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ABSTRACT

This paper considers three practical hypotheses involving the equicorrelation matrix for

grouped normal data. We obtain statistics and computing formulae for common test proce-

dures such as the score test and the likelihood ratio test. In addition, statistics and computing

formulae are obtained for various small sample procedures as proposed in Skovgaard (2001).

The properties of the tests for each of the three hypotheses are compared using Monte Carlo

simulations.
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1 Introduction

A common data structure in applied statistics occurs when a small number of multivari-

ate measurements are collected from a finite number of groups or classes. For example,

instruments known as computer-analyzed corneal topographers (CACT) are used to obtain

multivariate observations on curvature points where the sample size is typically around 10

(Viana, Olkin and McMahon 1993). In such situations, a parsimonious model for the covari-

ance matrix is desired. Also, in order to increase sample size, one may wish to combine data

from different sources (e.g. instruments). Therefore, there is a need to test the equality of

covariance matrices arising from different groups.

In this paper we consider tests of hypotheses regarding a special form of the covariance

matrix called the equicorrelation or intraclass correlation matrix. Such a covariance matrix

is suitable when subjects are related (such as a family or a litter of animals) or when mea-

surements are made repeatedly on the same subject. More formally, suppose that we have

samples of p-dimensional measurements fromK groups. Let ni be the number of observations

from group i = 1, 2, . . . , K and let n =
∑K
i=1 ni. Let

Xi =




xi11 xi12 . . . xi1p

xi21 xi22 . . . xi2p
...

...
...

...

xini1 xini2 . . . xinip




denote the i−th data matrix with x′ij = (xij1, xij2, . . . , xijp) as the vector of observations on

the j−th sample from group i. Assume

xij ∼ Np(µi1,Σi), i = 1, 2, . . . , K, j = 1, 2, . . . , ni

where 1 denotes the unit vector of dimension p and the equicorrelation or intraclass correla-

tion matrix is given by

Σi = σ2
i




1 ρi . . . ρi

ρi 1 . . . ρi
...

...
...

...

ρi ρi . . . 1




, (1 − p)−1 < ρi < 1.
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Note that for each group, the measurements share a common mean and correlation.

Although this is a restrictive structure, it is still appropriate in many contexts. The intraclass

correlation coefficient ρi measures the degree of resemblance between the members in the

i−th group. This covariance pattern also arises in the one-way random effects (within each

group i) linear model

xijk = µi + αij + εijk

where αij is the random effect due to the j−th unit from group i with E(αij) = 0, V ar(αij) =

σ2
iα, εijk is the random error with E(εijk) = 0, V ar(εijk) = σ2

iε and Cov(αij , εijk ) = 0. It is

easily seen that the covariance matrix of xij is Σi with σ2
i = σ2

iα+σ2
iε and ρi = σ2

iα/(σ
2
iα+σ2

iε)

(see, for example, Donner and Koval 1980).

We are interested in the following three practical hypotheses concerning the equicorrela-

tion matrix

Case 1: H01 : ρ1 = · · · = ρK

Case 2: H02 : σ1 = · · · = σK

Case 3: H03 : ρ1 = · · · = ρK , σ1 = · · · = σK

The Case 1 problem was first addressed by Konishi and Gupta (1989) using a maximum

likelihood approach with combined moment estimators for the common ρ. Paul and Barnwal

(1990) derived a score-type test based on Neyman’s C(α). While estimating the intraclass

correlation coefficient, Ahmed, Gupta, Khan and Nicol (2001) also derived a score-type test

statistic for the Case 1 problem. The Case 2 problem does not seem to have been studied.

For the Case 3 problem, Han (1975) obtained a modified likelihood ratio test.

Our main concern regarding the Case 1, Case 2 and Case 3 problems involves data sets

where the sample sizes are small. For small sample sizes, asymptotic tests such as those

described above may be inappropriate. For example, the actual type 1 error of a statistic

may differ considerably from its nominal level. In this regard, we have derived various small

sample tests based on the general theory of Skovgaard (2001) and we have compared these

tests to the standard tests. Some of these standard tests have not previously appeared in
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the literature and are derived here. This paper serves as a summary of the variety of tests

that one might consider in connection with the Case 1, Case 2 and Case 3 problems.

Small sample tests are typically derived by considering additional terms in asymptotic

expansions. These “corrections” attempt to hasten the convergence of statistics to their

asymptotic distributions. The downside of such corrections is that they sometimes involve

difficult calculations. Well known examples of correction terms include Bartlett and Edge-

worth series type corrections, saddlepoint corrections and the signed loglikelihood ratio cor-

rection. Reviews of asymptotic methods in statistics are given by Barndorff-Nielsen and

Cox (1994), Skovgaard (2001) and Reid (2003). Notably, Skovgaard (2001) generalized the

Barndorff-Nielsen (1991) correction to the multi-parameter case; we follow Skovgaard’s ap-

proach to derive small sample corrections for likelihood ratio tests involving equicorrelation

matrices.

In section 2, we provide a general description of the modified likelihood ratio test due

to Skovgaard (2001) and the score test. We also discuss unrestricted maximum likelihood

estimation for the problem considered in the paper. In sections 3, 4 and 5, Cases 1, 2

and 3 are discussed in detail with an emphasis on deriving asymptotic test procedures. In

section 6, simulation results are provided to compare the various tests under each of the

three hypotheses.

