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Abstract

In this paper, we introduce a new ranking system where the data are preferences

resulting from paired comparisons. When direct preferences are missing or unclear,

then preferences are determined through indirect comparisons. Given that a ranking

of n subjects implies (n2 ) paired preferences, the resultant computational problem is

the determination of an optimal ranking where the agreement between the implied

preferences via the ranking and the data preferences is maximized.
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Canada G1V0A6. Tim Swartz is Professor, Department of Statistics and Actuarial Science, Simon Fraser

University, 8888 University Drive, Burnaby BC, Canada V5A1S6. Both authors have been partially

supported by the Natural Sciences and Engineering Research Council of Canada. This research was

enabled in part by support provided by Calcul Québec (http://www.calculquebec.ca/en/) and Compute
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1 INTRODUCTION

The problem of ranking can be simply stated and has an extensive literature in the

statistical sciences. Given data on n subjects, the objective is to determine a permutation

(ranking) R = (i1, . . . , in) where the interpretation is that subject ij is preferable to

subject ik whenever ij < ik. The term “preferable” depends on the application and the

methods used to determine the ranking depend on aspects of the data structure.

In sport, ranking is an important problem. For example, in National Collegiate Ath-

letic Association (NCAA) basketball, there are over 300 teams competing in Division I

where a typical team plays only a subset (∼25) of the other teams during a season. At

the end of the season, the NCAA Selection Committee is set with the task of creating a

tournament structure known as “March Madness” involving 68 of these teams. In deter-

mining the invitees, team rankings (in terms of team quality) form part of the decision

making process.

Similarly, in NCAA football, various team rankings are regularly reported during the

regular season (e.g. Associated Press, FCS Coaches’ Poll, Sagarin, etc.). Although such

rankings are no longer used for determining Bowl bids (i.e. identifying pairs of teams

that compete in prestigious holiday matches), the rankings receive considerable media

attention and are available to the selection committee. Part of the intrigue involving

the determination of the rankings is that there are not many crossover matches involving

teams from different conferences.

Ranking also occurs in non-sporting contexts. For example, universities rank students,

employers rank job candidates, there are rankings corresponding to the quality of journals,

and so on. Clearly, the type of data used to inform the rankings varies greatly on the

application.

In this paper, we focus on the ranking problem associated with NCAA basketball.

More specifically, we consider the ranking of n Division I teams (n = 351 in 2015/2016).

The data used to inform our ranking are the result of paired comparisons. Sometimes

a comparison is explicit (e.g. based on the result of one team playing another team).

In other instances, the comparison between two teams is determined by considering the

results of matches involving common opponents. Our approach searches for an optimal

ranking R = (i1, . . . , in) which has maximal agreement between the (n2 ) implied paired
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preferences via the ranking and the observed data preferences. The approach is appealing

in its simplicity and its lack of assumptions. It may be regarded as nonparametric in

the sense that there is no underlying probability model. However, the approach provides

computational challenges. For example, a simple search amongst rankings is not possible

since there are n! ≈ 10742 potential rankings.

Ranking methods based on paired comparison data originate from the work of Thur-

stone (1927) and Bradley and Terry (1952). The approach suggested by Park and Newman

(2005) is most closely related to our approach in the sense that it is also nonparametric

and extends comparisons to indirect matchups between teams. Park and Newman (2005)

rank teams according to team wins w minus team losses l in both direct and discounted

indirect matches. The statistics w and l correspond to a matrix-based network centrality

measure involving adjacency matrices.

From the seminal work by Thurstone (1927) and Bradley and Terry (1952), the statis-

tical literature on methods for paired comparison data has flourished. For example, many

extensions to the original models have been considered such as the provision for ties

in paired comparisons (Davidson 1970), multiple comparisons (Plackett 1975), Bayesian

implementations (Leonard 1977, Chen and Smith 1984, Caron and Doucet 2012) and

dynamic ranking models (Glickman 1999, 2001) which have been used in chess. The

treatment of the margin of victory in paired comparison settings has also lead to var-

ious models and methods. For example, Harville (1977, 2003) considers linear models

where truncations are imposed on large margins of victory. A central idea is that teams

should not have an incentive for running up the score. Mease (2003) considers a model

based on normal likelihoods and penalty terms that attempts to correspond to human

judgments. A general review of the literature related to paired comparison methods is

given by Cattelan (2012). Rotou, Qian and von Davier (2015) review methods that are

primarily concerned with dynamic rankings where data are frequently generated such as

in the gaming industry.

In Section 2, we describe our approach which is intuitive and simple to describe. How-

ever, the method gives rise to challenging computational hurdles for which we propose

a stochastic search algorithm. For example, we demonstrate how time savings can be

achieved in the calculation of our metric which measures the agreement between the im-
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plied ranking preferences and the data preferences. The algorithm implements a simulated

annealing procedure which optimizes over the n! candidate rankings. Section 3 assesses

the proposed ranking procedure by forecasting matches based on established ranks. We

first investigate our procedure in the context of real data from previous NCAA basketball

seasons. We compare our rankings with rankings obtained by other popular procedures.

