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ABSTRACT

This paper considers the analysis of round robin interaction data whereby individuals from a group of
subjects interact with one-another producing a pair of outcomes, one for each individual. We provide an
overview of the various analyses applied to round robin interaction data and extend the work in several
directions. In particular, we provide a fully Bayesian analysis for round robin interaction data. A real data

example is used for illustration.
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RESUME

This paper considers the analysis of round robin interaction data whereby individuals from a group of
subjects interact with one-another producing a pair of outcomes, one for each individual. We provide an
overview of the various analyses applied to round robin interaction data and extend the work in several
directions. In particular, we provide a fully Bayesian analysis for round robin interaction data. A real data

example is used for illustration.
1. INTRODUCTION

Round robin interaction data arise when individuals from a group of subjects interact with one-
another. An interaction between two subjects produces a pair of outcomes, one for each subject.
We assume that these outcomes, measured on a numerical scale, represent some phenomenon
under study. For example, social psychologists study perceptions and interpersonal attractions
amongst people. Each subject rates the others with respect to a set of social traits to give rise
to a summary score (say between 0 and 100). In studies on the social behaviour of animals, a
researcher may record the number of times an animal extends an activity (for example, grooming)
towards another animal. The researcher may be interested in studying the differences between the
social behaviour of male and female animals towards the same/different sex animals. In studies
involving networking among large organizations (say business firms), one may count the number of
executives from organization A serving on the board of directors of organization B and vice-versa.
To study the intellectual influence of a professional journal A on another journal B, the number of
citations by authors in journal B of work published in journal A is counted (Stigler 1994). Clearly,



there are many types of scientific investigations that give rise to round robin interaction data, and
as such, there is a need for good methods of statistical analysis.

In round robin experiments, each subject in the group plays the dual role of an “actor” and
a “partner” giving rise to bivariate data. This renders a round robin experiment different than a
typical two-factor experiment. Another important characteristic of round robin designs is that a
subject does not interact with oneself. Thus, the diagonal cells in the data matrix are missing by
design. Although the first formal statistical model for round robin interaction data was introduced
by Lev & Kinder (1957), a more general and the most commonly cited model was studied by
Warner, Kenny & Stoto (1979). Further developments of the model as a social relations model
are discussed in a series of papers and a book by David Kenny (Kenny 1994). Related “network
models” are discussed by Wasserman and Faust (1994).

Suppose that a round robin design involves m subjects where subjects ¢ and j meet n;; times,
i # j. If some n;; are zero, the design is said to be incomplete. If all n;; are equal, we say that
the design is balanced. For unequal n;; the design is unbalanced.

When subjects ¢ and j meet on the kth occasion, we obtain a pair of observations y;;r and y;;x
as a realization of continuous random variables. Here y;; represents the response of subject ¢ as
an actor towards subject j as a partner on the kth occasion; and in y;;, the roles are reversed.
Warner et al. (1979) proposed the general round robin model

Yijk = ptoai+ B+ + ik
Yiik = H+aj+ 0+ v+ ik (1)
ko= 1, n; 1<i#j<m.

In this model p is the general mean; a; represents the effect of subject ¢ as an actor; §; is
a partner effect due to subject j; v;; is an interaction effect representing the special adjustment
which subject 7 makes for subject j; €;;1 represents the error term which picks up the measurement
error and/or variability in behaviour at different occasions. Note that if n;; < 2 for some ¢, j, the
data does not distinguish between +;; and ¢;;,. Except for the general mean y, all parameters in
model (1) are assumed to be random variables and are known as the random effects. Tt is assumed
that

E(e;) = E(B;) = E(vij) = E(iji) =0
var(a;) = 0'2, var(3;) = 0'%, var(v;) = 0'3, var(eijr) = 0'52 (2)
cov(ag, Bi) = 0Gap, cOV(Yij, Vji) = Oy, COV(Eijk,Ejik) = Oce

and all other covariances are assumed equal to zero. We call the set of parameters {o2, 0'%, 0'3, o2,

OaB, Oy, 0= } the variance-covariance parameters (or components) of the round robin model and
these are the primary parameters of interest. Instead of the covariance parameters {cag, 0y, Occ },
one may alternatively use the correlation coefficients {p1, p2, ps} as defined by oap = pi10.03,
Oy = pzog and 0., = p30'€2.

