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there are many types of scienti�c investigations that give rise to round robin interaction data, andas such, there is a need for good methods of statistical analysis.In round robin experiments, each subject in the group plays the dual role of an \actor" anda \partner" giving rise to bivariate data. This renders a round robin experiment di�erent than atypical two-factor experiment. Another important characteristic of round robin designs is that asubject does not interact with oneself. Thus, the diagonal cells in the data matrix are missing bydesign. Although the �rst formal statistical model for round robin interaction data was introducedby Lev & Kinder (1957), a more general and the most commonly cited model was studied byWarner, Kenny & Stoto (1979). Further developments of the model as a social relations modelare discussed in a series of papers and a book by David Kenny (Kenny 1994). Related \networkmodels" are discussed by Wasserman and Faust (1994).Suppose that a round robin design involves m subjects where subjects i and j meet nij times,i 6= j. If some nij are zero, the design is said to be incomplete. If all nij are equal, we say thatthe design is balanced. For unequal nij the design is unbalanced.When subjects i and j meet on the kth occasion, we obtain a pair of observations yijk and yjikas a realization of continuous random variables. Here yijk represents the response of subject i asan actor towards subject j as a partner on the kth occasion; and in yjik; the roles are reversed.Warner et al. (1979) proposed the general round robin modelyijk = �+ �i + �j + ij + "ijkyjik = �+ �j + �i + ji + "jik (1)k = 1; :::; nij; 1 � i 6= j � m:In this model � is the general mean; �i represents the e�ect of subject i as an actor; �j isa partner e�ect due to subject j; ij is an interaction e�ect representing the special adjustmentwhich subject i makes for subject j; "ijk represents the error term which picks up the measurementerror and/or variability in behaviour at di�erent occasions. Note that if nij < 2 for some i; j, thedata does not distinguish between ij and "ijk: Except for the general mean �; all parameters inmodel (1) are assumed to be random variables and are known as the random e�ects. It is assumedthat E(�i) = E(�j) = E(ij) = E("ijk) = 0var(�i) = �2�; var(�j) = �2�; var(ij) = �2 ; var("ijk) = �2" (2)cov(�i; �i) = ���; cov(ij ; ji) = � ; cov("ijk; "jik) = �""and all other covariances are assumed equal to zero. We call the set of parameters f�2�; �2�; �2 ; �2";���; �; �""g the variance-covariance parameters (or components) of the round robin model andthese are the primary parameters of interest. Instead of the covariance parameters f���; � ; �""g,one may alternatively use the correlation coe�cients f�1; �2; �3g as de�ned by ��� = �1����;� = �2�2 and �"" = �3�2" :In some cases, it may be desirable to add parameters to the �xed e�ects part of the model. Forexample, when modelling sports data, a home-�eld advantage parameter may be required. Themodel as such, is appropriate for a single group of subjects. When we have more than one type ofgroup (say, males and females), some of the model parameters may be group speci�c.Warner et al. (1979) introduced ANOVA based estimation for the variance-covariance compo-nents in the case of balanced designs (nij = n > 1). In addition to point estimates, one may alsowish to estimate standard errors. Bond and Lashley (1996) provide explicit formulas for standarderrors for a subclass of the balanced round robin model (without the error component "ijk). Inthe unbalanced design case, ANOVA estimation becomes complex and it is practically impossibleto derive standard errors for the ANOVA estimators. To have an appreciation of the degree ofdi�culty, the reader is referred to Searle, Casella & McCulloch (1992, chapter 5).2