2 PRELIMINARIES

2.1 The Skovgaard Modifications

Suppose that a random variable X belongs to the exponential family having a density of

the form f(x; θ) = b(x) exp{θ′t(x) − κ(θ)}. Then θ is called the canonical parameter and

t is the corresponding canonical sufficient statistic. Let ω
′

= (ν
′

, ψ
′

) be a (possibly non-

linear) function of θ where ψ
′

= (ψ1, . . . , ψq) is the vector of parameters of interest and

ν
′

= (ν1, . . . , νr−q) is a vector of nuisance parameters. Suppose one is interested in testing

the null hypothesis H0 : ψ1 = · · · = ψq = ψ0 (unspecified). Let ω̂
′

= (ν̂
′

, ψ̂
′

) denote the

maximum likelihood (ML) estimate of the full parameter vector and ω̃
′

0 = (ν̃
′

, ψ̃
′

0) be the
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maximum likelihood estimate of the free parameters under the null hypothesis. Let ℓ(ω̂) and

ℓ(ω̃0) be the corresponding maximum values of the loglikelihood. Denote Jνν and Iνν as the

observed and expected Fisher information matrices for the ν-part of the parameter vector

and let J̃νν and Ĩνν denote the corresponding estimates obtained by replacing the unknown

parameter values by their restricted ML estimates. Further, let τ and Ω denote the mean and

variance matrix of t; τ̃ and Ω̃ are the corresponding estimates when the unknown parameters

are replaced by the restricted ML estimates and Ω̂ is the estimate under unrestricted ML

estimation.

Let w = 2(ℓ(ω̂)− ℓ(ω̃0)) denote the likelihood ratio test statistics for testingH0. Following

Skovgaard (2001), we define

δ =
{(t− τ̃ )′Ω̃−1(t− τ̃)}(q−1)/2

w(q−1)/2−1(θ̂ − θ̃)′(t− τ̃ )

(
|Ω̃||J̃νν |
|Ω̂||Ĩνν |

)1/2

. (1)

The corrected likelihood ratio is then given by

w∗ = w
(
1 − w−1 ln δ

)2
(2)

where it is hoped that w∗ ∼ χ2
q−1 is a better approximation under H0 than the likelihood

ratio test w ∼ χ2
q−1. Another corrected χ2

q−1 test statistic (Skovgaard 2001) is

w∗∗ = w − 2 ln δ (3)

which may assume a negative value, especially when w is small.

2.2 The Score Test

The score test is attractive for its relative simplicity of computations as we need maximum

likelihood estimation only under the null hypothesis. For the r-dimensional parameter vector

ω′ = (ν
′

, ψ
′

), let U ′ = (U
′

ν , U
′

ψ) be the score vector where

Uν =
∂ℓ

∂ν
, Uψ =

∂ℓ

∂ψ
.

Then under the null hypothesis H0 : ψ1 = · · · = ψq = ψ0,
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U ∼ Nr


0,



T S ′

S R





 ,

where T is a (r − q) × (r − q) matrix with

T (i, j) = −E
(

∂2ℓ

∂νi∂νj

)∣∣∣∣∣
H0

,

S is a q × (r − q) matrix with

S(i, j) = −E
(

∂2ℓ

∂ψi∂νj

)∣∣∣∣∣
H0

and R is a q × q matrix with

R(i, j) = −E
(

∂2ℓ

∂ψi∂ψj

)∣∣∣∣∣
H0

.

The score test statistic is then given by

ξ = U ′
ψ(R− ST−1S

′

)−1Uψ

and under the null hypothesis, ξ is asymptotically distributed as χ2
q−1. Note that all the

terms involved in ξ are evaluated at the ML estimates of ω under H0. In this paper, we

compare the performance of the score test with other tests using Monte Carlo simulations.

2.3 Unrestricted Maximum Likelihood Estimation

In Cases 1, 2 and 3, tests in this paper require maximum likelihood estimation under the

alternative hypotheses. We refer to this as unrestricted maximum likelihood estimation. Let

A be the p× p matrix

A =




1
p

1
p

1
p

. . . 1
p

1
p

1√
2

− 1√
2

0 . . . 0 0

1√
6

1√
6

− 2√
6

. . . 0 0
...

...
...

...
...

...

1√
p(1−p)

1√
p(1−p)

1√
p(1−p)

. . . 1√
p(1−p)

− (p−1)√
p(1−p)




.
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Define Zi = XiA
′, i = 1, 2, . . . , K or equivalently, zij = Axij , i = 1, 2, . . . , K, j =

1, 2, . . . , ni. Then zij ∼ Np(µ
∗
i
,Σ∗

i ), where

µ∗
i

=




µi

0
...

0




,Σ∗
i = AΣiA

′ = σ2
i




ρi + p−1(1 − ρi) 0 0 . . . 0 0

0 1 − ρi 0 . . . 0 0

0 0 1 − ρi 0 . . . 0
...

...
...

...
...

...

0 0 0 . . . 0 1 − ρi




.

Note that zij1 ∼ N (µi, σ
2
i {ρi + p−1(1 − ρi)}) and zij2, . . . , zijp

iid∼ N (0, σ2
i {1 − ρi}) , i =

1, 2, . . . , K ; j = 1, 2, . . . , ni. Also, zij1 is independent of zij2, . . . , zijp.

The log-likelihood in terms of µi, σi and ρi is

ℓ = ℓ(µ1, . . . , µK , σ
2
1, . . . , σ

2
K , ρ1, . . . , ρK)

= −1

2
p

K∑

i=1

ni ln σ
2
i −

1

2

K∑

i=1

ni ln{ρi + p−1(1 − ρi)} −
1

2
(p− 1)

K∑

i=1

ni ln(1 − ρi)

−
K∑

i=1

ni∑

j=1

(zij1 − µi)
2

2σ2
i {ρi + p−1(1 − ρi)}

−
K∑

i=1

ni∑

j=1

p∑

k=2

z2
ijk

2σ2
i (1 − ρi)

It follows that the ML estimates µ̂i, σ̂
2
i and ρ̂i of µi, σ

2
i and ρi are given by

µ̂i =
1

ni

ni∑

j=1

zij1

σ̂2
i =

∑ni

j=1(zij1 − µ̂i)
2

nip{ρ̂i + p−1(1 − ρ̂i)}
+

∑ni

j=1

∑p
k=2 z

2
ijk

nip(1 − ρ̂i)

and

ρ̂i =
p
∑ni

j=1(zij1 − µ̂i)
2 − (p− 1)−1∑ni

j=1

∑p
k=2 z

2
ijk

p
∑ni

j=1(zij1 − µ̂i)
2 +

∑ni

j=1

∑p
k=2 z

2
ijk

. (4)

3 CASE 1: H01 : ρ1 = · · · = ρK

The Case 1 problem with grouped normal data has been well studied in the literature. We

fill in some gaps concerning the likelihood ratio test and derive the Skovgaard (2001) test.