In some cases, it may be desirable to add parameters to the fixed effects part of the model. For
example, when modelling sports data, a home-field advantage parameter may be required. The
model as such, is appropriate for a single group of subjects. When we have more than one type of
group (say, males and females), some of the model parameters may be group specific.

Warner et al. (1979) introduced ANOVA based estimation for the variance-covariance compo-
nents in the case of balanced designs (n;; = n > 1). In addition to point estimates, one may also
wish to estimate standard errors. Bond and Lashley (1996) provide explicit formulas for standard
errors for a subclass of the balanced round robin model (without the error component ¢;;5). In
the unbalanced design case, ANOVA estimation becomes complex and it 1s practically impossible
to derive standard errors for the ANOVA estimators. To have an appreciation of the degree of
difficulty, the reader is referred to Searle, Casella & McCulloch (1992, chapter 5).



Some notable properties of ANOVA estimation are unbiasedness and the simplicity of compu-
tations in the case of balanced designs. Also in the case of balanced designs, ANOVA estimators
are known to have minimum variance among unbiased estimators. But many of these properties
do not hold for the general design. It is well known that ANOVA can yield negative estimates
of positive parameters. On the other hand, maximum likelihood estimators are known to have
better large-sample properties such as large-sample normality and efficiency. With the advent of
fast computational tools the need for simplicity of computations should not be an impediment to
using likelithood based methods.

Wong (1982) proposed maximum likelihood estimation (MLE) under the assumption that the
random effects are normally distributed. He used the EM algorithm for maximum likelihood esti-
mation in the case of balanced designs but remarked that the unbalanced case is more complicated.
At the end of his paper, Wong remarked that, “a challenging piece of research ... is the development
of satisfactory and computationally feasible numerical methods for a ... fully Bayesian analysis
...”. Recent advances in Monte Carlo Markov chain (MCMC) methods have empowered us to meet
this challenge.

In Section 2, we review classical ANOVA based estimation and extend this method to unbal-
anced round robin designs. For estimating the standard errors of ANOVA estimators, we implement
bootstrap methods. Although ultimately we advocate the use of Bayesian methods, ANOVA es-
timation is attractive because of the simplicity of computations. Also, ANOVA estimates may
provide starting values for more complex approaches such as maximum likelihood estimation and
Bayesian analyses via MCMC.

Section 3 contains discussion of maximum likelihood estimation and empirical Bayes estimation
of random effects. The MLE algorithm proposed 1s based on the method of scoring. The method
is straightforward to describe and implement. We note that the approach described in Section
3 directly maximizes the likelihood function whereas Wong’s (1982) approach produces restricted
maximum likelihood (REML) estimates. An added advantage of the method of scoring over Wong’s
implementation of the EM algorithm is that it produces an estimate of the asymptotic covariance
matrix for the maximum likelihood estimates.

In Section 4, we present a fully Bayesian analysis for round robin interaction data. The priors
are based on the structure of the experiment and hence are not empirical Bayes. The computational
techniques are based on the theory of Markov chains where Metropolis steps are embedded within
the Gibbs sampling algorithm.

In Section 5, we apply the three methods to a real dataset. We compare the results of the
various methodologies and address issues of implementation.

A general, though not surprising theme that emerges from this paper i1s that more realistic
and satisfying models require more sophisticated and modern computational techniques. With the
availability of fast computers, it 18 now possible to use sophisticated methodology on a routine
basis.

2. ANOVA ESTIMATION

ANOVA based estimation is the approach that is routinely used for the analysis of round robin
interaction data. Although the examples found in the social sciences literature typically deal
with balanced designs, unbalanced designs often arise in practice. For example, in experiments
involving a large number of individuals, it may not be feasible to pair all the subjects. For the
sake of completeness, we extend the ANOVA approach for estimating the variance-covariance
components in the general (i.e. unbalanced) case. ANOVA estimation is essentially the method
of moments estimation: we equate a set of “sums of squares” to their expected values and solve
the set of linear equations for the variance-covariance parameters. Due care is needed in selecting
the sums of squares so that the resulting system of linear equations is non-singular. Apart from
this requirement, no optimality criterion is employed in selecting the particular sums of squares.



