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Abstract

This paper considers the use of Dirichlet process priors in the statistical analysis of

network data. Dirichlet process priors have the advantage of avoiding the parametric

specification for distributions which are rarely known and for facilitating a clustering

effect which is often applicable to network nodes. The approach is highlighted on

two network models and is conveniently implemented using WinBUGS software.

Keywords : Bayesian semiparametric modelling, Clustering, Dirichlet process, Network

models, Social relations. WinBUGS software.
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1 INTRODUCTION

The analysis of network data is an active research topic. The range of applications is

vast and includes such diverse areas as the detection of fraud in the telecommunications

industry (Cortes, Pregibon and Volinsky 2003), the development of adaptive sampling

schemes for populations at risk of HIV/AIDS infection (Thompson 2006), the study of

conflicts between nations (Ward and Hoff 2007, Hoff 2009), the quantification of social

structure in elephant herds (Vance 2008) and the investigation of the cooperative structure

between lawyers (Lazega and Pattison 1999).

Not only are the areas of application varied, the statistical approaches to the analysis

of network data are also varied. The approaches depend on many factors including the

inferential goal of the analysis whether it be description, testing or prediction, the size of

the data set and the nature of the data. Data may be continuous or discrete, there may

be complex dependencies amongst nodes, relationships may be directed or non-directed,

data may be dynamic, multivariate, have missing values, include covariates, lack balance,

etc. Network analyses have been considered under both classical and Bayesian paradigms.

Although a complete review of the network literature strikes us as a daunting task,

we remark on some of the prominent approaches to the statistical analysis of network

data. With continuous observations between network nodes, Warner, Kenny and Stoto

(1979) introduced the social relations model whose structure considers dependencies in

the measurements between nodes. In the social relations model, nodes (e.g. subjects) have

dual roles as both actors and partners where measurements between nodes are dependent

on both actor and partner effects. Social relations models (also referred to as round

robin models) were originally studied using analysis of variance methodology. Other

inferential approaches have since been explored including maximum likelihood (Wong

1982), multilevel methods (Snijders and Kenny 1999) and Bayesian methods (Hoff 2005,
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Gill and Swartz 2007).

More research effort has taken place in the context of binary network data where a

greater amount of mathematics and graph theory have come into play (Besag 1974, Frank

and Strauss 1986). In the context of binary network data, a seminal contribution is due

to Holland and Leinhardt (1981) who broke away from the often unrealistic assumption

of independence between pairs of nodes and proposed the p1-model for directed graphs.

The original p1-model has been expanded upon in many ways including empirical Bayes

approaches (Wong 1987), fully Bayesian approaches (Gill and Swartz 2004) and the con-

sideration of more complex dependencies (Wasserman and Pattison 1996). All of these

models fall under the general framework of exponential random graph models whose vari-

ous limitations have been discussed by Besag (2001) and Handcock (2003). A main feature

of exponential random graph models is that the entire network is modelled. A distinct

approach to the analysis of binary network data involves modelling the individual nodal

relationships; these models have been generalized in various ways and are referred to as

latent factor models (Hoff, Raftery and Handcock 2002, Handcock, Raftery and Tantrum

2007). Finally, a recent approach which is related to the latent factor methodology pro-

vides a greater emphasis on the socio-spatial structure typically inherent in networks

(Linkletter 2007). The approach requires the existence of meaningful spatial covariates

and appears well suited for prediction.

This paper investigates the suitability of Dirichlet process priors in the Bayesian analy-

sis of network data. The Dirichlet process (Ferguson 1974) which was once a mathematical

curiosity is becoming a popular applied tool (Dey, Müller and Sinha 1998). Dirichlet pro-

cess priors allow the researcher to weaken prior assumptions by going from a parametric

to a semiparametric framework. This is important in the analysis of network data where

complex nodal relationships rarely allow a researcher the confidence in assigning paramet-
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ric priors. The Dirichlet process has a secondary benefit due to the fact that its support

is restricted to discrete distributions. This results in a clustering effect which is often

suitable for network data where groups of individuals in a network can be thought of as

arising from the same cohort. Importantly, we demonstrate how Dirichlet process priors

can be easily implemented in network models using WinBUGS software (Spiegelhalter,

Thomas and Best 2003). The ease in which this can be done increases the potential of

the methodology for widespread usage.