For comparison purposes, we present the score test (Paul and Barnwall 1990).
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3.1 Likelihood Ratio Test

Under the hypothesis H0 : ρ1 = ρ2 = · · · = ρK = ρ (an unspecified value), the log-likelihood

is

ℓ0 = ℓ0(µ1, . . . , µK , σ
2
1, . . . , σ

2
k, ρ)

= −1

2
p

K∑

i=1

ni ln σ
2
i −

1

2
n ln{ρ+ p−1(1 − ρ)} − 1

2
n(p− 1) ln(1 − ρ)

−
K∑

i=1

ni∑

j=1

(zij1 − µi)
2

2σ2
i {ρ+ p−1(1 − ρ)} −

K∑

i=1

ni∑

j=1

p∑

k=2

z2
ijk

2σ2
i (1 − ρ)

.

The maximum likelihood estimates for µi and σ2
i are given by

µ̃i =
1

ni

ni∑

j=1

zij1 = µ̂i

and

σ̃2
i =

∑ni

j=1(zij1 − µ̃i)
2

nip{ρ̃+ p−1(1 − ρ̃)} +

∑ni

j=1

∑p
k=2 z

2
ijk

nip(1 − ρ̃)
. (5)

The score equation for ρ

U(ρ) =
∂ℓ0
∂ρ

= − n(p− 1)

2p{ρ+ p−1(1 − ρ)} +
n(p− 1)

2(1 − ρ)
+

(p− 1)
∑K
i=1

∑ni

j=1(zij1 − µi)
2/σ2

i

2p{ρ+ p−1(1 − ρ)}2

− 1

2(1 − ρ)2

K∑

i=1

ni∑

j=1

p∑

k=2

z2
ijk/σ

2
i = 0

does not admit an explicit solution. Estimates are obtained by the scoring method

ρ(m+1) = ρ(m) +
U(ρ(m))

I(ρ(m))
, m = 0, 1, . . . (6)

where I(ρ) = −E
(
∂2ℓ0
∂ρ2

)
is the Fisher information. To obtain the Fisher information, we

have

∂2ℓ0
∂ρ2

=
n(p− 1)2

2p2{ρ+ p−1(1 − ρ)}2
+
n(p− 1)

2(1 − ρ)2
−(p− 1)2∑K

i=1

∑ni

j=1(zij1 − µi)
2/σ2

i

p2{ρ+ p−1(1 − ρ)}3
−
∑K
i=1

∑ni

j=1

∑p
k=2 z

2
ijk/σ

2
i

(1 − ρ)3
.

Since E(zij1 − µi)
2 = σ2

i {ρ+ p−1(1 − ρ)} and E(z2
ijk) = σ2

i (1 − ρ), it follows that

I(ρ) = −E
(
∂2ℓ0
∂ρ2

)
=

n(p− 1)2

2p2{ρ+ p−1(1 − ρ)}2
+
n(p− 1)

2(1 − ρ)2
.

We summarize the estimation procedure for µ1, . . . , µK , σ2
1, . . . , σ

2
K and ρ in the following

algorithm:
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1. Let m = 0 and ρ(0) =
∑K
i=1 ρ̂i/K where ρ̂i is given by (4).

2. Let (σ2
i )

(m)
be the m−th approximation to σ̃2

i obtained by substituting ρ(m) for ρ in

(5).

3. Calculate ρ(m+1) using (6) where (σ2
i )

(m)
and ρ(m) replace σ2

i and ρ respectively.

4. Let m = m+ 1

5. If |U(ρ(m))| < 10−6 then stop. Else, go to step 2 and continue.

In all of the simulations that we have considered, we have not experienced any difficulty with

the above algorithm.

Let ℓ̂ = ℓ(ω̂) = ℓ(µ̂1, . . . , µ̂K , σ̂
2
1, . . . , σ̂

2
K , ρ̂1, . . . , ρ̂K) and ℓ̂0 = ℓ0(ω̃0) = ℓ0(µ̃1, . . . , µ̃K , σ̃

2
1, . . . , σ̃

2
K , ρ̃)

be the maximized values of the loglikelihood. Then, under the null hypothesis H0, the likeli-

hood ratio test statistic w = 2(ℓ̂− ℓ̂0) follows the chi-square distribution with (K−1) degrees

of freedom for large sample sizes.