Some notable properties of ANOVA estimation are unbiasedness and the simplicity of compu-tations in the case of balanced designs. Also in the case of balanced designs, ANOVA estimatorsare known to have minimum variance among unbiased estimators. But many of these propertiesdo not hold for the general design. It is well known that ANOVA can yield negative estimatesof positive parameters. On the other hand, maximum likelihood estimators are known to havebetter large-sample properties such as large-sample normality and e�ciency. With the advent offast computational tools the need for simplicity of computations should not be an impediment tousing likelihood based methods.Wong (1982) proposed maximum likelihood estimation (MLE) under the assumption that therandom e�ects are normally distributed. He used the EM algorithm for maximum likelihood esti-mation in the case of balanced designs but remarked that the unbalanced case is more complicated.At the end of his paper, Wong remarked that, \a challenging piece of research ... is the developmentof satisfactory and computationally feasible numerical methods for a ... fully Bayesian analysis...". Recent advances in Monte Carlo Markov chain (MCMC) methods have empowered us to meetthis challenge.In Section 2, we review classical ANOVA based estimation and extend this method to unbal-anced round robin designs. For estimating the standard errors of ANOVA estimators, we implementbootstrap methods. Although ultimately we advocate the use of Bayesian methods, ANOVA es-timation is attractive because of the simplicity of computations. Also, ANOVA estimates mayprovide starting values for more complex approaches such as maximum likelihood estimation andBayesian analyses via MCMC.Section 3 contains discussion of maximum likelihood estimation and empirical Bayes estimationof random e�ects. The MLE algorithm proposed is based on the method of scoring. The methodis straightforward to describe and implement. We note that the approach described in Section3 directly maximizes the likelihood function whereas Wong's (1982) approach produces restrictedmaximumlikelihood (REML) estimates. An added advantage of the method of scoring over Wong'simplementation of the EM algorithm is that it produces an estimate of the asymptotic covariancematrix for the maximum likelihood estimates.In Section 4, we present a fully Bayesian analysis for round robin interaction data. The priorsare based on the structure of the experiment and hence are not empirical Bayes. The computationaltechniques are based on the theory of Markov chains where Metropolis steps are embedded withinthe Gibbs sampling algorithm.In Section 5, we apply the three methods to a real dataset. We compare the results of thevarious methodologies and address issues of implementation.A general, though not surprising theme that emerges from this paper is that more realisticand satisfying models require more sophisticated and modern computational techniques. With theavailability of fast computers, it is now possible to use sophisticated methodology on a routinebasis.2. ANOVA ESTIMATIONANOVA based estimation is the approach that is routinely used for the analysis of round robininteraction data. Although the examples found in the social sciences literature typically dealwith balanced designs, unbalanced designs often arise in practice. For example, in experimentsinvolving a large number of individuals, it may not be feasible to pair all the subjects. For thesake of completeness, we extend the ANOVA approach for estimating the variance-covariancecomponents in the general (i.e. unbalanced) case. ANOVA estimation is essentially the methodof moments estimation: we equate a set of \sums of squares" to their expected values and solvethe set of linear equations for the variance-covariance parameters. Due care is needed in selectingthe sums of squares so that the resulting system of linear equations is non-singular. Apart fromthis requirement, no optimality criterion is employed in selecting the particular sums of squares.3