In section 2, we provide an overview of the Dirichlet process with an emphasis on issues

that are most relevant to the implementation of the network models that are considered

in this paper. In section 3, we provide three examples which demonstrate the utility of

Dirichlet process mixture models in the context of social networks. The first example in

section 3 is a simulation study involving a simple but popular binary network model. We

demonstrate that the inferences are what we expect under a variety of conditions. The

second example concerns an enhanced binary network model that studies the working re-

lationships between lawyers. This is a variation of the p1-model of Holland and Leinhardt

(1981) and stratifies the lawyers according to their professional rank. The third example

involves a social relations model previously studied by Gill and Swartz (2007) where the

observations between nodes are measured on a continuous scale. In each of the three ex-

amples, the Dirichlet process can be easily implemented using WinBUGS software. Some

concluding remarks are provided in section 4.

2 THE DIRICHLET PROCESS

In a Bayesian framework, parameters are not viewed as fixed quantities whose values are

unknown to us. Rather, parameters are thought of as random quantities that arise from
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probability distributions. For the sake of discussion, consider random effects θ1, . . . , θn

from a parametric Bayesian model where

θi
iid∼ G0. (1)

In (1), we specify the parametric distribution G0, and note that sometimes G0 may depend

on additional parameters. For example, G0 may correspond to a normal distribution

whose mean and variance are left unspecified. We also note that the θ’s may be scalar or

vector-valued.

With a Dirichlet process (DP) prior, we instead write

θi
iid∼ G

where G ∼ DP(m,G0).
(2)

In (2), we are stating that the parameter θ arises from a distribution G but G itself arises

from a distribution of distributions known as the Dirichlet process with concentration

parameter m > 0 and mean E(G) = G0. The Dirichlet process in (2) is defined (Ferguson

1974) as follows: For finite k and any measurable partition (A1, . . . , Ak) of R, the distri-

bution of G(A1), . . . , G(Ak) is Dirichlet(mG0(A1), . . . ,mG0(Ak)). It is apparent that the

baseline distribution G0 may serve as an initial guess of the distribution of θ and that the

concentration parameter m determines our a priori confidence in G0 with larger values

corresponding to greater degrees of belief. Under (2), we think of a distribution G arising

from the Dirichlet process followed by a parameter θ arising from G.

An illuminating and alternative definition of the Dirichlet process was given by Sethu-

raman (1994). His constructive definition of (2) which is also known as the stick breaking

representation is given as follows: Generate a set of iid atoms θ∗i ∼ G0 and generate a set
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of weights wi = yi
∏i
j=1(1− yj) where the yi are iid with yi ∼ Beta(1,m) for i = 1, ...,∞.

Then

G =
∞∑
i=1

wiIθ∗i (3)

where Iθ∗i is a point mass at θ∗i .

For our purposes, the Sethuraman (1994) construction is most useful. First, we see

that the stick breaking mechanism creates smaller and smaller weights wi. This suggests

that at a certain point we can truncate the sum (3) and obtain a reasonable approximation

to G (Muliere and Tardella 1998). Ishwaran and Zarepour (2002) suggest that the number

of truncation points L = n when the number of random effects n is small and L =
√
n

when large. Secondly, in WinBUGS modelling, it is required to specify the distributions

of parameters. Whereas the Ferguson (1974) definition does not provide an adequate

WinBUGS specification, the truncated version of (3) can be easily implemented. Finally,

the stick breaking construction clearly shows that a generated G is a discrete probability

distribution which implies that there is non-negligible probability that θ’s generated from

the same G have the same value. As later demonstrated in the examples, it is often

desirable to facilitate clustering in network modelling.