Our second example is based on simulated NCAA basketball data where the underlying

strengths of the teams are specified. This allows us to compare forecasts against the

truth. The final forecasting example is based on data from the 2016/2017 English Pre-

mier League season. This is a substantially different dataset in that we have a much

smaller number of teams (n = 20). In Section 4, we consider various nuances related to

our approach. In particular, we compare our procedure to the Bradley-Terry approach

where we observe the proposed method places more importance on individual matchups

than Bradley-Terry. We conclude with a short discussion in Section 5.

2 APPROACH

Our approach is based on data arising from paired comparisons. In basketball, this

represents a data reduction since each team scores a specific number of points in a game.

However, sometimes the actual number of points scored can be misleading. For example,

in “blowouts”, teams often “empty their benches” near the end of a game, meaning that

regular players are replaced by players who do not typically play in competitive matches.

In such cases, margins of victory may not be representative of true quality. Interestingly,

a requirement of the computer rankings used in the former BCS (Bowl Championship

Series) for NCAA football was that the computer rankings should not take into account

margin of victory (dishingoutdimes 2010).

With respect to paired comparison data, it is straightforward to determine the pref-

erence when one team plays another team in a single game. We let h denote the number

of points corresponding to the home court advantage in NCAA basketball. If the home

team defeats the road team by more than h points, then the home team is the preferred

team in the paired comparison. Otherwise, the road team is the preferred team.

We set the home team advantage at h = 3.5 points. This is consistent with Bessire
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(2016) who provided an average home team NCAA basketball advantage of h = 3.7 points.

When a game is played at a neutral site, then h = 0. Whereas there is frequent discussion

of differential home team advantages, we are inclined to believe that such differences are

primarily the manifestation of multiple comparison issues (Swartz and Arce 2014) and

unbalanced schedules. The value h = 3.7 roughly agrees with Gandar, Zuber and Lamb

(2001) who estimated a home court advantage of 4.0 points in the National Basketball

Association (NBA). Since an NBA game is 48 minutes in duration and a college game

is only 40 minutes in duration, the mapping from h = 4.0 in the NBA to college is

4.0(40/48) = 3.3. In an independent calculation, we studied pairs of NCAA basketball

teams during the 2006/2007 through 2015/2016 seasons. In the 26,206 matchups where

pairs of teams played more than once with both home and away matches, we estimated

the home court advantage as h = 3.4 points. For example, suppose team A played at

home and defeated team B by hA points (hA is negative for a loss). And similarly, suppose

team B then played at home and defeated team A by hB points (hB is negative for a loss).

In this matchup, home advantage is estimated by (hA + hB)/2, and h is obtained by

averaging these terms over all matchups. For the determination of preferences in paired

comparisons, we note that preferences are insensitive to h ∈ (3.0, 4.0).

More generally, suppose that two teams have played each other more than once. Let

pAi and pBi be the points scored by Team A and Team B respectively in the i-th game.

Then from Team A’s perspective, define the differential

di =

 pAi − pBi − h if Team A is the home team

pAi − pBi + h if Team B is the home team
(1)

In this case, Team A is the preferred team in the particular paired comparison if the

average of its di values is positive.

When two teams have played each other directly, then we use (1) to determine the

preference, and we refer to this as a level L1 preference. With n = 351 NCAA basketball

teams, there are (n2 ) = 61, 425 potential paired comparisons. Based on the 5,948 matches

that took place in 2015/2016, 3,918 level L1 preferences were observed. The level L1

preferences represent only 6.38% of the potential (n2 ) paired comparisons.

We now consider cases where Team A and Team B have not directly played against

each other. Our approach for determining preferences in these situations borrows on ideas
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from the RPI (Ratings Performance Index) where strength of schedule is considered; see

Barrow et al. (2013) for a definition of RPI. Specifically, suppose that Team A and Team B

have a common opponent Team C. Then (1) can be used to obtain an average differential

d̄AC from the point of view of Team A versus Team C. Similarly, (1) can be used to obtain

an average differential d̄BC from the point of view of Team B versus Team C. If d̄AC > d̄BC ,

then Team A is the preferred team in the paired comparison of Team A versus Team B.

Now, suppose that Team A and Team B have multiple common opponents Ci. In this

case, if
∑

i d̄ACi
>
∑

i d̄BCi
, then Team A is preferred to Team B. When two teams do

not play one another directly but have common opponents, then we refer to the resulting

preference as a level L2 preference. In the 2015/2016 dataset, L2 preferences represent

54.95% of the potential (n2 ) paired comparisons.

We extend the preference definition so that the data can be used to further determine

preferences. Suppose now that Team A and Team B do not play each other directly and

that they have no common opponents. However, imagine that Team A has an opponent

and that Team B has an opponent who have a common opponent. For example, suppose

Team A plays Team C, Team B plays Team D, Team C plays Team E and that Team D

plays Team E. Without going into the notational details and using a similar approach as

previously described, a differential d̄AE can be determined via the AC and CE matchups.

Similarly, a differential d̄BE can be determined via the BD and DE matchups. Then

d̄AE can be compared with d̄BE to determine the data preference between Team A and

Team B. We refer to preferences of this type as level L3 preferences. In the 2015/2016

dataset, L3 preferences represent 38.67% of the potential (n2 ) paired comparisons. We

therefore see that 6.38% + 54.95% + 38.67 = 100% of the potential (n2 ) paired comparisons

are either of levels L1, L2 or L3. Referring to the popular 1993 movie “Six Degrees of

Separation” starring Will Smith, we observe three (rather than six) degrees of separation

in the 2015/2016 NCAA basketball season.