We use familiar matrix notation: Ik is the k� k identity matrix; A0 denotes the transpose, jAj thedeterminant and A�1 the inverse of a matrix A:Using the standard ANOVA notation, we de�neni: = mXj 6=i=1nij; n:j = mXi6=j=1nij; 2N = mXi=1 mXj 6=i=1nij�y i::= 1ni: mXj 6=i=1 nijXk=1 yijk; �y :j:= 1n:j mXi6=j=1 nijXk=1 yijk; �y ij:= 1nij nijXk=1 yijk; �y:::= 12N mXi=1 mXj 6=i=1 nijXk=1 yijk:Let the 7 � 1 column vector � = (�2�; �2�; �2 ; �2"; ���; � ; �"")0 denote the vector of unknownparameters. De�ne further, the set of sums of squaresSSA = mXi=1 ni:(�y i:: � �y :::)2; SSB = mXj=1 n:j(�y :j: � �y :::)2; SSAB = mXi=1 ni:(�y i:: � �y :::)(�y :i: � �y :::);SSG = mXi=1 mXj 6=i=1nij(�y ij: � �y :::)2; SSGG = mXi=1 mXj 6=i=1nij(�y ij: � �y :::)(�y ji: � �y :::);SSE = mXi=1 mXj 6=i=1 nijXk=1(yijk� �y ij:)2; SSEE = mXi=1 mXj 6=i=1 nijXk=1(yijk� �y ij:)(yjik� �yji:):With the 7 � 1 vector S = (SSA; SSB; SSAB; SSG; SSGG; SSE; SSEE)0 , we have E(S) =C�: The coe�cient matrix C is obtained as we derive the expected values (under the round robinmodel) of each of the sums of squares as linear combinations of the variance-covariance parameters.The ANOVA estimator of � is then given by b� = C�1S, provided that C is non-singular. Straight-forward but lengthy algebra leads us to the matrix C presented in the Appendix. Although usefulconditions for the non-singularity of C have not been established, we remark that we encounteredno di�culties with various examples including the one presented in Section 5.Analytical derivation of standard errors of ANOVA estimators for unbalanced designs is prac-tically impossible. A practical solution in such situations is the use of resampling methods such asthe jackknife and the bootstrap. Whereas implementing a delete-d jackknife is an easy exercise,for highly nonlinear functions (such as those used to estimate the variance-covariance parame-ters) the jackknife can be ine�cient (Efron & Tibshirani 1993, p. 146). As we are dealing witha parametric model, the use of the parametric bootstrap (Efron & Tibshirani 1993, p. 306) forestimating the sampling distribution and variance of b� seems a reasonable approach. We assume anormal distribution for the random e�ects in model (1). Once the ANOVA estimators b� and �̂ =�y ::: are obtained, we draw B samples f yijk : k = 1; :::; nij; 1 � i 6= j � mg from the normal modelaccording to (1) and (2). For each sample we calculate the ANOVA estimate of �. This provides arealisation from the approximate sampling distribution of b�. The empirical sampling distributioncan then be used for estimating the standard errors of the ANOVA estimators.3. MAXIMUM LIKELIHOOD ESTIMATIONWe outline an approach to maximum likelihood estimation based on the normal distribution whichapplies to unbalanced and incomplete designs. The method is based on scoring and is straightfor-ward to implement. To apply the standard scoring method, we need to write model (1) in matrixnotation. By suitably arranging the response variable in a column vector y, the round robin modelmay be written as 4



y = � y1y2 � = X� +� Z1 Z2Z2 Z1 �� �� �+� Z3 00 Z3 �� 12 �+ � "1"2 � :Here y1 = (y121; :::; y12n12; :::; y(m�1)m1; :::; y(m�1)mnm�1m)0 ; y2 = (y211; :::; y21n12; :::; ym(m�1)1; :::;ym(m�1)nm�1m )0 ; the vectors "1 and "2 de�ned analogously. The vector � contains all the �xede�ects in addition to the general mean, and X is the design matrix for the �xed e�ects. Therandom e�ects are � = (�1; :::; �m)0 ; � = (�1; :::; �m)0 ; 1 = (12; :::; 1m; :::; (m�1)1; :::; (m�1)m)0and 2 = (21; :::; m1; :::; 1(m�1); :::; m(m�1))0 :Our assumptions about the model parameters in (2) give the following covariance matricesCov� �� � = � �2�Im ���Im���Im �2�Im � ; Cov� 12 � = � �2Im �Im�Im �2Im �and Cov� "1"2 � = � �2"Im �""Im�""Im �2"Im � :After some algebraic manipulations, the covariance matrix of y is seen to beV = Cov(y) = �2�� Z1Z 01 Z1Z 02Z2Z 01 Z2Z 02 �+ �2� � Z2Z 02 Z2Z 01Z1Z 02 Z1Z 01 �+���� Z1 Z2Z2 Z1 �� Z2 Z1Z1 Z2 �0 + �2 � Z3Z 03 00 Z3Z 03 �+� � 0 Z3Z 03Z3Z 03 0 �+ �2" � IN 00 IN �+ �""� 0IN IN0 � : (3)Under the assumption of