree. This is part of the recommendation
in Gelman and Rubin (1992) and it is analogous to running an optimization routine with a number
of starting values to check for local optima. For an alternative view on this see Geyer (1992).
The convergence diagnostics of Zellner and Min (1994), where we compare estimates with known
quantities such as a ratio p(61)/p(62), also seem very sensible. The methods described in Rosenthal
(1994), for achieving a bound on the total variation distance between the stationary distribution
and the distribution of the N — th state, also work in particular examples.

Another issue is the choice of a method for assessing the accuracy of estimates. When the
process m(6y), m(6z),. .. is stationary then results in Brockwell and Davis (1991) establish, with
additional conditions, that SN m(8;) ~ AN (R(m), %02) where 0% =370 (i) and 7., (1)
is the autocovariance at lag ¢. A relatively simple approach to estimating o2 is to use the method
of batching. For this we divide the series m(#y),..., m(fx) into nonoverlapping batches of size [,
calculate the mean in each batch and then estimate o2/l using the sample variance obtained from
the batch means. The batch size [ must be chosen large enough so that the batch means have

low serial correlations but not so large as to leave few degrees of freedom for the estimation of
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o?. Alternatively we can estimate R(m) by taking the average of every [ — th value of the chain
for N iterations. The asymptotic variance of this estimate is 7,,(0)/N, provided [ is large enough
to eliminate correlations, and v,,(0) is estimated by the sample variance. If we must take [ large
then this method can be very expensive. Also, as shown in MacEachern and Berliner (1994), this
estimate of R(m) always has variance at least as large as the estimate obtained from using the
whole chain. For more on these and other methods for estimating o2 see Bratley, Fox and Schrage
(1983), Ripley (1987), Geweke (1991), Geyer (1992) and Mykland, Tierney and Yu (1992).

We implemented several Markov chain algorithms on the examples of Section 2. It is often
recommended that an initial part of the chain be discarded before begining estimation so that
the chain has approximately achieved stationarity. This is sometimes called burn-in. In all of the
examples this made very little difference and so it was ignored.

Example 1. Table 6 gives the results of Gibbs sampling. The generating problem was solved, as in

Verdinelli and Wasserman (1991), by adding the independent latent variables u;; ~ N(0,1),v;; ~

Gamma(A/2) for ¢ = 1,...,9 and j = 1,...,5 such that z; = %\;—;L ~ Student*(A). The
ij
posterior of (81, ..., 9,0, v11,...,v95) is proportional to
9 5 2
—nk— 1 2 Yis — ﬂ) At1 4 .
nk—1 I . vJ ? 2 vig
o gjl;[lexp{ 2(/\_2)%]( . }vw e

Then denoting, for example, the conditional distribution of 3; given the remaining variables by
B1|-, we have that
ijl%yw A—2 5 -1,
il ~ N (W’T (Zj=1 vu) >
-1
A (ﬁ i1 25— vij(yij — ﬁz’)Q) Gamma(45/2),
1

v~ [ﬁ (y”g;ﬁ’)z + 1]_ Gamma (AQLI) .

This Gibbs sampler ran for approximately 50 seconds so that it used an equivalent amount of time
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i | R(6:) R(6:) R(6?) (62)
1 2.043 2.042 (.00 ) 4.263 4.260 (.002)
2 | 0.095 0.094(.015) 0.081 0.081 (.008)
4 | 0.018 0.015(.088) 0.069 0.069 (.008)
10 | -0.073  -0.073 (.019) 0.033 0.033 (.010)

Table 6: Gibbs sampling estimates and the estimated absolute coefficients of variation in Example
1 where R denotes the exact posterior expectation and R denotes the Gibbs sampling estimate.

as the other Monte Carlo algorithms. This required N = 50,000 steps in the chain. The standard
errors were estimated using batch size [ = 100. We also tried ! = 1000 and there was very little
change in the estimates.