3.2 Modified Likelihood Ratio Tests

In the following, we derive the Skovgaard (2001) modifications to the likelihood ratio test

statistic which is intended to provide more accurate inference in small-sample situations. For

our problem, the canonical parameter θ = (θ1, . . . , θK , θK+1, . . . , θ2K , θ2K+1, . . . , θ3K) and

canonical sufficient statistic t = (t1, . . . , tK , tK+1, . . . , t2K , t2K+1, . . . , t3K) are as follows

θi =
1

λ2
i

, ti = −
ni∑

j=1

z2
ij1/2 ,

θK+i =
µi
λ2
i

, tK+i =
ni∑

j=1

zij1,

θ2K+i =
1

β2
i

, t2K+i = −
ni∑

j=1

p∑

k=2

z2
ijk/2

where i = 1, . . . , K, λ2
i = σ2

i {ρi + p−1(1 − ρi)} and β2
i = σ2

i (1 − ρi). Then the terms in

τ = E(t) are

τ i = −niE(z2
ij1)/2 = −ni(µ2

i + λ2
i )/2 ,
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τK+i = niE(zij1) = niµi ,

τ 2K+i = −ni(p− 1)E(z2
ij2)/2 = −ni(p− 1)β2

i /2

and the elements in Ω = V ar(t) are

Ω(i, i) = ni V ar(z
2
ij1)/4 = ni(λ

2
i + 2µ2

i )λ
2
i /2 ,

Ω(K + i,K + i) = niV ar(Zij1) = niλ
2
i ,

Ω(2K + i, 2K + i) = ni(p− 1)V ar(z2
ij2)/4 = ni(p− 1)β4

i /2 ,

Ω(K + i, i) = Ω(K + i, i) = Cov


−

ni∑

j=1

z2
ij1,

ni∑

j=1

zij1


 /2 = −niµiλ2

i

where i = 1, . . . , K. All the other covariances are zero.

In order to obtain the Skovgaard (2001) term δ in (1), we need to evaluate J̃νν and Ĩνν
for the nuisance parameter ν

′

= (µ1, . . . , µK , σ
2
1, . . . , σ

2
K) . We have

J̃ (µi, µi) = − ∂2ℓ

∂µ2
i

∣∣∣∣∣
ω=ω̃

=
ni

σ̃2
i {ρ̃+ p−1(1 − ρ̃)} ,

J̃ (µi, σ
2
i ) = − ∂2ℓ

∂µi∂σ
2
i

∣∣∣∣∣
ω=ω̃

=

∑ni

j=1(zij1 − µ̃i)

σ̃4
i {ρ̃+ p−1(1 − ρ̃)} = 0,

J̃ (σ2
i , σ

2
i ) = − ∂2ℓ

∂σ4
i

∣∣∣∣∣
ω=ω̃

= −nip

2σ̃4
i

+

∑ni

j=1(zij1 − µ̃i)
2

σ̃6
i {ρ̃+ p−1(1 − ρ̃)} +

∑ni

j=1

∑p
k=2 z

2
ijk

σ̃6
i (1 − ρ̃)

=
nip

2σ̃4
i

using equation (5).

In addition, J̃ (µi, µj) = J̃ (µi, σ
2
j) = J̃ (σ2

i , σ
2
j) = 0, i 6= j since

∂2ℓ

∂µi∂µj
=

∂2ℓ

∂σ2
i∂σ

2
j

=
∂2ℓ

∂µi∂σ
2
j

= 0, i 6= j.

Further,

Ĩ(µi, µi) = −E
(
∂2ℓ

∂µ2
i

)∣∣∣∣∣
ω=ω̃

=
ni

σ̃2
i {ρ̃+ p−1(1 − ρ̃)} ,

Ĩ(µi, σ
2
i ) = −E

(
∂2ℓ

∂µi∂σ
2
i

)∣∣∣∣∣
ω=ω̃

= 0 ,

Ĩ(σ2
i , σ

2
i ) = −E

(
∂2ℓ

∂σ4
i

)∣∣∣∣∣
ω=ω̃

=
nip

2σ̃4
i

,

Ĩ(µi, µj) = Ĩ(µi, σ
2
j) = Ĩ(σ2

i , σ
2
j) = 0, i 6= j.

Note that as J̃νν = Ĩνν , it is not necessary to evaluate |Ĩνν | and |J̃νν | as they cancel out in

δ.
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3.3 Score Test

In order to evaluate the score test statistic

ξ = U ′
ψ

(
R− ST−1S ′

)−1
Uψ

we require the vector of scores U ′
ψ = (U1, . . . , UK) where

Ui =
∂ℓ

∂ρi

∣∣∣∣∣
ω=ω̃

and the K ×K matrix R, the K × 2K matrix S and the 2K × 2K matrix T where

R(i, j) = −E
(

∂2ℓ

∂ρi∂ρj

)∣∣∣∣∣
ω=ω̃

,

S(i, j) = −E
(

∂2ℓ

∂ρi∂µj

)∣∣∣∣∣
ω=ω̃

,

S(i,K + j) = −E
(

∂2ℓ

∂ρi∂σ
2
j

)∣∣∣∣∣
ω=ω̃

,

T (i, j) = −E
(

∂2ℓ

∂µi∂µj

)∣∣∣∣∣
ω=ω̃

,

T (i,K + j) = TK+i j = −E
(

∂2ℓ

∂µi∂σ
2
j

)∣∣∣∣∣
ω=ω̃

,

T (K + i,K + j) = −E
(

∂2ℓ

∂σ2
i∂σ

2
j

)∣∣∣∣∣
ω=ω̃

.

Explicit expressions for the components of ξ are given by

Ui = − ni
2{ρ+ p−1(1 − ρ)} − ni(p− 1)

2(1 − ρ)
+

(p− 1)
∑ni

j=1(xij − x̄i)
2

2pσ2
i {ρ+ p−1(1 − ρ)}2

−
∑ni

j=1

∑p
k=2 z

2
ijk

2σ2
i (1 − ρ)2

,

R = diag

(
3ni(p− 1)

2(1 − ρ)2
− ni(3p− 2)(p− 1)

2p2{ρ+ p−1(1 − ρ)}2

)

K ×K

,

S =
[

0K ×K diag
(
− ni(p−1)ρ

2σ2

i
(1−ρ){ρ+p−1(1−ρ)}

)

K ×K

]
,

T =




diag
(
− ni

σ2

i
{ρ+p−1(1−ρ)}

)

K ×K
0K ×K

0K×K diag
(
nip
2σ4

i

)

K ×K


 .