normality of the random e�ects, the loglikelihood of y (ignoringadditive constant terms) is`(�; �2�; �2�; �2; �2" ; ���; � ; �"") = �12 log jV j � 12(y �X�)0V �1(y �X�)and the MLE for the �xed e�ects is the generalized least squares (GLS) estimator�̂ = (X 0V �1X)�1X 0V �1y:For the variance-covariance parameters � = (�2�; �2�; �2 ; �2"; ���; � ; �"")0 ; let (@Vi=@�i) be thematrix of elementwise derivatives of the entries of the matrix V with respect to �i: As the matrixV in (3) is a linear combination of matrices, the derivative @Vi=@�i is easy to obtain. For example,the derivative with respect to ��� is given by@V@��� = � Z1 Z2Z2 Z1 �� Z2 Z1Z1 Z2 �0 :For the parameter �i; the score equation is given by (Searle et al. 1992, p. 384)Ui = @`@�i ��=�̂ = �12 tr�V �1 @V@�i�+ 12(y �X�̂)0V �1@V@�i V �1(y �X�̂)and the (i; j)th entry of the information matrix isHij = �E� @2`@�i@�j� = 12 tr�V �1@V@�i V �1 @V@�j� :5



The score equations are solved iteratively. At the (h+ 1)th iteration step, the update is givenby �̂(h+1) = �̂(h) + �Ĥ(h)��1U (h)with �̂, the score vector U = (U1; :::; U7)0 and the information matrixH updated at every iterationstep.An estimate of the large sample covariance matrix of the maximum likelihood estimator of� is bH�1: The score equations can be computationally intensive as the calculations involve themultiplication and inversion of 2N � 2N matrices. Although the theory and steps given here arestraightforward, they do not appear to have been previously recorded in the round robin literature.3.1 Empirical Bayes estimation of random e�ectsThe estimates of individual random e�ects may be of interest. For example, when ranking team irelative to team j in a sports competition, one would be interested in (�i; �j ; ij) and (�j; �i; ji).For the sake of simplicity, let us consider the round robin model without the interaction e�ectsij ; i; j = 1; :::;m: The general model can be dealt with similarly. We havey = X� + � Z1 Z2Z2 Z1 �� �� �+� "1"2 �withD = Cov� �� � = � �2�Im ���Im���Im �2�Im � and 
 = Cov� "1"2 � = � �2"Im �""Im�""Im �2" Im �so that V = Cov(y) = � Z1 Z2Z2 Z1 �D� Z1 Z2Z2 Z1 �0 + 
 = ZDZ 0 + 
:An empirical Bayes estimator of the actor and partner e�ects given by the posterior mean isthen (Speed 1991) � b�b� � = D̂Z 0 V̂ �1(y �X�̂)where D̂, V̂ and �̂ = (X 0V �1X)�1X 0V �1y are estimated using the maximum likelihood algorithmand dCov� b�b� � = D̂ � D̂Z 0 V̂ �1ZD̂ + D̂Z 0 V̂ �1X(X 0 V̂ �1X)�1X 0 V̂ �1ZD̂:4. BAYESIAN ANALYSISIn this section, we outline a fully Bayesian approach to the analysis of round robin interactiondata. A fully Bayesian analysis has conceptual appeal in that priors are constructed from anunderstanding of the structure of the experiment, from subjective opinions and from invarianceconsiderations. In contrast, empirical Bayes procedures as utilized by Wong (1982) and studied inSection 3 employ priors that are based on observed data. Although there are often few alternativesto empirical Bayes procedures, the reliance of priors on data is in fact in conict with the Bayesianparadigm.We will see that our fully Bayesian approach also has practical advantages. For example, incontrast to the methods of Section 3, we no longer face computational di�culties associated withthe inversion of large matrices as our approach relies only on conditional distributions having6



�xed dimension. This is a by-product of using the Gibbs sampling algorithm. Also, the Bayesiananalysis is based on the exact posterior distribution rather than an asymptotic normal distributionin the case of maximum likelihood estimation. In addition, the fully Bayesian approach can handleunbalanced and incomplete designs with no added di�culty. The methodology presented here maybe generalized in certain directions by introducing additional covariates and their associated priordistributions. For example, one may wish to introduce a subscript k on the mean � to denotea temporal trend. Finally, our fully Bayesian approach based on simulation from the