We also ran the Metropolis independence chain, using the importance sampler of Section 4.
To provide a fair comparison with other methods we ran this for N = 10° steps. The standard
errors were estimated using batch size [ = 100 and the results were similar for [ = 1000. This
algorithm was substantially less accurate than Gibbs sampling. For example, the estimates and
estimated absolute coefficients of variation, R(64) = .015(.206) and R(#19) = —.071(.027) were
obtained. There was evidence of substantial serial correlation as the estimates of the standard
errors for [ = 20 were very different. This was not the case with the Gibbs sampling algorithm.
The acceptance rate for this algorithm; i.e. the proportion of generated values that resulted in
a move for the chain, was .28. We also ran the random walk Metropolis chain and rescaled the
variance by 2.4/4/10, following the advice given in Gelman, Roberts and Gilks (1994). Again we
ran this for N = 10° steps and estimated the standard errors using batch size [ = 100. The random
walk chain gave less accuracy than the independence chain. The acceptance rate for this algorithm
was .33. Varying the degrees of freedom for the Student produced only minor differences.
Example 2. For this problem we could not find an easily implemented Gibbs algorithm. We ran

the Metropolis independence chain based on the starting importance sampler used in Section 5 for

32



N = 10° steps and estimated standard errors using a batch size of [ = 100. This produced the
estimates and estimated coefficients of variation, R(f) = .419(.002) and R(6?) = .179(.003). Note
that in both cases the true values of .422 and .181 are further than 3 standard errors from the
estimate. This problem disappeared when we took [ = 1000 as expected.

Example 3. We could not find a feasible Markov chain algorithm for this problem.

8. Conclusions

First we consider the relative performance of the various integration algorithms on the exam-
ples; then we will draw some general conclusions from our study. In Example 1, all the methods
worked well except for subregion adaptive integration. Gibbs sampling and adaptive importance
sampling were roughly equivalent with respect to efficiency, but Gibbs sampling is arguably easier
to code here. We recommend Gibbs sampling in this context but note that if there is interest
in estimating the norming constant, then adaptive importance sampling is the better choice be-
cause Gibbs sampling does not easily provide such an estimate. In Example 2, all the methods
worked reasonably well but the subregion adaptive algorithm was again time consuming and we
could not find an easily implemented Gibbs sampling algorithm. Adaptive importance sampling
and the Metropolis independence chain were most efficient and roughly equivalent. The Metropolis
algorithm suffered from high correlations, however. There is no saving in computational time or in
programming time for this Markov chain algorithm over adaptive importance sampling here as both
require maximizing f. In Example 3, subregion adaptive is by far the best and is our recommended
algorithm although adaptive importance sampling also performed quite well.

The Laplace approach works well when it is applicable. Example 3 indicates that it is not
always easy to apply the Laplace approximation in a given problem. Further it is clear that
there is a close association between the success of the Laplace methods and the adequacy of the

normal approximation to the integrand. Reparameterizatons then are recommended to ensure, for
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example, that variables range over appropriate domains. At this point there is no methodology
specifying a reparameterization for a particular problem. However, general recommendations, such
as taking logs of nonnegative variables, should be helpful. In some problems, such as FExample
2, more complicated reparameterizations are necessary. Computations are virtually instantaneous,
but it can be extremely time consuming to code derivatives. Although there are optimization
routines that numerically compute the derivatives, our experimentation with these sometimes lead
to unsatisfactory results. In general, asymptotic methods require derivatives; this is a limitation
of the methodology when the dimension is high and we do not have closed form expressions. The
most serious drawback of this method is the lack of error estimates. Further, to avoid the problems
associated with multimodality - and these occurred with both Examples 1 and 2 - it is necessary
to try a number of different starting values when searching for the global maximum.

The success of the importance sampling algorithm that we have used is also highly dependent
on having an integrand with a single dominant peak and approximately ellipsoidal contours. Of
course asymptotics suggest that this is not a rare occurrence in statistical contexts, but complicated
reparameterizations may often be necessary. It seems likely that Student importance sampling
will be successful in any context where the asymptotic methods work. Further it is likely that
the importance sampling algorithm will be more robust to deviations from ideal conditions than
asymptotic methods. With this in mind, it is our recommendation that any time asymptotic
methods are contemplated, then, at the very least, the Student importance sampling algorithm
should be implemented as a check. There will be contexts where the asymptotic methods have a
distinct practical advantage in terms of computation times, e.g. when there are many integrals to
approximate. But even in such an instance a few integrals should be checked. For us, the possibility
of obtaining useful assessments of the error in the approximation is an additional deciding factor

in favour of importance sampling over asymptotics. Of course importance sampling suffers from
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the same limitations with respect to derivatives as the asymptotic approaches, for it is always
recommended that the importance sampler be centered at the mode and be scaled by the inverse
Hessian at the mode. If more than one mode is found, then the methods of Oh and Berger (1993)
are a possibility. Further, and as our examples show, in any context where Student importance
sampling is going to be used, adaptive importance sampling is recommended because it leads
to improvements in accuracy. The additional computational cost required to adapt to means,
variances, and covariances is practically negligible.