We now make a small adjustment in the definition of preferences. Occasionally, there

are “ties” in the preferences. For example, in the 2015/2016 NCAA basketball season,

there were 18 cases out of the 3,918 level L1 preferences where a tie occurred. This was

the result of two teams playing each other twice, one game on each team’s home court. In

both games, the home team won by the same margin leading to d̄ = 0. There are various
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ways of breaking the tie to determine the preference. For example, you might set the

preference according to the most recent match. Our approach which we use throughout

the remainder of the paper is to set the preference for both teams equal to 0.5.

Having defined level L1, L2 and L3 preferences using the NCAA basketball data, we

note that the data preferences are not necessarily transitive. For example, it is possible

that Team A is preferred to Team B, Team B is preferred to Team C, and yet Team C

is preferred to Team A. If transitivity were present, then the ranking of teams would be

trivial. In the absence of transitivity, what is a good ranking? Recall that a ranking

R = (i1, . . . , in) has an implicit set of preferences whereby Team ij is preferred to Team

ik whenever ij < ik. We let LC
i denote the number of times that the implied preferences

based in the ranking R agree with the level Li data preferences. In this sense, LC
i is the

number of “correct” preferences in R compared to the level Li preferences determined by

the data. We then define

C(R) = LC
1 + LC

2 + LC
3 (2)

as the number of correct preferences. An optimal ranking R∗ is one which maximizes C(R)

in (2) over the space of the n! permutations. Although we considered assigning varying

weights to the terms in (2), we were unable to determine weights having a theoretical

justification.

2.1 Computation

The first computational problem involves the calculation of the correct number of prefer-

ences C(R) for a given ranking R. A naive approach in calculating C(R) involves going

through all of the L1, L2 and L3 preferences and counting the number that agree with

the implied preferences given by R. On an ordinarly laptop computer, such a calcula-

tion requires over one hour of computation for a single ranking R in the NCAA basketball

dataset. Since our optimization problem involves searching over the space of permutations

R, a more efficient way of calculating C(R) is required.

To calculate C(R) for a given ranking R, we pre-process the data by creating three

matrices corresponding to preferences at levels L1, L2 and L3. In the n × n matrix

D(k) = (d̄
(k)
ij ), k=1,2,3, we have the average differential d̄

(k)
ij from the point of view
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of Team i versus Team j based on a level Lk paired comparison. Once these three

matrices are constructed, it is easy to calculate C(R) = C((i1, . . . , in)) in (2) via LC
k =∑n−1

j=1

∑n
l=j+1(I(d̄

(k)
ijil

> 0) + 0.5 ∗ I(d̄
(k)
ijil

= 0)) where I is the indicator function and the

second term takes ties into account. With the pre-processing, the calculation of C(R) for

a new R now takes roughly one second of computation.

Recall that there are n! ≈ 10742 rankings R in the NCAA dataset, and therefore

calculation of C(R) for all rankings is impossible. To maximize C(R) with respect to R

over the space of the n! rankings, we implemented a version of the simulated annealing

algorithm (Kirkpatrick, Gelatt and Vecchi 1983). Simulated annealing is a stochastic

search algorithm that explores the vast combinatorial space, spending more time in regions

corresponding to promising rankings. In this problem, we begin with an initial ranking R0.

In the i-th step of the algorithm, a candidate ranking Rnew is generated in a neighbourhood

of the ranking Ri−1 from step i − 1. If C(Rnew) > C(Ri−1), then the ranking Ri = Rnew

is accepted as the current state. In the case where C(Rnew) ≤ C(Ri−1), then Ri = Rnew

if a randomly generated uniform(0,1) variate u < exp{(C(Rnew) − C(Ri−1))/ti} where

ti > 0 is a parameter often referred to as the temperature. Otherwise the current ranking

Ri = Ri−1 is set at the previous ranking. The algorithm iterates according to a sequence

of non-increasing temperatures ti → 0. The states (rankings) R0, R1, . . . form a Markov

chain. The algorithm terminates after a fixed number of iterations or when state changes

occur infrequently. Under a ‘suitable’ neighbourhood structure, asymptotic results suggest

that the final state will be nearly optimal.

Success of the simulated annealing algorithm depends greatly on fine tuning of the

algorithm. In particular, the user must specify the cooling schedule (i.e. the temperatures

ti) and also the neighbourhood structure for generating successive states from a given

state. Aarts and Korst (1989) discuss fine tuning of the algorithm.

Our implementation of simulated annealing begins with the recognition that our prob-

lem shares similarities with the well-studied travelling salesman problem. For example,

like our problem, the state space in the travelling salesman problem consists of permuta-

tions, permutations of cities that are visited by the salesman. Also, in the same way that

an interchange in the order of two adjacent cities in a permutation should not greatly

affect the total travelling distance for the salesman, an interchange in the order of two
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adjacent teams in a permutation (ranking) should not greatly affect the expected num-

ber of correct preferences C(R). Accordingly, our implementation of simulated annealing

uses an exponential cooling schedule in early stages defined by a sequence of temperature

plateaux; this approach has been successively used in the travelling salesman problem

(Aarts and Korst 1989).

After extensive experimentation, we have tuned our algorithm and we propose an

optimization schedule that is suited to the NCAA basketball seasons under consideration.