In a typical MCMC application, there are considerable programming challenges that

face a user. In particular, one needs to determine a Markov chain which has the poste-

rior as its invariant distribution. The chain also needs to be an appropriate chain that

reaches practical convergence in practical computing times. This is sometimes facilitated

by breaking the parameter vector into smaller components where simulation is carried out

componentwise. A good introduction to MCMC methods is given by Gilks, Richardson

and Spiegelhalter (1996). The appeal of WinBUGS software is that the programming

demands are often significantly reduced. A WinBUGS implementation requires only the
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specification of the likelihood, the prior distribution and the data. WinBUGS deter-

mines the Markov chain in the background and provides the user with MCMC output

from which inferences can be obtained. When possible (i.e. with “conjugate” distribu-

tions), WinBUGS uses the Gibbs sampling algorithm as the Markov chain. In more

complex situations, WinBUGS imbeds Metropolis steps with normal proposal densities.

Detailed information on WinBUGS is available from the WinBUGS website www.mrc-

bsu.cam.ac.uk/bugs/.

In our applications where Dirichlet process priors are used in network models, Win-

BUGS output allows us to readily assess clustering. Given a single iteration from the

Markov chain, we simply observe which θ’s have the same value as θi. Over many iter-

ations, the proportion of times that θi is the same as θj is an estimate of the posterior

probability that the ith and jth subjects cluster together. An advantage of Bayesian

clustering is that probabilitic statements can be made concerning clustering. We contrast

this with many classical deterministic algorithms where there is no measure of clustering

strength.

Although the DP is a highly technical tool, the simple introduction above is all that

is required to use Dirichlet process priors in the network models considered in this paper.

3 EXAMPLES

We consider three examples that demonstrate the utility of Dirichlet process mixture

models in the context of social networks.
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3.1 Example 1: A Simulation Study

We report on a simulation study that investigates the performance of clustering using the

Dirichlet process mixture in a simple binary network model. The model is a variation of

logistic regression where binary responses describe the presence of ties between nodes. The

simulated network data consist of an n by n matrix Y where yij = 1, i 6= j indicates that

subject i has a tie towards subject j, and yij = 0 denotes the absence of such a tie. Each

yij ∼ Bernoulli(pij) is assumed independent of other y’s and the independence assumption

is a common criticism of the simple model. We use a logistic link for pij = Pr(yij = 1)

whereby

log
(

pij

1−pij

)
= µ+ αi + βj

log
(

pji

1−pji

)
= µ+ αj + βi.

(4)

In (4), the parameters αi and βi quantify the strength with which subject i produces and

attracts ties respectively. With the inclusion of the α and β random effects, a type of

dependency is introduced among dyads which share a common subject. The parameter

µ measures the overall density of ties in the network.

In order to induce clustering amongst the random effects, we divide n = 100 subjects

into four groups of equal size. This is a substantial network as each subject has 2(99) =

198 observations that describe its associated ties. The large size of the dataset helps

demonstrate the utility of the approach. We set µ = 0 and set the random effects according

to (αi, βi) = (−1,−1), (1, 1), (−1, 1), (1,−1) for the four groups.

A Bayesian model for this network consists of the Bernoulli model description for Y ,

the logistic link (4), and the diffuse prior distributions µ ∼ Normal(0, 10000), (αi, βi)
′ iid∼

Normal2 (0,Σαβ) and Σ−1
αβ ∼Wishart2(2, I). To implement the Dirichlet process mixture

version of the model, these priors are maintained except that the prior distribution for
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(αi, βi) is modified according to (2) where the number of truncation points L = 20 and

the baseline distribution G0 is the bivariate normal. The prior for the concentration

parameter is given by m ∼ Uniform(0.4, 10) which is similar to the choices made by

Ohlssen, Sharples and Spiegelhalter (2007).