As the matrices R, S and T have a special structure, the inverses required in the score

test statistic ξ can be easily computed.
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4 CASE 2: H02 : σ1 = · · · = σK

As mentioned previously, there has been considerable amount of work directed at the Case

1 problem. The Case 2 problem does not seem to have been studied. It is conceivable

that group correlations may differ yet group variances may be the same. For example, if

the same type of instruments are used across groups and the source of variability is due to

measurement error, then group variances are comparable. However, if additional sources of

variability are at play, then H02 may be false. For the three Case 2 statistics that follow, the

asymptotic distributions follow a χ2
K−1distribution.

4.1 Likelihood Ratio Test

Under H02 : σ1 = · · · = σK = σ (an unspecified value), the log-likelihood is

ℓ0 = ℓ0(µ1, . . . , µK , σ
2, ρ1, . . . , ρK)

= −1

2
np ln σ2 − 1

2

K∑

i=1

ni ln{ρi + p−1(1 − ρi)} −
1

2
(p− 1)

K∑

i=1

ni ln(1 − ρi)

−σ−2
K∑

i=1

ni∑

j=1

(zij1 − µi)
2

2{ρi + p−1(1 − ρi)}
− σ−2

K∑

i=1

ni∑

j=1

p∑

k=2

z2
ijk

2(1 − ρi)

The maximum likelihood estimates for µ1, . . . , µK and σ2 are given by

µ̃i =
1

ni

ni∑

j=1

zij1 = µ̂i

and

σ̃2 =
1

np

K∑

i=1

ni∑

j=1

{
(zij1 − µ̃i)

2

{ρ̃i + p−1(1 − ρ̃i)}
+

p∑

k=2

z2
ijk

(1 − ρ̃i)

}
. (7)

The equations

∂ℓ0
∂ρi

= − ni(p− 1)

2p{ρi + p−1(1 − ρi)}
+
ni(p− 1)

2(1 − ρi)
+

(p− 1)
∑ni

j=1(zij1 − µi)
2

2pσ2{ρi + p−1(1 − ρi)}2
−
∑ni

j=1

∑p
k=2 z

2
ijk

2σ2(1 − ρi)
2

= 0

(8)

do not lead to an explicit solution for ρi, i = 1, . . . , K. To obtain the ML estimate ρ̃i of ρi

under H02, our first instinct was to use the scoring method . However, we experienced some

convergence problems. Instead, the method of bisection was successfully used on equation

(8). Because of the interdependence between σ̃2 and ρ̃i, the following algorithm was used for

estimation.

12



1. Let m = 0 and ρ
(0)
i = ρ̂i where ρ̂i is given by (4), i = 1, . . . , K.

2. Let (σ2)(m) be the m−th approximation to σ̃2 obtained by substituting ρ
(m)
i for ρi in

(7).

3. Calculate ρ
(m+1)
i using bisection on (8) where (σ2)

(m)
replaces σ2, i = 1, . . . , K.

4. Let m = m+ 1

5. If |∂ℓ0
∂ρ

i

| < 10−6 for i = 1, . . . , K then stop. Else, go to step 2 and continue.

The likelihood ratio test statistic is given by w = 2(ℓ̂ − ℓ̂0) where ℓ̂ is the maximized

unrestricted loglikelihood and ℓ̂0 is the maximized restricted loglikelihood.

4.2 Modified Likelihood Ratio Tests

Everything except the terms Ĩνν and J̃νν in the δ formula (1) remains the same as in Case

1. The matrices J̃νν and Ĩνν for the nuisance parameter ν
′

= (µ1, . . . , µK , ρ1, . . . , ρK) are as

follows. For i = 1, . . . , K,

J̃νν(i, i) = − ∂2ℓ

∂µ2
i

∣∣∣∣∣
ω=ω̃

=
ni

σ̃2{ρ̃i + p−1(1 − ρ̃i)}

J̃νν(i,K + i) = − ∂2ℓ

∂µiρi

∣∣∣∣∣
ω=ω̃

=
(p− 1)

∑ni

j=1(zij1 − µ̃i)

pσ̃2{ρ̃i + p−1(1 − ρ̃i)}2
= 0

J̃νν(K + i,K + i) = −∂2ℓ

∂ρ2
i

∣∣∣∣∣
ω=ω̃

= − ni(p− 1)2

2p2{ρ̃i − p−1(1 − ρ̃i)}2
− ni(p− 1)

2(1 − ρ̃i)
2

+
(p− 1)2∑ni

j=1(zij1 − µ̃i)
2

p2σ̃2{ρ̃i + p−1(1 − ρ̃i)}3
+ frac

ni∑

j=1

p∑

k=2

z2
ijkσ̃

2(1 − ρ̃i)
3.

All other terms are zero since

∂2ℓ

∂µi∂µj
=

∂2ℓ

∂ρi∂ρj
=

∂2ℓ

∂µi∂ρj
= 0, i 6= j.

For i = 1, . . . , K,

Ĩνν(i, i) = −E
(
∂2ℓ

∂µ2
i

)∣∣∣∣∣
ω=ω̃

=
ni

σ̃2{ρ̃i + p−1(1 − ρ̃i)}

Ĩνν(i,K + i) = −E
(

∂2ℓ

∂µi∂ρi

)∣∣∣∣∣
ω=ω̃

= 0

Ĩνν(K + i,K + i) = −E
(
∂2ℓ

∂ρ2
i

)∣∣∣∣∣
ω=ω̃

=
ni(p− 1)2

2p2{ρ̃i + p−1(1 − ρi)}2
+
ni(p− 1)

2(1 − ρ̃i)
2
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and all other terms are zero.

4.3 Score Test

The score vector Uψ and the matrices R, S and T are given by the following expressions

where i, j = 1, . . . , K.