Specifically, we consider m = 1, . . . , 10 blocks (procedures) where the first eight blocks

correspond to simulated annealing. In simulated annealing, the Markov chain consists

of Bm iterations in the m-th block with temperature tm. The temperatures decrease

exponentially from one block to the next according to tm = 20(0.82)m−1 where m =

1, . . . , 5. Therefore, it is more difficult to accept downward moves (i.e. when C(Rnew) <

C(Ri−1)) in the final blocks. In the first m = 5 blocks of simulated annealing, we refer

to generation of candidate rankings as the “Permutation” procedure. Specifically, within

the m-th block, consider the previous state Ri−1 = (i1, . . . , in) and generate a discrete

uniform variable l on (1, . . . , n − km + 1) where the parameter km is user-specified. We

then randomly permute (il, il+1, . . . , il+km−1) yielding (jl, jl+1, . . . , jl+km−1). The candidate

state in the algorithm is then given by Rnew = (i1, . . . , il−1, jl, . . . , jl+km−1, il+km , . . . , in).

In the application, km is the number of consecutive teams in the previous ranking that

are permuted. Once permuted, a candidate ranking is obtained. In keeping with the

heuristic that state changes should be “smaller” as simulated annealing proceeds, we

propose a schedule where the tuning parameter km decreases as m increases.

When the first five blocks of the algorithm have completed, we carry out a procedure

referred to as “Shuffle” in blocks m = 6, 7, 8, 9. The idea behind Shuffle is that whereas the

Permutation procedure can lead to candidate rankings that differ considerably from the

current ranking, Shuffle produces new rankings where only one “misplaced” team shuffles

from its current position. Specifically, given the previous ranking Ri−1, Shuffle proceeds

by generating a discrete uniform random variable l on (1, . . . , n). Then another discrete

uniform random variable j is generated on (max(1, l − 50), . . . ,min(l + 50, n)). Shuffle

updates from Ri−1 to Rnew if Rnew is accepted and where Rnew has the same ordering as

Ri−1 except that the team ranked l is moved to position j. In blocks m = 6, 7, 8, Shuffle is
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more accurately described as Non-Greedy Shuffle (NGShuffle) where temperatures t6, t7, t8

are specified as part of the simulated annealing procedure. In block m = 9, the Shuffle

procedure is modified as Greedy Shuffle (GShuffle). A greedy procedure is one where

only non-negative moves towards the maximum are allowed (i.e. C(Ri) ≥ C(Ri−1)). The

motivation is that when the algorithm nears termination, we only want to be moving in

directions which provide improvements.

Finally, in block m = 10 of the algorithm, we carry out another greedy procedure

which we refer to as “Housekeeping”. Housekeeping investigates the effect of even smaller

changes to the ranking R following the GShuffle procedure (i.e. block m = 9). Specifically,

we take R = (i1, i2, . . . , in) and we sweep through the solution by inspecting quintuples

(ij, ij+1, ij+2, ij+3, ij+4) beginning with j = 1 and ending with j = n − 4. For each

quintuple, we calculate C(R) for the 120 permutations of the quintuple to see if any of

the potential rankings lead to an improved solution. Whenever an improved permutation

is detected, the ranking is updated accordingly.

Table 1 summarizes the schedule for the optimization algorithm. In the NCAA bas-

ketball example, one run of the optimization procedure takes approximately 36 hours of

computation. This is not onerous for a task that might be expected to be carried out

once per week.

m Procedure Bm km tm m Procedure Bm km tm
1 Permutation 2000 65 20.00 6 NGShuffle 25000 3.00
2 Permutation 3000 60 16.40 7 NGShuffle 25000 2.00
3 Permutation 4000 55 13.45 8 NGShuffle 25000 1.00
4 Permutation 5000 45 11.03 9 GShuffle 75000
5 Permutation 6000 40 9.04 10 Housekeeping

Table 1: Schedule for the optimization algorithm. For the m-th block in the Permutation
procedure we provide the block size Bm and the number of consecutive teams km in the
permutation. For the non-greedy procedures, we also provide the temperature tm.

Figure 1 provides a plot of the optimization algorithm corresponding to the preferences

obtained in the 2015/2016 NCAA basketball season. We see that the algorithm moves

quickly towards an optimal ranking and then slowly improves. The algorithm was initiated

from a promising ranking R0 (the 2015/2016 season ending RPI rankings). However, the
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algorithm works equally well using less promising initial states.
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Figure 1: A plot of the number of correct preferences C(Ri) versus the iteration number
i in the optimization algorithm.

The simulated annealing algorithm provides guarantees of convergence to a global

maximum. However, in practical computing times, it may be the case that our proposed

algorithm gets stuck in a local mode and only gets “close” to a maximum. Because of this,

we propose multiple runs of the algorithm. In our case, we choose to run the algorithm

M = 20 times which does not take any extra time because we are able to submit our job

to a cluster colony of processors. We then choose the ranking R∗ which corresponds to

the maximum value of C(R) from the M runs.