posteriorpermits the investigation of any posterior characteristic of interest including marginal posteriordistributions. This is in contrast with the classical analyses of Sections 2 and 3 which focus onlyon the estimation of primary parameters and their standard errors.Our basic model is the traditional round robin model (1) with additional distributional assump-tions placed on the data, parameters and hyperparameters. We let �ij = � + �i + �j + ij andfollowing Wong (1982), we assume conditionally� �i�i � � Normal2 �� 00 � ;�1� ;� ijji � � Normal2 �� 00 � ;�2� ;� yijkyjik � � Normal2 �� �ij�ji � ;�3�where k = 1; : : : ; nij, 1 � i 6= j � m and�1 = � �2� ������ �2� � ; �2 = � �2 �� �2 � ; �3 = � �2" �""�"" �2" � :It is at this point where our modelling assumptions di�er from Wong (1982) and take onan extended hierarchical structure. Following conventional Bayesian protocol for linear models(Gelfand, Hills, Racine-Poon & Smith 1990), we assume� � Normal[�; �2�]; ��11 �Wishart2[(�0R)�1; �0];� � Normal[�0; �2� ]; �2� � Inverse Gamma[a0; b0]where the hyperparameters are set to give di�use prior distributions for the parameters � , �2� and�1. For example, as described in Section 5, we set �0 = 0, �� = 10000, a0 = 0:0001, b0 = 0:0001,�0 = 2 and R = r0I where r0 is determined by the experimental structure.The prior assumptions on the covariance matrices �2 and �3 are atypical due to the necessityof equal diagonal entries. In fact, this is one of the ways in which the assumptions for the roundrobin model render its analysis nonstandard for the popular Bayesian software package BUGS(Spiegelhalter, Thomas, Best & Gilks 1996). For �2, we assume that �2 � Exponential[r0] and� j � � Uniform[��2; �2 ]. The conditional uniform prior is vague and is motivated by therestriction �1 � �2 � 1. A similar prior structure is also imposed on �3. These atypical bivariatepriors are appealing as they are simply characterized by the single speci�ed hyperparameter r0.Moreover, E(�2�) = E(�2�) � E(�2") = E(�2 ) = r0 which suggests a commonality of magnitudeamongst the various e�ects. Finally, the experimental structure usually dictates that we truncate�ij to some interval (k10; k20). For example, with nonnegative data yijk we would impose the priorrestriction (k10; k20) = (0;1). 7



Letting [A j B] denote the conditional distribution of A given B, it follows from our modellingassumptions that the posterior distribution[�; �; �; ; �; �; �2� j y] / [y j �; �; �; ; �2"; �""] [� j �; �2�] [�; � j �2�; �2�; ���][j�2 ; � ] [�2"; �""] [� ] [�2�] [�2�; �2�; ���] [�2; � ] (4)where � = (�2�; �2�; �2; �2" ; ���; �; �"")0 is the vector of variance-covariance parameters of primaryinterest as previously de�ned. We therefore have a challenging posterior distribution of dimension(m2 +m + 10) where � and � are m-dimensional and  is (m2 �m)-dimensional. The model isdriven by N =P1�i<j�m nij observations.Our goal now is to simulate from the posterior distribution (4) so that marginal posteriorcharacteristics can be estimated. To do so, we use the Gibbs sampling algorithm which is aniterative approach to simulation from a target distribution. Gibbs sampling has been successfullyused in many Bayesian problems involving high dimensionality (Gelfand & Smith 1990). Based onthe posterior structure (4), an implementation of Gibbs sampling proceeds by generating from thefull conditional distributions[� j �]; [�i; �i j �]; [ij; ji j �]; [� j �]; [�2� j �];[�2�; �2�; ��� j �]; [�2"; �"" j �]; [�2 ; � j �]where 1 � i < j � m and [A j �] denotes the conditional distribution of A given all other parametersand the data y. The �rst six conditional distributions are respectively Normal, Normal2, Normal2,Normal, Inverse Gamma and Wishart2. Although tedious, the derivation of the parameters forthese distributions is straightforward and is available from the authors upon request. The remainingconditional distributions [�2"; �"" j �] and [�2; � j �] have the same nonstandard form and weoutline the simulation