Ui =
∂ℓ

∂σ2
i

∣∣∣∣∣
ω=ω̃

= −nip

2σ̃2 +

∑ni

j=1(zij1 − µi)
2

2σ̃4{ρ̃i + p−1(1 − ρ̃i)}
+

∑ni

j=1

∑p
k=2 z

2
ijk

2σ̃4(1 − ρ̃i)
,

R(i, i) = −E
(
∂2ℓ

∂σ4
i

)∣∣∣∣∣
ω=ω̃

=
nip

2σ̃4 ,

R(i, j) = −E
(

∂2ℓ

∂σ2
i ∂σ

2
j

)∣∣∣∣∣
ω=ω̃

= 0, i 6= j ,

S(i, i) = −E
(

∂2ℓ

∂σ2
i∂µi

)∣∣∣∣∣
ω=ω̃

= 0 ,

S(i,K + i) = −E
(

∂2ℓ

∂σ2
i∂ρi

)∣∣∣∣∣
ω=ω̃

=
(p− 1)ni

2pσ̃2{ρ̃i + p−1(1 − ρ̃i)}
− (p− 1)ni

2σ̃2(1 − ρ̃i)
,

S(i, j) = −E
(

∂2ℓ

∂σ2
i∂µj

)∣∣∣∣∣
ω=ω̃

= 0, i 6= j ,

S(i,K + j) = −E
(

∂2ℓ

∂σ2
i ∂ρj

)∣∣∣∣∣
ω=ω̃

= 0, i 6= j,

T (i, j) = −E
(

∂2ℓ

∂νi∂νj

)∣∣∣∣∣
ω=ω̃

= Ĩνν(i, j)

where Ĩνν is given in Subsection 4.2.

The score statistic for testing H02 : σ1 = · · · = σK is then given by

ξ = U ′
ψ(R− ST−1S ′)−1Uψ.
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5 CASE 3: H03 : σ1 = · · · = σK, ρ1 = · · · = ρK

Since H01(Case1) and H02 (Case2) are common hypotheses of interest with respect to the

grouped normal data problem, it follows that the composite hypothesis H03 is also of interest.

Although there have been a number of test procedures proposed for H03 (Han 1975), we

make use of the methodologies developed for Cases 1 and 2 to derive the Skovgaard (2001)

modifications. The likelihood ratio test and the score test are presented for comparison

purposes. For the three Case 3 statistics that follow, the asymptotic distributions follow a

χ2
2K−2distribution.

5.1 Likelihood Ratio Test

Under H03 : σ1 = · · · = σK = σ and ρ1 = · · · = ρK = ρ, the log-likelihood is

ℓ0 = ℓ0(µ1, . . . , µK , σ
2, ρ)

= −1

2
np ln σ2 − 1

2
n ln{ρ+ p−1(1 − ρ)} − 1

2
n(p− 1) ln(1 − ρ)

− 1

2σ2{ρ+ p−1(1 − ρ)}
K∑

i=1

ni∑

j=1

(zij1 − µi)
2 − 1

2σ2(1 − ρ)

K∑

i=1

ni∑

j=1

p∑

k=2

z2
ijk.

The ML estimates are given by

µ̃i =
1

ni

ni∑

j=1

zij1 = µ̂i ,

σ̃2 =
1

np

K∑

i=1

ni∑

j=1

{
(zij1 − µ̃i)

2

ρ̃+ p−1(1 − ρ̃)
+

p∑

k=2

z2
ijk

(1 − ρ̃)

}
,

ρ̃ =
p
∑K
i=1

∑ni

j=1(zij1 − µ̃i)
2 − (p− 1)−1∑K

i=1

∑ni

j=1

∑p
k=2 z

2
ijk

p
∑K
i=1

∑ni

j=1(zij1 − µ̃i)
2 +

∑K
i=1

∑ni

j=1

∑p
k=2 z

2
ijk

.

5.2 Modified Likelihood Ratio Tests

For the Skovgaard (2001) modifications, the matrices J̃νν and Ĩνν for the nuisance parameter

ν
′

= (µ1, . . . , µK) are as follows

J̃νν(i, i) = − ∂2ℓ

∂µ2
i

∣∣∣∣∣
ω=ω̃

=
n

σ̃2{ρ̃+ p−1(1 − ρ̃)} ,

J̃νν(i, j) = − ∂2ℓ

∂µi∂µj

∣∣∣∣∣
ω=ω̃

= 0, i 6= j,
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Ĩνν(i, i) = −E
(
∂2ℓ

∂µ2
i

)∣∣∣∣∣
ω=ω̃

=
n

σ̃2{ρ̃+ p−1(1 − ρ̃)} ,

Ĩνν(i, j) = −E
(

∂2ℓ

∂µi∂µj

)∣∣∣∣∣
ω=ω̃

= 0, i 6= j.

Note that Ĩνν = J̃νν providing a simplification in the δ formula (1).

5.3 Score Test

The score vector U
′

ψ = (U1, . . . , U2K) and the matrices R and S are given by

Ui =
∂ℓ

∂σ2
i

∣∣∣∣∣
ω=ω̃

= −nip

2σ̃2 +

∑ni

j=1(zij1 − µi)
2

2σ̃4{ρ̃+ p−1(1 − ρ̃)} +

∑ni

j=1

∑p
k=2 z

2
ijk

2σ̃4(1 − ρ̃)
,

UK+i =
∂ℓ

∂ρi

∣∣∣∣∣
ω=ω̃

= − ni(p− 1)

2p{ρ̃+ p−1(1 − ρ̃)}+
ni(p− 1)