The multiple runs also provide us with some confidence that our resultant ranking

R∗ yields C∗ = C(R∗) which is close to the global maximum. From the M = 20 runs,

we have observed that the resultant maxima C1, . . . , CM are roughly symmetric. To

gain some insight, we therefore make the assumption that the maxima are approximately

normally distributed with mean C̄ and standard deviation given by the sample standard

deviation sC . In extreme value theory, the probability density function of C∗, the M -th
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order statistic of C1, . . . , CM is therefore approximately

f(C∗) = M
1

sC
φ

(
C∗ − C̄
sC

)
Φ

(
C∗ − C̄
sC

)M−1

(3)

where φ and Φ are the density function and the distribution function of the standard

normal distribution, respectively. In Figure 2, we plot the density function of C∗ given

by (3) based on the observed maxima C1, . . . , CM from the M = 20 runs. Based on the

observed value C∗ = 53388.5, the plot suggests that we can be confident that we are close

to the global maximum. In particular, it looks unlikely that C∗ = 53388.5 could be off

from the global maximum by much more than 6.0.
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Figure 2: A plot of the density function (3) of the largest order statistic C∗ based on the
optimal C(R) values C1, . . . , CM from the M = 20 runs of the optimization algorithm
using the 2015/2016 NCAA basketball dataset.
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3 FORECASTING

3.1 NCAA Basketball Data

We now compare our proposed ranking procedure with four widely reported ranking

systems used in NCAA basketball (Bihl, Massey, Pomeroy and RPI).

We consider rankings that have been published over five seasons (2011/2012 through

2015/2016) where we note that the Pomeroy rankings were unavailable in the 2012/2013

and 2013/2014 seasons. For each season, we consider 7 time points t1, . . . , t7 where rank-

ings are reported. The time periods roughly correspond to mid December, early January,

mid January, early February, mid February, early March and mid March. For each ranking

system and for each time period (ti, ti+1), our evaluation considers matches played in the

time period and the ranking based at time ti. Except for the last time period coinciding

with March Madness, there are approximately 500 matches played in each time period

per year. In a given match, the outcome is categorized as correct if the home team wins

by more than h = 3.4 points and the home team has the higher ranking. The match

outcome is also categorized as correct if the road team wins or loses by less than h = 3.4

points and the road team has the higher ranking. On a neutral court, the match outcome

is considered correct if the higher ranked team wins.

Over all the predictions made during the five year period, we calculated the percentage

of correct predictions by each of the ranking systems. In order of the highest percent-

ages, we observed Pomeroy (69.6%), Massey (69.4%), our proposed method (69.2%),

Bihl (68.7%) and RPI (67.8%). Although the percentages are reasonably close, the five

methods exhibited fairly consistent orderings on a yearly basis. It is interesting that the

RPI approach exhibited the lowest percentage, yet RPI is used by the NCAA Selection

Committee in their March Madness deliberations.

Table 2 provides the top five ranked teams using the five ranking methods at the end

of the 2015/2016 NCAA basketball season. We observe a lot of agreement in the sets

of rankings. However, our proposed approach is interesting in that it provides a notable

difference from the other rankings. In particular, Kansas is excluded from the top five

whereas Xavier is included. This perspective is interesting as Kansas had a good season

(33 wins versus 5 losses). However, their five losses came against strong teams (Michigan
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St, West Virginia, Oklahoma State, Iowa State and Villanova), all top 20 AP (Associated

Press) teams except for Oklahoma State. This highlights the importance of the head-to-

head matchups which is discussed in Section 4.1. We note that our ranking had Kansas

in the seventh position. On the other hand, Xavier (not a traditional powerhouse school)

had a strong 28-6 record and may have been overlooked by some of the other ranking

methods.

Method First Second Third Fourth Fifth
Pomeroy Villanova N Carolina Virginia Kansas Michigan St
Massey Villanova Kansas N Carolina Virginia Oklahoma
Proposed Villanova Michigan St N Carolina Xavier Virginia
Bihl Kansas Villanova N Carolina Oklahoma Virginia
RPI Kansas Villanova Virginia Oregon N Carolina

Table 2: Final rankings of the top five teams at the end of the 2015/2016 season.

3.2 Simulated NCAA Basketball Data

Although the previous example using actual NCAA basketball data was instructive, it

did not allow us to make comparisons with the “truth” since the correct rankings based

on team strengths in actual seasons are always unknown. In this example, we consider

simulated data sets where we can initially set team strengths so that the true rankings

are known to us.

Therefore, in the context of NCAA basketball, we consider n = 351 teams where the

team rankings are set according to alphabetical order. For example, Team 1 is the best

team and its schedule is determined by the 2015/2016 schedule for Abilene Christian.

Team 351 is the weakest team and its schedule is determined by the 2015/2016 schedule

for Youngstown State. For a match between Team i and Team j on a neutral court, the

observed point differential in favour of Team i is modeled according to the Normal(µi −
µj, σ

2) distribution where the normal distribution is a common assumption for NCAA

basketball (Stern and Mock 1998), and we set σ = 9.3 which is consistent with Swartz et

al. (2011). If the normal variate is greater (less) than zero, then Team i is the winning

(losing) team. For home and road matches, winners and losers are determined by using

the same procedure as if the match was played on a neutral court.
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We consider two team strength scenarios. In the first case, we set team strengths

according to µi = 35.1 − (0.1)i such that Team 1 has strength 35.0 and Team 351 has

strength 0.0. This implies, for example, that the strongest team is expected to defeat the

weakest team by 35 points on a neutral court. In the second case, we set team strengths

according to µi = 52.65 − (0.15)i which implies that the strongest team is expected to

defeat the weakest team by 52.5 points on a neutral court.