In testing the adequacy of the model, we note that all of the 100 subjects are correctly

clustered into their corresponding groups. The posterior probabilities of pairs of subjects

(from the same group) clustering together range from 0.77 to 0.99. For pairs of subjects

from different groups, the posterior probabilities of clustering are all 0.00. WinBUGS

simulations for this substantial dataset require roughly two hours of computation for

20000 iterations.

We then modify the density parameter from µ = 0 to µ = −1 prior to simulating the

data Y . This has the effect of radically decreasing the number of ties between subjects.

Again, we find perfect clustering for the 100 subjects.

As a third test of the utility of the model, we introduce some variation in the random

effects (αi, βi) as might be expected in most networks. We generate the (αi, βi) from a

bivariate normal distribution having zero correlation and standard deviation 0.1 in both

the α and β parameters. This time, the clustering is again perfect in the sense that

none of the subjects from a given group cluster with subjects outside of their own group.

However, there is a little bit of sub-clustering of subjects within their own groups. In

particular,

• the group with mean (−1,−1) has two sub-clusters of sizes 3 and 22

• the group with mean (1, 1) has two sub-clusters of sizes 5 and 20

• the group with mean (−1, 1) is a single cluster

• the group with mean (1,−1) has three sub-clusters of sizes 2, 4, and 19 .
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Cluster membership is based on posterior probability of pairwise clustering exceeding 0.5.

When the threshold level is reduced to 0.25, we again observe perfect clustering with each

of the 100 subjects assigned to its original group.

3.2 Example 2: An Enhanced Binary Network Model

We now consider an exponential random graph model previously studied by Gill and

Swartz (2004). The data is an n by n matrix Y = (yij) describing the relationships

between n nodes where yij = 1 denotes a tie from node i to node j and yij = 0 denotes

the absence of such a tie, i 6= j. The p1-model of Holland and Leinhardt (1981) states

Prob(Y ) ∝ exp

∑
i<j

φyijyji +
∑
i 6=j

(θ + αi + βj)yij

 (5)

where (5) implies the independence of the dyads Dij = (yij, yji), i < j. The parameter φ

measures the average degree of reciprocity or mutuality of ties in the population whereas

θ measures the density of ties. The subject specific effects αi and βi represent the ability

of subject i to extend and attract ties respectively. The Bayesian model specification then

assigns prior distributions to the primary parameters of interest

φ ∼ Normal(µφ, σ
2
φ), (6)

θ ∼ Normal(µθ, σ
2
θ), (7)

(αi, βi)
′ iid∼ Normal2 (0,Σαβ) . (8)
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To complete the Bayesian model specification, hyperpriors are assigned as follows:

µφ ∼ Normal(µ0, σ
2
0), µθ ∼ Normal(µ0, σ

2
0),

σ−2
φ ∼ Gamma(a0, b0), σ−2

θ ∼ Gamma(a0, b0),

Σ−1
αβ ∼Wishart2(r0,Σ0).

(9)

The parameters subscripted with a 0 in the hyperpriors (9) are set to provide diffuse

distributions. To implement the Dirichlet process mixture version of the model, priors (6)

through (9) are maintained except that (8) is modified as follows:

(αi, βi)
′ iid∼ G

G ∼ DP(m,Normal2 (0,Σαβ))

m ∼ Uniform(0.4, 10.0).

(10)

To investigate the enhanced Dirichlet process mixture model, we consider a subset of

the law firm data originally studied by Lazega and Pattison (1999). The directed data

matrix Y specifies whether or not advice was given between lawyers in a law firm consisting

of 36 partners and 35 associates. The use of the Dirichlet process provides an approach

to modelling the heterogeneity amongst the lawyers with respect to the parameters α and

β. In the law firm example, one line of reasoning suggests that:

• senior lawyers are more likely to give advice but are less likely to receive advice

(positive α and negative β)

• junior lawyers are more likely to receive advice but are less likely to give advice

(negative α and positive β)

• intermediate lawyers are likely to provide advice to the same extent that it is sought

(comparable α and β) .