We use familiar matrix notation: I is the & x k identity matrix; A" denotes the transpose, |A| the
determinant and A~! the inverse of a matrix A.
Using the standard ANOVA notation, we define

Z 55, nj;= Z 55, QNZZ Z g5

jAi=1 i£j=1 i=1 j£i=1
Nij Nij Nij 1 m m Nij
= § § Yiik, ]: E E Yiik, yzy — E Yiik, : 2_ E E Yijk-
. jAi=1k=1 Jiti=1k=1 i=1j#i=1k=1

Let the 7 x 1 column vector ¢ = (o2, 0'%, 0'3, 02,008, Oy, 0'55)/ denote the vector of unknown

parameters. Define further, the set of sums of squares

SSA = an(gz —y.)% SSB= an —y.)? SSAB= an(g_/z —y VWi —v.),

SSG = Z Z ”m(@;m — 37...)2, SSGG = Z Z ”m(@;m — 37)(3732 - 37),

i=1 j#i=1 i=1 j#i=1
Nij Nnij
SSE = Z Z Z y”k_ y” 2’ SSEE = Z Z Z yzyk yzy y]zk yyz )
i=1 j#£i=1k=1 i=1 j#£i=1k=1

With the 7 x 1 vector S = (SSA,SSB,SSAB,SSG,SSGG,SSE,SSEE)I, we have E(S) =
Cf. The coefficient matrix C' is obtained as we derive the expected values (under the round robin
model) of each of the sums of squares as linear combinations of the variance-covariance parameters.

The ANOVA estimator of # is then given by 0= C~1S, provided that C'is non-singular. Straight-
forward but lengthy algebra leads us to the matrix C presented in the Appendix. Although useful
conditions for the non-singularity of C' have not been established, we remark that we encountered
no difficulties with various examples including the one presented in Section 5.

Analytical derivation of standard errors of ANOVA estimators for unbalanced designs is prac-
tically impossible. A practical solution in such situations is the use of resampling methods such as
the jackknife and the bootstrap. Whereas implementing a delete-d jackknife 1s an easy exercise,
for highly nonlinear functions (such as those used to estimate the variance-covariance parame-
ters) the jackknife can be inefficient (Efron & Tibshirani 1993, p. 146). As we are dealing with
a parametric model, the use of the parametric bootstrap (Efron & Tibshirani 1993, p. 306) for
estimating the sampling distribution and variance of 0 seems a reasonable approach. We assume a
normal distribution for the random effects in model (1). Once the ANOVA estimators § and g =

Y. are obtained, we draw B samples { yi;x 1 k= 1,...,n4;; 1 < i # j <m} from the normal model
according to (1) and (2). For each sample we calculate the ANOVA estimate of #. This provides a
realisation from the approximate sampling distribution of 0. The empirical sampling distribution
can then be used for estimating the standard errors of the ANOVA estimators.

3. MAXIMUM LIKELIHOOD ESTIMATION

We outline an approach to maximum likelihood estimation based on the normal distribution which
applies to unbalanced and incomplete designs. The method is based on scoring and is straightfor-
ward to implement. To apply the standard scoring method, we need to write model (1) in matrix
notation. By suitably arranging the response variable in a column vector y, the round robin model
may be written as



Y1 VAR o Zz 0 1 €1
Y (yz) ﬂ+<Zz Z1)<ﬁ)+<0 Z3 Y2 + €2
Here y1 = (y121,~~~,y12n12,~~~,y(m—1)m1,~~~,y(m—1)mnm_1m)l,y2 = (y211,~~~,y21n12,~~~,ym(m—1)1,~~~,

ym(m_l)nm_lm)l; the vectors ¢; and e; defined analogously. The vector p contains all the fixed
effects in addition to the general mean, and X is the design matrix for the fixed effects. The

random effects are o = (o, ...,am)l, B = (b1, ...,ﬁm)l,'yl = (Y12, -+ Vims s V(m=1)1» -+ V(m—1)m)

and y2 = (Y21, -+, Yl oo Y1(m—1)s -+ Ym(m—1)) -
Our assumptions about the model parameters in (2) give the following covariance matrices

a ool oapl; 1 o21 o 1,
_ atm afim . im v dm
Cov ( g ) a ( Goplm 03Iy , Cov Y2 ) ST SR S