Our comparison via simulation proceeds by generating M = 10 seasons of matches

according to the above description where h = 3.5 is set as the home team advantage. In

the j-th season, we take the resultant ranking Rj = (j1, . . . , jn) and compare it to the

true ranking Rtrue = (1, . . . , n). We do this using two comparison metrics, C
(1)
j = 1

n

∑n
i=1 |

ji − i | and C
(2)
j =

√
1
n

∑n
i=1(ji − i)2. We repeat the procedure over the M = 10 seasons

to obtain the overall comparison metrics C(1) = 1
M

∑M
j=1C

(1)
j and C(2) = 1

M

∑M
j=1C

(2)
j .

Our simulation involves a comparison of our proposed ranking method with the Bradley-

Terry approach which is considered the benchmark procedure for paired comparison data.

Bradley-Terry estimation procedure fails when there is more than one winless team. For

this reason, we assign 0.5 wins in those rare cases where there are winless teams. We note

that Bayesian implementations of Bradley-Terry as mentioned in the Introduction do not

suffer from this drawback. We are unable to make comparisons with some of the systems

that are frequently reported in NCAA basketball (e.g. Sagarin, Pomeroy, Massey or RPI)

since the systems are proprietary and the code is unavailable.

Table 3 reports the results of the simulation procedure. The metrics are interesting as

they may be interpreted as the average deviation between a team’s ranking and its true

ranking. We observe that both ranking procedures are improved in the second simulation

case. This makes sense as there is more variability between teams in Case 2 than in

Case 1, and it is therefore more likely for a ranking method to differentiate between

teams. Further, we observe that in both simulation cases and using both metrics that

the proposed ranking procedure gives better rankings than Bradley-Terry. The reported

standard errors suggest that the improvements are statistically significant in the second

simulation case. We believe that Case 2 is more realistic than Case 1 in describing a wider

range in quality between NCAA teams.

It would be interesting to repeat the simulation where team strengths were not lin-
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ear but followed a Gaussian specification. For example, one could generate µi from a

Normal(0, 36) distribution and then sort the µi such that µ1 is the largest and µ351 is the

smallest. This may be a more realistic description of a population of team strengths.

Proposed Bradley-Terry
Ranking Procedure Procedure

Case 1: µi = 35.1− (0.1)i C(1) = 12.7 (0.39) C(1) = 13.2 (0.85)
C(2) = 15.4 (0.44) C(2) = 16.9 (0.99)

Case 2: µi = 52.65− (0.15)i C(1) = 09.1 (0.25) C(1) = 11.7 (0.44)
C(2) = 11.0 (0.34) C(2) = 15.0 (0.47)

Table 3: Comparison metrics with standard errors in parentheses for two ranking systems
(Proposed versus Bradley-Terry) studied under two simulation cases.

3.3 English Premier League Data

Whereas NCAA basketball consisted of n = 351 teams in 2015/2016, the English Premier

League (EPL) is a much smaller league with n = 20 teams. Therefore, the EPL provides

a different type of challenge for our ranking procedure.

In the EPL, each team plays both a home and a road game against every other team

for a total of 38 matches in a season. We begin by setting two dates during the 2016/2017

EPL season where ranks based on our procedure are determined at each date. These dates

roughly correspond to weeks 19 and 27 of the season. We chose not to extend the dates to

the latter part of the season as unusual playing behaviours sometimes occur. For example,

in the latter portion of the 2016/2017 season, Manchester United was more focused on

their Europa Cup matches than in their EPL matches. It was believed that they had a

greater chance for Champions League qualification from the Europa Cup route. Also, we

wanted to use some of the matches beyond week 27 to assess the predictive power of the

rankings. Based on these dates, each team had played every other team at least once, and

therefore team comparisons were based entirely on level L1 preferences. The data matrix

D(1) was constructed for each of the two dates where the home field advantage was set
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at h = 0.5 (Roeder and Curley 2014). Recall that the calculation of paired comparison

preferences is insensitive to the choice of h in the wide interval h ∈ (0, 1).

We note that the full strength of the optimization algorithm described in Table 1 was

not required since we have fewer teams. We instead initiated the procedure beginning in

block m = 6. We also modified the Shuffle procedure where we now generate independent

uniform variates l and j on (1, . . . , 20). Under Shuffle, the candidate ranking Rnew has

the same ordering as Ri−1 except that team l is inserted into position j. In this case, the

optimization procedure was carried out in roughly 45 seconds of computing for each of

the two time periods.

An advantage of working with a smaller league is the increased confidence that optimal

rankings are obtained. Multiple runs of the algorithm based on different initial rankings

typically gave the same value of C(R). However, we did discover that the rankings were

not unique. We found three optimal rankings at the first date and two optimal rankings

at the second date.

Table 4 provides both the EPL table (standings) and the optimal rankings at the two

dates. We observe some meaningful differences between the tables and the ranks. On the

Jan 1/17 date, the largest discrepancies between the table and the optimal ranks involve

Middlesbrough, Arsenal and Watford. The optimal rankings suggest that Middlesbrough

is stronger (9 placings), Arsenal is weaker (6 placings) and Watford is weaker (6 placings)

than the table indicates. Middlesbrough’s strength was aided by “wins” (i.e. taking into

account home team advantage) over Manchester City, Arsenal and West Brom. We also

observe that the three optimal rankings R∗1, R
∗
2 and R∗3 on Jan 1/17 are similar; the only

differences involve the top three sides Chelsea, Liverpool and Manchester United. On

the Mar 6/17 date, the largest discrepancies between the table and the optimal rankings

involve Manchester City (7 places lower according to R∗1), Leicester City (6 places higher

according to R∗1) and Sunderland (6 places higher according to both R∗1 and R∗2).