2(1 − ρ̃)
+

(p− 1)
∑ni

j=1(zij1 − µi)
2

2pσ̃2{ρ̃+ p−1(1 − ρ̃)}2
−
∑ni

j=1

∑p
k=2 z

2
ijk

2σ̃2(1 − ρ̃)2
,

R(i, i) = −E
(
∂2ℓ

∂σ4
i

)∣∣∣∣∣
ω=ω̃

=
nip

2σ̃4 ,

R(i,K + i) = R(K + i, i) = −E
(

∂2ℓ

∂σ2
i∂ρi

)∣∣∣∣∣
ω=ω̃

=
(p− 1)ni

2pσ̃2{ρ̃+ p−1(1 − ρ̃)} − (p− 1)ni
2σ̃2(1 − ρ̃)

,

R(K + i,K + i) = −E
(
∂2ℓ

∂ρ2
i

)∣∣∣∣∣
ω=ω̃

=
n(p− 1)2

2p2{ρ̃+ p−1(1 − ρ̃)}2
+
n(p− 1)

2(1 − ρ̃)2

and all other terms are zero since

E

(
∂2ℓ

∂σ2
i ∂σ

2
j

)∣∣∣∣∣
ω=ω̃

= E

(
∂2ℓ

∂ρi∂ρj

)∣∣∣∣∣
ω=ω̃

= E

(
∂2ℓ

∂σ2
i∂ρj

)∣∣∣∣∣
ω=ω̃

= 0, i 6= j.

Further,

S = −E
(

∂2ℓ

∂ψi∂νj

)∣∣∣∣∣
ω=ω̃

= 0

since

E

(
∂2ℓ

∂σ2
i∂µi

)∣∣∣∣∣
ω=ω̃

= E

(
∂2ℓ

∂ρi∂µi

)∣∣∣∣∣
ω=ω̃

= 0,

E

(
∂2ℓ

∂σ2
i ∂µj

)∣∣∣∣∣
ω=ω̃

= E

(
∂2ℓ

∂ρi∂µj

)∣∣∣∣∣
ω=ω̃

= 0, i 6= j.

Then, the score statistic for testing H03 reduces to

ξ = U ′
ψ(R− ST−1S ′)−1Uψ = U ′

ψR
−1Uψ.
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6 SIMULATION RESULTS AND DISCUSSION

We present the results of some Monte Carlo simulations to investigate the adequacy of the

test statistics discussed in this paper. The following tables show the Type I error probabilities

of the likelihood ratio statistic (w), the modified likelihood ratio statistics (w∗ and w∗∗) and

the score statistic (ξ) based on N =100,000 simulations. In each case, we used the nominal

value 0.05 and note that the results are comparable for the nominal value 0.01.

In addition to investigating the Type I error rate, we are also interested in the adequacy

of the χ2 approximations over the entire range of the test statistics. To do so, we calculate

the Cramér-von Mises statistic (Anderson and Darling 1954)

W 2 = 1/(12N) +
∑

{Z(i) − (2i− 1)/(2N)}2

where Z(i) is the i−th order statistic corresponding to Z = F (Y ), F is the cumulative

distribution function (cdf) of the relevant χ2 distribution and Y is the test statistic obtained

when generating from the equicorrelation model in question. The Cramér-von Mises statistic

is one in the wide class of discrepancy measures given by the Cramér-von Mises family

Q = n
∫ ∞

−∞
(Fn(y) − F (y))2Ψ(y)dF (y)

where F and Fn = Fn(Y1, . . . , Yn) are the cdf and the empirical distribution function (edf)

respectively, and Ψ is a suitable function which gives weights to the squared difference

(Fn(y) − F (y))2. Larger values of the statistic Q (and in our case W 2), provide greater

evidence of the lack of fit between the data Y1, . . . , Yn and the proposed F . Theory and

practical issues associated with the Cramér-von Mises family of statistics are described in

detail in Stephens (1986).

The simulation results are presented in Tables 1, 2 and 3 for K = 5 groups where

n1 = · · · = nK . Before discussing the particular simulation results, we make some general

comments. It appears that when the sample size ni reaches 20, all four statistics are adequate

as the Type I error rates are close to the nominal values. Therefore, our discussion is focused

on small sample problems and we choose n1 = · · · = nK = 5. Also, except in a few instances,

the likelihood ratio statistic w is inferior to the w∗, w∗∗ and ξ. Finally, there seems to be

little difference in the results when the number of variables changes from p = 5 to p = 10.
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In Table 1, we present the simulation results with respect to the Case 1 scenario. The

w∗ and ξ statistics perform best with respect to the Type I error rate. However, our rec-

ommendation is the modified likelihood ratio statistic w∗ based on its superior goodness of

fit.

In Table 2, we present the simulation results with respect to the Case 2 scenario. We

observe that the performance of all of the test statistics depends on the correlation ρi.

Notably, w∗, w∗∗ and ξ perform worse at the extreme values of ρi. Again, our recommendation

is w∗ although its performance is not as good as in Case 1.

In Table 3, we present the simulation results with respect to the Case 3 scenario. In Case

3, the score test ξ has a slight edge over the other tests. However, we note that the score

test is anti-conservative whereas the two modified likelihood ratio tests are conservative.
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Table 1. Case 1 (H01 : ρ1 = · · · = ρK where σ2
1 = · · · = σ2

K = 1.0 and K = 5).