2
€1 _ O-glm O-aalm
Cov ( €9 ) - ( Oeelm o2l ) ’

After some algebraic manipulations, the covariance matrix of y 1s seen to be

AVARAVA AV A
Vo= Couly) =o? Lo 2 2 24
ov(y) = 7, ( 7.7, 7.7 ) TN\ 22 a7

and

i

VAR 4y 4 9 Z3Zé 0
+0aﬁ< AL ) ( VAR ) Ty ( 0 T3 7
0 ZsZy of In 0 0 Iy
+O-WW ( ZSZ;I), 0 ) + o 0 Iy + Oce In 0 : (3)

Under the assumption of normality of the random effects, the loglikelihood of y (ignoring
additive constant terms) is

(gt 0%, 75 0%, 07, s, 0, 722) = =5 og V] = 5y = Xp) V™ (= X0
and the MLE for the fixed effects is the generalized least squares (GLS) estimator
p=(XVIIxX)TIX' vy,
For the variance-covariance parameters 6 = (o2, 0'%, 0'3, 02,008, Oy, 0'55)/, let (0V;/06;) be the
matrix of elementwise derivatives of the entries of the matrix V with respect to 6;. As the matrix

V in (3) is a linear combination of matrices, the derivative 9V /00; is easy to obtain. For example,
the derivative with respect to 0,5 is given by

o (2 Z N[ Z 7\
dowsg  \ Z2 41 VAR ’
For the parameter 6;, the score equation is given by (Searle et al. 1992, p. 384)

L 1 _Lovy 1 Y ) )
UZ—%L:Q— 2tr<V 69i)+2(y Xp)v %V (y—Xn)

and the (¢, j)th entry of the information matrix is

920 1 ([ 0V oV
Hij=—-F (aeiaej) =" (V a0, a@) '




The score equations are solved iteratively. At the (h + 1)th iteration step, the update is given
by

A1) — g 4 (gw))‘l o)

with fi, the score vector U = (Uy, ..., Uz)" and the information matrix A updated at every iteration
step.

An estimate of the large sample covariance matrix of the maximum likelihood estimator of
0 is H~1. The score equations can be computationally intensive as the calculations involve the
multiplication and inversion of 2N x 2N matrices. Although the theory and steps given here are
straightforward, they do not appear to have been previously recorded in the round robin literature.

3.1 Empirical Bayes estimation of random effects

The estimates of individual random effects may be of interest. For example, when ranking team ¢
relative to team j in a sports competition, one would be interested in (o, 35, vi;) and (o, 5, vj3)-
For the sake of simplicity, let us consider the round robin model without the interaction effects
Yi;, 1, J = 1,...,m. The general model can be dealt with similarly. We have

Zl Zz (0% &1
=X
v=xe (7 7 )(5)+ (%)
o Ui[m Taplm €1 U?Im o N
D =Cov ( 3 ) = ( Gap I qu[m and € = Cov o = _ 0'52 I

V:C’ov(y):( 2 %)D( 2 Zj)—i—Q:ZDZ’—i—Q.

An empirical Bayes estimator of the actor and partner effects given by the posterior mean is
then (Speed 1991)

[0

(5)=02v"0-x0

where D, V and o= (XIV_lX)_lXIV_ly are estimated using the maximum likelihood algorithm

and
a

6%(2§):13—DZW“%H§+DZW“%wfo{m—EVV*ZD.

4. BAYESIAN ANALYSIS

In this section, we outline a fully Bayesian approach to the analysis of round robin interaction
data. A fully Bayesian analysis has conceptual appeal in that priors are constructed from an
understanding of the structure of the experiment, from subjective opinions and from invariance
considerations. In contrast, empirical Bayes procedures as utilized by Wong (1982) and studied in
Section 3 employ priors that are based on observed data. Although there are often few alternatives
to empirical Bayes procedures, the reliance of priors on data 1s in fact in conflict with the Bayesian
paradigm.