Having observed some of the large discrepancies between the standings and the optimal

rankings in Table 4, it is difficult to assess which lists are more sensible as measures of

team strength. Perhaps large discrepancies indicate to gamblers that there is something

interesting about such teams, that there may be a partial explanation for their standings

at a given point in time. We now use the rankings at the two dates in Table 4 to
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Jan 1/17 Mar 6/17 Final
Pos Table Gms Pts R∗1 R∗2 R∗3 Table Gms Pts R∗1 R∗2 Table
1 CHE 19 49 CHE MUN LIV CHE 27 66 LIV LIV CHE
2 LIV 19 43 MUN LIV CHE TOT 27 56 TOT TOT TOT
3 ARS 19 40 LIV CHE MUN MCI 26 55 ARS CHE MCI
4 TOT 19 39 TOT TOT TOT LIV 27 52 CHE EVE LIV
5 MCI 19 39 SOU SOU SOU ARS 26 50 MUN MCI ARS
6 MUN 19 36 EVE EVE EVE MUN 26 49 EVE ARS MUN
7 EVE 19 27 MID MID MID EVE 27 44 WBA MUN EVE
8 WBA 19 26 MCI MCI MCI WBA 27 40 SOU WBA SOU
9 SOU 19 24 ARS ARS ARS STK 27 35 LEI SOU BOU
10 BOU 19 24 BOU BOU BOU SOU 26 33 MCI LEI WBA
11 BUR 19 23 WBA WBA WBA WHU 27 33 STK STK WHU
12 WHU 19 22 LEI LEI LEI BUR 27 31 WHU WHU LEI
13 WAT 19 22 STK STK STK WAT 27 31 BUR BUR STK
14 STK 19 21 WHU WHU WHU BOU 27 27 SUN SUN CRY
15 LEI 19 20 SWA SWA SWA LEI 27 27 CRY CRY SWA
16 MID 19 18 BUR BUR BUR SWA 27 27 WAT WAT BUR
17 CRY 19 16 CRY CRY CRY CRY 27 25 MID MID WAT
18 SUN 19 14 SUN SUN SUN MID 27 22 BOU BOU HUL
19 HUL 19 13 WAT WAT WAT HUL 27 21 HUL HUL MID
20 SWA 19 12 HUL HUL HUL SUN 27 19 SWA SWA SUN

Table 4: EPL table (standings) and optimal rankings R∗i corresponding to our method.
The chosen intervals in the 2016/2017 season include matches up to and including the
specified dates. We also include the final season ending table.

forecast matches. For example, based on the time interval from Jan 2/17 to Mar 6/17, we

investigated the 78 matches played. We calculated the percentage of correct forecasts as

implied by the table and by our rankings as of Jan 1/17. We repeated the procedure for the

time interval Mar 7/17 to May 1/17. The results are provided in Table 5. It is difficult to

conclude much from Table 5. In the first predictive period, the table appears to do slightly

better than the optimal rankings. In the second period, the opposite pattern emerges. It

seems that both the table and the optimal rankings use past results in a sensible way to

assess team strength. Although the EPL exercise was interesting, we believe the methods

developed in this paper are particularly suited to the more challenging problem involving
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large numbers of teams such as the NCAA where most pairs of teams do not compete.

Forecast Accuracy
Time Interval Matches Table R∗1 R∗2 R∗3

Jan 2/17 - Mar 6/17 78 70.5% 66.7% 65.4% 66.7%
Mar 7/17 - May 1/17 76 61.8% 63.2% 65.8%

Table 5: Percentage accuracy of forecasts implied by the table and the optimal rankings
during two time intervals.

4 NUANCES OF THE APPROACH

4.1 Importance of Individual Matchups

Although the proposed ranking scheme is conceptually simple and does not rely on para-

metric assumptions, it is sometimes instructive to look at pathological cases to gain a

deeper understanding of the approach.

We therefore consider the case where the number of teams n is large, say n > 100.

Suppose further that there are two very strong teams, Team A and Team B, that are

preferred in 99% and 90% of the paired comparisons resulting from matches, respectively.

And suppose that the remaining n − 2 teams are not nearly as strong as Team A and

Team B. Then, following (2), it is apparent that

C((B,A, i3, . . . , in)) = C((A,B, i3, . . . , in)) + 1 (4)

if Team B has “defeated” Team A (i.e. if Team B is preferred to Team A in terms of the

actual matches).

The question is whether it is sensible to rank Team B above Team A according to

(4) given that Team A has won a much larger proportion of matches than Team B (99%

versus 90%). The answer to the question depends on how one views the importance of

individual matchups. We believe that in NCAA basketball and football, head-to-head

matchups are considered vitally important.

The above discussion illuminates the importance of individual matchups in the pro-

posed ranking system. We now contrast this with the Bradley-Terry ranking system. In
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Bradley-Terry, the i-th team is characterized by a parameter πi such that the probabil-

ity that Team i defeats Team j is πi/(πi + πj). Therefore, the πi’s (by virtue of their

magnitude) determine a ranking of the teams.