algorithm for [�2" ; �"" j �]. From (4), we note that the density of [�2"; �"" j �]is proportional to f(�3) I(��2";�2" )(�"") 1r0 expf��2"=r0gwhere I(a;b) is the indicator function on the interval (a; b) andf(�3) = j�3j�N=2 exp8<:�12Xi<j nijXk=1� yijk � �ijyjik � �ji �0��13 � yijk � �ijyjik � �ji �9=; :Therefore, within the Gibbs sampling algorithm we can \embed" a Metropolis step whereby wegenerate u � Uniform[0; 1] and new variates �2" � Exponential[r0] and �"" � Uniform[��2"; �2" ].We stick on the \old" value of �3 if u > f(�new3 )=f(�old3 ). Although this independence samplermay have low acceptance rates, it is simple to code and is adequate for the application consideredin this paper and others studied by the authors.As a �nal note, we remark that the fully Bayesian methodology presented in this section permitsthe simple investigation of sub-models. For if the experimenter determines that a certain parameteris unimportant, then the parameter can be eliminated from the analysis by simply substitutingconstant null values when it would ordinarily be generated from its full conditional distribution.5. SOCIAL INTERACTION DATA EXAMPLEIn this section we discuss the analysis of a balanced round robin experiment. Warner (1978)conducted a round robin study involving eight subjects. Each pair of subjects conversed privatelyon three separate occasions for about 12 to 15 minutes and the percent of time spent speaking byeach subject was the response variable. The details of the experimental setup and the raw data8



are given in Warner et al. (1979). Due to recording/measurement errors and both persons talkingor remaining silent simultaneously, the percents do not typically add to 100. In fact, the sums areoften as small as 75, and as large as 125.Following Wong (1982), we provide a short description of the parameters of the round robinmodel in this setting. The actor e�ect �i represents person i's talkativeness, and the partner e�ect�i measures that person's ability to elicit conversation. The interaction e�ect ij represents thespecial adjustment that person i makes in level of talkativeness when paired with person j. In thisexperiment, the subjects were not well acquainted with one another. Therefore, we do not expectij to dominate the main e�ects �i and �j . The variance components �2� and �2� measure thevariability in the talkativeness and listening capability, respectively. The parameter ��� measuresthe covariance between a person's speech activity level and the e�ect on the partner's activitylevel. Naturally, we would expect ��� to be negative as excessive talking precludes listening andvice-versa. The parameter �2 measures the variability in special adjustments amongst the pairs ofsubjects. The covariance � represents the degree to which the conversation is stimulating; when� > 0, this indicates that both parties are anxious to speak and there is little deadtime. Theerror variance �2" measures the contribution of measurement errors and other situational factors.The covariance �"" is expected to be negative as the data are recorded in percents. We note thatthe above parameters may have completely di�erent interpretations depending on the application(e.g. the analysis of scores from sporting contests).Table 1 shows the estimates of covariance components and their standard errors as obtainedfrom ANOVA based estimation and maximum likelihood estimation. The standard errors ofANOVA estimates are based on parametric bootstrap sampling as described in Section 2. Thestandard errors of the maximum likelihood estimates are based on the estimated large sample co-variance matrix. Except for �2�, the estimates and the standard errors are very similar. Except forthe error parameters �2" and �"", we observe that none of the parameters are strongly signi�cant,and this might be expected with such a small sample. We also note that �2� is twice �2� indicatingthat there is more variation in talkativeness than in the ability to elicit conversation. The