We will see that our fully Bayesian approach also has practical advantages. For example, in
contrast to the methods of Section 3, we no longer face computational difficulties associated with
the inversion of large matrices as our approach relies only on conditional distributions having



fixed dimension. This is a by-product of using the Gibbs sampling algorithm. Also, the Bayesian
analysis is based on the exact posterior distribution rather than an asymptotic normal distribution
in the case of maximum likelihood estimation. In addition, the fully Bayesian approach can handle
unbalanced and incomplete designs with no added difficulty. The methodology presented here may
be generalized in certain directions by introducing additional covariates and their associated prior
distributions. For example, one may wish to introduce a subscript k& on the mean u to denote
a temporal trend. Finally, our fully Bayesian approach based on simulation from the posterior
permits the investigation of any posterior characteristic of interest including marginal posterior
distributions. This is in contrast with the classical analyses of Sections 2 and 3 which focus only
on the estimation of primary parameters and their standard errors.

Our basic model is the traditional round robin model (1) with additional distributional assump-
tions placed on the data, parameters and hyperparameters. We let p;; = p+ oy + 8; + v;; and
following Wong (1982), we assume conditionally

( %: ) ~ Normals [( 8 ),El] ,

( ij ) ~ Normal, [( 0 ),22] ,
Vii 0

( Yijk ) ~ Normal, [( Hij ) ,23]
Yjik Hji

where k=1,...,n;;, 1 <i# j <m and

2
21:<0-04 O-OCZﬁ)aXb:(O-’3 UVZ’Y)aEE}:(U‘? 0-626)'
Tap O Oyy 03 Oce O
It is at this point where our modelling assumptions differ from Wong (1982) and take on

an extended hierarchical structure. Following conventional Bayesian protocol for linear models
(Gelfand, Hills, Racine-Poon & Smith 1990), we assume

i~ Normallr, O'Z], Y7t ~ Wisharta[(po R) ™, pol,

~ Normal[r, 02], O'Z ~ Inverse Gammalag, bg]

where the hyperparameters are set to give diffuse prior distributions for the parameters 7, O'Z and
¥1. For example, as described in Section b, we set 7y = 0, o, = 10000, ag = 0.0001, b, = 0.0001,
po = 2 and R = rol where ry is determined by the experimental structure.

The prior assumptions on the covariance matrices X5 and X3 are atypical due to the necessity
of equal diagonal entries. In fact, this is one of the ways in which the assumptions for the round
robin model render its analysis nonstandard for the popular Bayesian software package BUGS
(Spiegelhalter, Thomas, Best & Gilks 1996). For Xa, we assume that 0'3 ~ Exponential[rg] and
Oy | Oy ~ Uniform[—og, 0'3]. The conditional uniform prior is vague and is motivated by the
restriction —1 < py < 1. A similar prior structure is also imposed on X3. These atypical bivariate
priors are appealing as they are simply characterized by the single specified hyperparameter rg.
Moreover, E(o2) = E(O’%) ~ E(o?) = E(O’%) = ry which suggests a commonality of magnitude
amongst the various effects. Finally, the experimental structure usually dictates that we truncate
i to some interval (1o, kao). For example, with nonnegative data y;;, we would impose the prior

restriction (k1g, ka20) = (0, 00).



Letting [A | B] denote the conditional distribution of A given B, it follows from our modelling
assumptions that the posterior distribution

[/,L,O[,ﬁ,’y,g,T,O'Z|y] X [y|/'taaaﬁa7’0-52ao-€a] [/,L|T,O'Z] [aa6|aia0%aaaﬁ]
2 2 21,2 2 2
[7|0-w O-WW] [0, 0ce] [7] [Uu] [o5 0g) Uqﬁ] [O-w O-WW] (4)
where 0 = (02, 0'%, 0'3, 02,008, Oy, 0'55)/ is the vector of variance-covariance parameters of primary
interest as previously defined. We therefore have a challenging posterior distribution of dimension
(m? + m + 10) where a and 8 are m-dimensional and « is (m? — m)-dimensional. The model is
driven by N = Zl§i<j§m n;; observations.