In Bradley-Terry, consider the case where two teams i1 and i2 have the same strength

(i.e. πi1 = πi2). Assume further that each of the n teams has played all of the other n− 1

teams exactly once. Then, according to the steady state of the Bradley-Terry iterative

estimation procedure (Bradley and Terry 1952), we have

∑
j 6=i1

xi1j

∑
j 6=i1

1

πi1 + πj

−1 =
∑
j 6=i2

xi2j

∑
j 6=i2

1

πi2 + πj

−1 (5)

where xij = 1 if Team i defeated Team j and xij = 0 if Team i lost to Team j. From

(5), we obtain
∑

j 6=i1 xi1j =
∑

j 6=i2 xi2j. The implication for Bradley-Terry is that the

equal ranking of the two teams i1 and i2 is based on their total number of victories∑
j 6=i1 xi1j and

∑
j 6=i2 xi2j which is only slightly dependent on the result of their particular

matchup. Buhlmann and Huber (1963) develop properties of ranking procedures including

the recognition that the number of wins by each team is the sufficient statistic for the

Bradley-Terry model.

Given that our procedure is nonparametric, there is no underlying likelihood and

no capability for the calculation of model-based probabilities. For example, there are

no parameters to estimate and one cannot assess the closeness of rankings. Therefore,

it is interesting to consider how the resultant rankings are affected by match outcome

variability. It seems the only way to assess the impact of match variability is to change

a particular match outcome (or a set of match outcomes). Then one re-runs the ranking

algorithm and simply observes how the rankings change.

4.2 Uniqueness of the Optimal Ranking

Since C(R) is a discrete function, it is important to consider whether a derived optimal

ranking R∗ is unique. It is clear that a solution may not be unique as demonstrated in

the following simple example. Let n = 3 and suppose that the data preferences are: A is

preferred to B, B is preferred to C, and C is preferred to A. In this case, there are three
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optimal rankings since

C(A,B,C) = C(C,A,B) = C(B,C,A) = 2 .

The following proposition addresses an aspect of the uniqueness of optimal solutions.

Proposition 1: Suppose that B1, B2 and B3 are ordered blocks of subjects and that

R1 = (B1, B2, j, B3) is an optimal ranking. Then R2 = (B1, j, B2, B3) is an optimal

ranking only if C(j, B2) = C(B2, j).

Proof: C(R1) − C(R2) = C(B2, j) − C(j, B2). Therefore, the only way that R2 can be

an optimal ranking is if C(j, B2) = C(B2, j).

The condition C(j, B2) = C(B2, j) in Proposition 1 implies that j is preferred to

exactly half of the subjects in B2. However, there is more that can be said concerning

Proposition 1. Suppose that B2 = (i1, i2, . . . , ik) where k is necessarily even. Then it must

be the case that C(j, i1) = 1. For if it were not the case, then C(B1, i1, j, i2, . . . , ik, B3) >

C(R2) = C(B1, j, i1, i2, . . . , ik, B3) and therefore R2 would not be optimal. Using similar

reasoning, it must also be the case that C(j, ik) = 0. In other words, j must be preferred

to the best subject i1 in B2 and j must not be preferred to the worst subject ik in B2.

We suggest that this is an atypical situation and it becomes more unusual as k increases.

“Small” deviations from optimal rankings which lead to alternative optimal rankings

are not a big concern. What we would not like to see is “very different” rankings which

are optimal. Now although there can be other optimal rankings which do not take the

form described in Proposition 1, our investigations suggest that again, optimal rankings

tend to be “close”. The intuition is that in an optimal ranking R1, the strong subjects

appear early in the ranking going from left to right. Any reshuffling of the subjects moves

away from this heuristic and is therefore likely not optimal.

5 DISCUSSION

With paired comparison data, the ranking problem is a common problem which has

applications to sport. The ranking method proposed in this paper is conceptually simple

although the calculation of an optimal ranking poses computational challenges.
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For NCAA basketball, the ranking problem is particulary challenging due to the spar-

sity of games relative to the number of teams n = 351. In an ideal world, our method

would lead to a unique global maximum. However, the lack of uniqueness in some datasets

is a consequence of the simplicity of the optimality criterion. The good news is that the

rankings belonging to the set of optimal rankings tend to be “close” to one another. For

getting a sense of the overall quality of teams, we have demonstrated that our ranking

system compares favourably with other ranking systems. The only occasions where the

uniqueness issue may cause distress is when there is disparity between the top teams. In

such situations, one may consider the introduction of tie-breaking procedures to differen-

tiate between optimal rankings.

We note that our ranking criterion C(R) in equation (2) assigned equal weights to

team preferences. That is, we assigned the same weight to pairs of teams that competed

directly versus pairs of teams that competed indirectly. For future research, we may con-

sider obtaining weights that provide optimal predictive power. The procedure would be

computationally demanding and optimal weights may vary by sport. Another avenue for

future research might be to assign data preference scores other than 0/1. For example,

suppose that Team A had a data preference of q points over Team B. Then, the contribu-

tion to C(R) for having Team A ranked above Team B in the ranking R would be worth

q points. For example, data preference scores could be assigned via considerations based

on margin of victory.
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