Type I error rates Cramer-von Mises statistic

p = 5 ρi w w∗ w∗∗ ξ w w∗ w∗∗ ξ

(ni = 5) 0.00 0.126 0.046 0.042 0.048 1201.8 20.7 91.5 240.8

0.25 0.125 0.048 0.043 0.049 1207.5 19.7 89.8 246.0

0.50 0.125 0.046 0.041 0.049 1249.7 15.6 80.8 258.8

0.75 0.127 0.047 0.043 0.050 1249.2 15.3 79.9 259.6

0.95 0.125 0.048 0.043 0.049 1213.5 20.6 91.8 247.6

(ni = 20) 0.00 0.062 0.049 0.049 0.049 63.6 1.6 3.0 14.4

0.25 0.063 0.049 0.049 0.049 56.1 3.1 5.0 12.2

0.50 0.062 0.048 0.048 0.048 60.3 2.4 4.1 13.6

0.75 0.064 0.049 0.048 0.048 59.8 2.4 4.1 13.4

0.95 0.063 0.048 0.048 0.049 65.3 1.6 3.1 16.3

p = 10

(ni = 5) 0.00 0.134 0.045 0.040 0.065 1453.3 60.0 254.3 302.2

0.25 0.135 0.046 0.041 0.066 1485.9 55.7 247.6 318.2

0.50 0.135 0.047 0.041 0.066 1454.7 64.9 265.3 309.9

0.75 0.135 0.045 0.040 0.066 1467.0 56.5 247.8 308.4

0.95 0.136 0.048 0.042 0.065 1511.3 53.7 243.8 329.7

(ni = 20) 0.00 0.065 0.049 0.048 0.052 71.9 4.6 9.3 15.5

0.25 0.064 0.048 0.048 0.052 77.0 3.8 8.1 18.3

0.50 0.064 0.049 0.048 0.051 76.1 3.6 7.8 17.6

0.75 0.064 0.049 0.048 0.053 71.7 5.5 10.5 16.3

0.95 0.065 0.048 0.048 0.052 67.3 7.2 12.8 14.0

20



Table 2. Case 2 (H02 : σ1 = · · · = σK where K = 5).

Type I error rates Cramer-von Mises statistic

p = 5 ρi w w∗ w∗∗ ξ w w∗ w∗∗ ξ

(ni = 5) 0.00 0.042 0.023 0.022 0.024 14.9 154.8 203.8 261.9

0.25 0.049 0.025 0.024 0.031 5.7 107.9 178.5 133.1

0.50 0.079 0.038 0.036 0.058 400.6 18.0 83.9 58.1

0.75 0.126 0.046 0.041 0.077 1306.5 60.8 272.7 308.2

0.95 0.140 0.045 0.039 0.074 1572.1 127.0 483.5 313.1

(ni = 20) 0.00 0.047 0.048 0.048 0.044 0.6 1.1 1.8 6.5

0.25 0.051 0.048 0.048 0.046 1.5 2.3 4.4 2.7

0.50 0.060 0.050 0.049 0.052 44.4 3.6 7.5 9.1

0.75 0.064 0.048 0.047 0.054 71.1 9.3 17.6 13.4

0.95 0.064 0.048 0.047 0.054 84.4 8.1 16.6 18.5

p = 10

(ni = 5) 0.00 0.044 0.035 0.035 0.032 2.9 21.5 28.0 60.8

0.25 0.055 0.038 0.037 0.044 38.4 22.2 56.5 16.6

0.50 0.103 0.053 0.049 0.080 842.4 18.6 103.7 244.8

0.75 0.137 0.046 0.041 0.077 1530.7 89.3 374.6 337.7

0.95 0.142 0.046 0.040 0.074 1659.9 107.6 449.3 346.5

(ni = 20) 0.00 0.050 0.050 0.050 0.048 0.4 0.4 0.6 1.4

0.25 0.054 0.049 0.049 0.050 7.7 2.6 4.2 0.4

0.50 0.062 0.048 0.048 0.053 63.0 4.4 9.4 13.5

0.75 0.066 0.049 0.048 0.055 86.8 6.3 13.8 20.9

0.95 0.066 0.050 0.049 0.054 78.4 10.6 20.2 15.6
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Table 3. Case 3 (H03 : σ1 = · · · = σK , ρ1 = · · · = ρK where K = 5).

Type I error rates Cramer-von Mises statistic

p = 5 ρi w w∗ w∗∗ ξ w w∗ w∗∗ ξ

(ni = 5) 0.00 0.115 0.041 0.038 0.063 1114.4 201.3 398.3 106.4

0.25 0.115 0.040 0.037 0.063 1126.8 193.2 387.1 108.3

0.50 0.115 0.039 0.036 0.063 1124.4 194.5 388.1 107.0

0.75 0.116 0.041 0.038 0.063 1083.9 212.8 414.5 96.7

0.95 0.117 0.042 0.038 0.063 1085.1 205.2 402.3 94.9

(ni = 20) 0.00 0.061 0.048 0.047 0.053 58.6 10.0 14.6 6.3

0.25 0.061 0.048 0.048 0.053 50.9 14.1 19.5 4.5

0.50 0.060 0.046 0.046 0.051 54.2 12.3 17.4 5.2

0.75 0.062 0.048 0.047 0.053 54.3 12.0 17.1 4.8

0.95 0.062 0.048 0.047 0.053 60.6 9.0 13.4 6.7

p = 10

(ni = 5) 0.00 0.111 0.041 0.039 0.066 1025.3 129.1 264.2 136.6

0.25 0.112 0.042 0.039 0.066 1020.4 132.2 269.9 130.2

0.50 0.111 0.043 0.040 0.066 1020.9 140.4 282.1 141.1

0.75 0.112 0.043 0.040 0.068 1003.7 140.5 281.5 130.9

0.95 0.115 0.043 0.040 0.066 1025.3 136.8 276.6 137.8

(ni = 20) 0.00 0.061 0.049 0.048 0.053 43.5 10.2 14.0 4.5

0.25 0.061 0.048 0.048 0.053 49.1 8.2 11.7 7.1

0.50 0.060 0.048 0.047 0.053 47.8 8.1 11.6 5.9

0.75 0.061 0.049 0.048 0.054 57.7 5.9 8.9 9.9

0.95 0.061 0.048 0.048 0.054 47.6 9.2 12.8 6.6
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