Our goal now is to simulate from the posterior distribution (4) so that marginal posterior
characteristics can be estimated. To do so, we use the Gibbs sampling algorithm which is an
iterative approach to simulation from a target distribution. Gibbs sampling has been successfully
used in many Bayesian problems involving high dimensionality (Gelfand & Smith 1990). Based on
the posterior structure (4), an implementation of Gibbs sampling proceeds by generating from the
full conditional distributions

[/’L | ']a [aiaﬁi | ']a [72‘7’7‘72 | ']a [T | ']a [O-Z | ']a
[05, 05,005 |1, [02,0:c | ], (05,004 | ]

where 1 <7 < j <m and [A | ] denotes the conditional distribution of A given all other parameters
and the data y. The first six conditional distributions are respectively Normal, Normal,, Normals,
Normal, Inverse Gamma and Wisharts. Although tedious, the derivation of the parameters for
these distributions is straightforward and is available from the authors upon request. The remaining
conditional distributions [¢7,0.. | ;] and [02, 0., | -] have the same nonstandard form and we
outline the simulation algorithm for [¢2, 0. | -]. From (4), we note that the density of [0, 0., | ]
is proportional to

1
F(X3) [—o2,02)(0ec) ™ exp{—aZ/ro}

where (4 4) is the indicator function on the interval (a,b) and

1 ) N o
y.) = |3 —N/2 ox o § :2 : ( Yijk — Hij ) nol ( Yijk — Hij )
J(%s) = %] P 2 Yjik — Hji 3 Yjik — My

1<j k=1

Therefore, within the Gibbs sampling algorithm we can “embed” a Metropolis step whereby we
generate u ~ Uniform[0, 1] and new variates ¢? ~ Exponential[rg] and o.. ~ Uniform[—o?2, o2].
We stick on the “old” value of X3 if u > f(X2°%)/f(X5'4). Although this independence sampler
may have low acceptance rates, it is simple to code and is adequate for the application considered
in this paper and others studied by the authors.

As afinal note, we remark that the fully Bayesian methodology presented in this section permits
the simple investigation of sub-models. For if the experimenter determines that a certain parameter
is unimportant, then the parameter can be eliminated from the analysis by simply substituting
constant null values when it would ordinarily be generated from its full conditional distribution.

5. SOCIAL INTERACTION DATA EXAMPLE

In this section we discuss the analysis of a balanced round robin experiment. Warner (1978)
conducted a round robin study involving eight subjects. Each pair of subjects conversed privately
on three separate occasions for about 12 to 15 minutes and the percent of time spent speaking by
each subject was the response variable. The details of the experimental setup and the raw data



are given in Warner et al. (1979). Due to recording/measurement errors and both persons talking
or remaining silent simultaneously, the percents do not typically add to 100. In fact, the sums are
often as small as 75, and as large as 125.

Following Wong (1982), we provide a short description of the parameters of the round robin
model in this setting. The actor effect «; represents person ¢’s talkativeness, and the partner effect
B; measures that person’s ability to elicit conversation. The interaction effect v;; represents the
special adjustment that person ¢ makes in level of talkativeness when paired with person j. In this
experiment, the subjects were not well acquainted with one another. Therefore, we do not expect
7i; to dominate the main effects «; and 3;. The variance components ¢ and 0'% measure the
variability in the talkativeness and listening capability, respectively. The parameter o,5 measures
the covariance between a person’s speech activity level and the effect on the partner’s activity
level. Naturally, we would expect o5 to be negative as excessive talking precludes listening and
vice-versa. The parameter 0'3 measures the variability in special adjustments amongst the pairs of
subjects. The covariance 0.~ represents the degree to which the conversation is stimulating; when
oy > 0, this indicates that both parties are anxious to speak and there is little deadtime. The

error variance 0'2

- measures the contribution of measurement errors and other situational factors.

The covariance o, 1s expected to be negative as the data are recorded in percents. We note that
the above parameters may have completely different interpretations depending on the application
(e.g. the analysis of scores from sporting contests).