For relatively low-dimensional problems, say & < 6, multiple quadrature is a competitive tech-
nique and is recommended for such problems. Again an appropriate parameterization is necessary.
For example, the iterative product-rule approach described in Naylor and Smith (1982) depends
on the validity of the normal approximation. When such an approximation is reasonable and the
dimension is low, this approach is preferable to importance sampling because the convergence is
much faster. The subregion adaptive algorithm is more robust to deviations in shape and yet is
still efficient for most low dimensional problems. It is our recommended algorithm for low dimen-
sions. As we have seen, particularily in Example 1, the curse of dimensionality remains a very big
stumbling block with this algorithm even when we seem to have an appropriate parameterization.
Of some concern is the inability of the user to predict how long the algorithm will run and the
fact that it sometimes indicates success when it has actually failed. Error estimates are extremely
conservative and for longer running examples, memory requirements can be substantial. We do not
recommend this algorithm for problems of even modest dimension.

In many Bayesian problems Gibbs sampling arises very naturally. Sometimes these problems
can involve thousands of dimensions and in such contexts it hard to imagine a competitor, simply
because of the difficulties of implementation. A distinct advantage for Gibbs sampling over adaptive

importance sampling is that there is no need to optimize first. In contexts where we have efficient
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algorithms for generating from the conditionals, we recommend Gibbs sampling but note that this
special structure is not enough to ensure rapid convergence. While there are many examples where
convergence is extraordinarily rapid, there are others where it is so slow as to be impractical. Char-
acterizing such contexts is an area of active and important research. Implementing Gibbs sampling
is generally straightforward but sometimes requires the derivation of complicated conditional dis-
tributions. Although the generality of Metropolis algorithms can provide decided advantages over
Gibbs sampling our experience with some of the more common implementations, as in Example
1, shows that this is not always the case. At this point we do not see Metropolis algorithms as
a general solution for high-dimensional integration problems, but research may lead to the design
of very efficient implementations for particular problems. Further we note that, as in Example 3,
it is not always straightforward to find a reasonable Markov chain algorithm. Considerable dis-
advantages of Markov chain algorithms include the need to diagnose convergence to stationarity
and the existence of serial correlations, as these substantially complicate error assessment. Some
of our examples indicated that large batch sizes are needed to avoid this effect when analyzing the
output using batching. This lack of independence is also true of adaptive importance sampling,
but in adaptive importance sampling a consistent estimator of the error is easily obtained. We
recommend parameterizing the problem to minimize the correlation effect, if possible.

There is well-tested software available for doing integrations. The NAG and IMSIL packages
contain routines, but also see Goel (1988) for a list of software primarly aimed at Bayesian problems.
In particular we mention SBAYES which implements Bayesian asymptotic methods, BAYES FOUR
which implements adaptive Hermite integration and adaptive importance sampling, BUGS which
implements Gibbs sampling, and ADBAYS for subregion adaptive integration. In general, it is our
view that a package aimed at solving practical integration problems should provide the user with

the option of using any of the methods we have discussed.
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Our study reveals advantages and disadvantages for each of the integration methods discussed
in this paper. For low dimensions, a multiple quadrature approach is likely to be best. For modest
dimensions, adaptive importance sampling or a Markov chain algorithm are good choices in well-
behaved problems. For very high dimensions, an algorithm that can exploit special features of the
integrand seems essential; e.g. Gibbs sampling when the full conditionals can be easily generated
from. Of course other considerations beyond efliciency, such as convenience, may influence the
choice of an approach. As for the crucial aspect of error assessment perhaps the best approach is
to approximate the integral by several very different methods. This approach, however, leaves us

with the question of what to do when results differ substantially.
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