correla-tion between � and � is -.66 (ANOVA) and -.71 (MLE) which con�rms the high degree to whichtalking limits one's listening.Table 1: Parameter estimates and standard errors.Parameter ANOVA MLE Bayes (r0 = 70) Bayes (r0 = 40)Est SE Est SE Est SD Est SD�2� 92.0 56.4 84.2 49.3 129.4 98.1 116.2 91.5�2� 40.9 28.5 40.7 30.2 76.2 56.8 62.3 48.5��� -40.4 33.8 -41.6 32.5 -42.3 57.6 -42.4 51.3�2 30.0 19.7 30.1 22.5 35.4 18.6 33.7 16.9� 4.1 19.8 2.9 22.5 0.0 17.2 1.2 15.4�2" 146.1 23.5 146.0 22.6 146.2 21.2 142.2 19.7�"" -95.5 23.1 -95.5 22.6 -91.9 21.2 -88.5 19.4We also record in Table 1 estimates of the posterior means and posterior standard deviationsfrom a fully Bayesian analysis. As discussed in Section 4, the prior distribution is completelydetermined by specifying a value for the hyperparameter r0. We argue that �ij should be centredroughly at � = 50 with �i, �j and ij combining to give a maximum e�ect of 50. Since �i and �jcontribute in the opposite direction for the maximum e�ect, we expect a maximum absolute e�ectof 25 for either �i or �j . In other words, 3�� � 25, and since E(�2�) � r0, we set r0 = (25=3)2 = 70.Note that this gives a fully Bayesian analysis as we have used the structure of the experiment todetermine the prior value for r0. 9



We observe that the fully Bayesian estimates are in the same general direction as those obtainedvia the ANOVA and maximumlikelihood procedures. We mention that if we change r0 considerably(e.g. r0 = 40, see Table 1), similar results are obtained except for the parameters �2� and �2�.Borrowing ideas from the theory of linear models, we have only (m�1) degrees of freedom for eachof �2� and �2� ; and thus, we should not be surprised that the data do not overwhelm the priors. Onthe other hand, �2" and �2 have more degrees of freedom and are not very sensitive to the choice ofr0. An alternative way of specifying r0 for general round robin applications, is to use an empiricalBayes approach based on ANOVA or maximum likelihood estimates such as �̂� or �̂�.As a practical concern, we observed strong autocorrelations between successive updates in theGibbs sampling algorithm. To counteract this, the generated output was thinned by choosing every1000th variate. This was particularly needed for the parameters �2" ; �""; �2 and � for which theMetropolis steps proved to be sticky. The results reported in Table 1 are based on 5000 storedvariates and this required 45 minutes of computation on a Sun workstation.In Table 2, we present the empirical Bayes estimates for the actor and partner e�ects as de-scribed in Section 3.1. We also include both sets of the fully Bayes estimates and observe closeagreement amongst all three analyses. It therefore seems that there is less sensitivity amongst the\�rst-order" parameters than the \second-order" variance-covariance parameters from Table 1.Table 2: Empirical Bayes and fully Bayes estimates of the actor and partner e�ects.Subject Empirical Bayes Bayes (r0 = 70) Bayes (r0 = 40)i b�i SE b�i SE b�i SD b�i SD b�i SD b�i SD1 13.8 4.0 -5.7 3.1 13.3 5.1 -5.3 4.2 13.0 4.9 -5.3 4.02 -12.3 4.0 1.5 3.1 -11.3 5.1 1.3 4.2 -11.2 4.9 1.5 4.03 -13.1 4.0 10.6 3.1 -12.4 5.1 10.2 4.4 -12.4 4.9 9.9 4.14 2.9 4.0 -6.9 3.1 3.2 5.0 -5.8 4.2 3.2 4.8 -5.5 3.95 8.1 4.0 -5.5 3.1 7.9 5.1 -5.2 4.3 7.9 4.9 -5.1 4.06 -3.7 4.0 -3.5 3.1 -3.3 5.1 -3.4 4.2 -3.1 4.8 -3.2 3.97 -0.2 4.0 2.7 3.1 -0.2 5.0 2.8 4.2 -0.2 4.8 2.6 3.98 4.5 4.0 5.9 3.1 4.1 5.0 5.9 4.3 3.9 4.8 5.5 4.0APPENDIXLet C = (cij) be the matrix for ANOVA estimation discussed in Section 2. We havec11 = c22 = c41 = c42 = 2N � 12N Pn2i:c12 =PPn2ij=ni: � 12N Pn2i:c13 = c23 = c43 = � 1N Pn2i:c14 = c35 =PPn2ij(1=ni: � 1=(2N ))c15 = c25 = c34 = c45 = c54 = � 12N PPn2ijc16 = c26 = c37 = m � 1c17 = c27 = c36 = c47 = c56 = �1c21 =PPn2ij=n:j � 12N Pn2i:c24 =PPn2ij(1=n:j � 1=(2N ))c31 = c32 = c51 = c52 = � 12N Pn2i:c33 = 2N +PPn2ij=ni: � 1N Pn2i:c44 = c55 = 2N � 12N PPn2ijc46 = c57 = m(m � 1)� 1 10
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