Table 1 shows the estimates of covariance components and their standard errors as obtained
from ANOVA based estimation and maximum likelithood estimation. The standard errors of
ANOVA estimates are based on parametric bootstrap sampling as described in Section 2. The
standard errors of the maximum likelihood estimates are based on the estimated large sample co-
variance matrix. Except for o2, the estimates and the standard errors are very similar. Except for
the error parameters o2 and o.., we observe that none of the parameters are strongly significant,
and this might be expected with such a small sample. We also note that o2 is twice 0'% indicating
that there is more variation in talkativeness than in the ability to elicit conversation. The correla-
tion between o« and § is -.66 (ANOVA) and -.71 (MLE) which confirms the high degree to which

talking limits one’s listening.

Table 1: Parameter estimates and standard errors.

Parameter ANOVA MLE Bayes (rg = 70) | Bayes (7o = 40)
Est SE Est SE Est SD Est SD

O'i 92.0 564 84.2 49.3 | 1294 98.1 | 116.2 91.5

O'g 40.9 285 | 40.7 30.2 | 76.2 56.8 | 62.3 48.5
Cop -40.4 338 | -41.6 32.5 | -42.3 57.6 | -42.4 51.3

0'3 300 19.7 | 30.1 225 | 354 18.6 | 33.7 16.9
Oy 4.1 19.8 2.9 225 0.0 17.2 1.2 15.4

0'52 146.1 23.5 | 146.0 22.6 | 146.2 21.2 | 142.2 19.7

C:c -95.5 231 | -955 22.6 | -91.9 21.2 | -88.5 19.4

We also record in Table 1 estimates of the posterior means and posterior standard deviations
from a fully Bayesian analysis. As discussed in Section 4, the prior distribution is completely
determined by specifying a value for the hyperparameter ;. We argue that y;; should be centred
roughly at u = 50 with a;, #; and 4;; combining to give a maximum effect of 50. Since a; and 3;
contribute in the opposite direction for the maximum effect, we expect a maximum absolute effect
of 25 for either a; or ;. In other words, 30, ~ 25, and since E(c2) & 1o, we set ro = (25/3)% = 70.
Note that this gives a fully Bayesian analysis as we have used the structure of the experiment to
determine the prior value for rg.



We observe that the fully Bayesian estimates are in the same general direction as those obtained
via the ANOVA and maximum likelihood procedures. We mention that if we change ry considerably
(e.g. 7o = 40, see Table 1), similar results are obtained except for the parameters ¢2 and 0'%.
Borrowing ideas from the theory of linear models, we have only (m —1) degrees of freedom for each
of 02 and 0'%, and thus, we should not be surprised that the data do not overwhelm the priors. On
the other hand, ¢2 and 0'3 have more degrees of freedom and are not very sensitive to the choice of
ro. An alternative way of specifying ry for general round robin applications, is to use an empirical
Bayes approach based on ANOVA or maximum likelihood estimates such as 6, or 4.

As a practical concern, we observed strong autocorrelations between successive updates in the
Gibbs sampling algorithm. To counteract this, the generated output was thinned by choosing every
1000th variate. This was particularly needed for the parameters o2, o.., 0'3 and o for which the
Metropolis steps proved to be sticky. The results reported in Table 1 are based on 5000 stored
variates and this required 45 minutes of computation on a Sun workstation.

In Table 2, we present the empirical Bayes estimates for the actor and partner effects as de-
scribed in Section 3.1. We also include both sets of the fully Bayes estimates and observe close
agreement amongst all three analyses. It therefore seems that there is less sensitivity amongst the
“first-order” parameters than the “second-order” variance-covariance parameters from Table 1.

Table 2: Empirical Bayes and fully Bayes estimates of the actor and partner effects.

Subject Empirical Bayes Bayes (rg = 70) Bayes (rg = 40)
i a;, SE B SE a; SD B3 SD a; SD B SD
1 138 4.0 -57 3.1 133 5.1 -53 42| 130 49 -53 4.0
2 -12.3 4.0 1.5 3.1 |-11.3 5.1 1.3 42 ]-11.2 49 15 4.0
3 -13.1 40 106 3.1 |-124 5.1 102 44 |-124 49 99 4.1
4 29 40 -69 3.1 3.2 50 -58 4.2 32 48 -55 3.9
5 8.1 4.0 -55 3.1 79 5.1 -52 43 79 49 -51 4.0
6 -3.7 40 -35 31 -3.3 5.1 -34 4.2 3.1 48 -3.2 3.9
7 -0.2 4.0 27 3.1 -0.2 5.0 2.8 4.2 -0.2 48 26 3.9
8 45 4.0 59 3.1 4.1 5.0 59 4.3 39 48 55 4.0
APPENDIX

Let C' = (c;5) be the matrix for ANOVA estimation discussed in Section 2. We have

_ _ _ 2
€11 = C22 = C41 —642—2N 2N yon?

c1p =Y. 2ondi/ni — 5 yoni

613—623—643——LG

cra = c35 =y, ni(1/n; — 1/(2N))

C15 = Ca5 = €34 = C45 —654——2N Zznfj
clg =cCas =cgr =m — 1

€17 = €27 = C36 = C47 = C56 = —1

cor =20 onii/n g — g ooni
24 =32 nf(1/n; — 1/(2N))
€31 = C32 = C51 = Cp2 = Nzn
633_2]\7—1—2271 In;. ——Zn
644—655—2N—2NZZ”23
cgg = sy =m(m—1) —
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_ 1 2
C53—4N— Nan
C61 = C62 = Cp3 = Cp4 = Cgp = Cg7 = C71 = C73 = €73 = €74 = C75 = C76 = 0
ce6 = c77 = 2N —m(m — 1)

ACKNOWLEDGEMENTS

The authors thank the Editor and two referees for their comments and encouragement. P. Gill
thanks the Okanagan University College for a sabbatical leave during which the work was initi-
ated. Both authors were supported by grants from the Natural Sciences and Engineering Research
Council of Canada.

REFERENCES

C. F. Bond & B. R. Lashley (1996). Round-robin analysis of social interaction: exact and estimated
standard errors. Psychometrika, 61, 303-311.

B. Efron & R. Tibshirani (1993). An Introduction to the Bootstrap. Chapman & Hall, New York.

A. E. Gelfand & A. F. M. Smith (1990). Sampling based approaches to calculating marginal densities.
Journal of the American Statistical Association, 85, 398-409.

A. E. Gelfand, S. E. Hills, A. Racine-Poon & A. F. M. Smith (1990). Mlustration of Bayesian inference
in normal data models using Gibbs sampling. Journal of the American Statistical Assoctation, 85,
972-985.

D. A. Kenny (1994). Interpersonal Perception: A Social Relations Analysis. Guilford Press, New York.

B. R. Lashley & C. F. Bond (1997). Significance testing for round robin data. Psychological Methods, 2,
278-291.

J. Lev & E. Kinder (1957). New analysis of variance formulas for treating data from mutually paired
subjects. Psychometrika, 22, 1-15.

S. R. Searle, G. Casella & C. McCulloch (1992). Variance Components. John Wiley & Sons, New York.
. Speed (1991). Discussion of G. K. Robinson, 1991. Statistical Science, 6, 42-44.
D. J. Spiegelhalter, A. Thomas, N. Best & W. R. Gilks (1996). BUGS: Bayesian Inference Using Gibbs

Sampling, Version 0.5 (version ii).

—

S. M. Stigler (1994). Citation patterns in the journals of statistics and probability. Statistical Science, 9,
94-108.

R. Warner. (1978). Temporal Patterns in Dialogue. Unpublished doctoral dissertation, Harvard Univer-
sity.

R. M. Warner, D. A. Kenny & M. Stoto (1979). A new round robin analysis of variance for social
interaction data. Journal of Personality & Social Psychology, 37, 1742-1757.

S. Wasserman & K. Faust (1994). Social Network Analysis: Methods and Applications. Cambridge
University Press, Cambridge.

G. Y. Wong (1982). Round robin analysis of variance via maximum likelihood. Journal of the American
Statistical Association, 77, 714-724.

Recewed 777 Paramjit S. GILL: pgill@ouc.bc.ca

Accepted 2727 Department of Mathematics and Statistics, Okanagan University College
Kelowna, British Columbia

Canada V1V 1V7

Tim B. SWARTYZ: tim@stat.sfu.ca

Department of Statistics and Actuarial Science, Simon Fraser University
Burnaby, British Columbia

Canada V5A 156

11