12



The idea of partitioning the network actors into classes is related to the concept of

blockmodelling. Wasserman and Faust (1994, chapters 10 and 16) describe in detail a

priori and a posteriori blockmodelling. In a priori blockmodelling, exogenous attributes

of actors are used for partitioning. Although this may appear sensible, there may very

well be actors who do not fit the mold for a priori blockmodelling and may be thought

of as a cluster of their own. For example, there may be young associates brimming

with confidence who rarely ask for advice but readily offer their opinions. We prefer

to let the data determine the clusters and this is possible with the proposed Dirichlet

process mixture model. With a priori blockmodelling, the purpose is to describe overall

propensities. However, excessive rogue cases can adversely affect model fit. Another

objection to a priori blockmodelling is that often many models are fit before satisfactory

covariates are determined. This suggests the problem of multiple comparisons where the

final model may only include covariates that fit the dataset in question and may not

provide adequate fit to the population of interest.

In a posteriori blockmodelling, estimates of the subject parameters αi and βi are

obtained, and then standard clustering methods are applied to the estimates with the

intention of grouping individuals. A posteriori blockmodelling strikes us as somewhat of

an ad hoc procedure. We prefer a principled Bayesian approach where the individuals are

clustered as a by-product of the DP mixture model.

Figure 1 provides a plot depicting the relationship between providing advice and re-

ceiving advice. For each of the 71 lawyers, out-degree (number of individuals to whom

advice was given) is plotted against in-degree (number of individuals from whom advice

was received). As expected, we observe that the younger associates generally give less

advice than they receive. For example, one associate gave advice to only two colleagues

yet received advice from 26 different colleagues. However, we notice that there are ex-
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ceptions to the general heuristics. For example, there is a partner who gave advice to 11

colleagues yet received advice from 30 colleagues.

We fit the Bayesian DP model to the lawyer data and consider the clustering of (αi, βi)

amongst the 71 lawyers. In a single iteration of MCMC, lawyers are clustered according

to whether their (αi, βi) values are the same. In subsequent iterations of MCMC, the

cluster membership may differ. With the MCMC output, we are able to calculate the

proportion of iterations that any given pair of lawyers cluster together and this provides

an estimate of the posterior pairwise probability of clustering. We contrast this feature

with a posteriori blockmodelling where clustering is based on a deterministic algorithm

and there is no probability measure associated with resultant clusters. In Figure 2, we

provide a plot which highlights the pairwise clustering involved in the DP analysis. For

every pair of lawyers, a black square represents the posterior probability of clustering

using a threshold value of 0.5. An interesting observation from Figure 2 is that the grid

is roughly divided into four quadrants. It appears that partners (the top left quadrant)

tend to cluster together and that associates (the bottom right quadrant) tend to cluster

together. In other words, partners tend to behave similarly and associates tend to behave

similarly. What this suggests is that the original intuition of three groups of lawyers is

not quite right, and this argues again for the DP approach. In the DP approach, the data

determine the clusters. In a priori blockmodelling, one may fail to find suitable covariates

to improve model fit.

3.3 Example 3: A Social Relations Model

We consider a simplification of the social relations model considered by Gill and Swartz

(2007). The model involves paired continuous observations yijk and yjik where yijk

represents the k-th response of subject i as an actor towards subject j as a partner,
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k = 1, . . . , nij, i 6= j. In yjik, the roles are reversed. We let n denote the number of

subjects. The model expresses the paired responses in an additive fashion

yijk = µ+ αi + βj + εijk

yjik = µ+ αj + βi + εjik

where µ is the overall mean, αi is the effect of subject i as an actor, βj is the effect of

subject j as a partner and εijk is the error term. We refer to µ, the α’s and the β’s as

first-order parameters. The Bayesian model specification then assigns prior distributions

µ ∼ Normal(θµ, σ
2
µ), (11)

(αi, βi)
′ iid∼ Normal2 (0,Σαβ) , (12)

(εijk, εjik)
′ iid∼ Normal2 (0,Σε) (13)

where

Σαβ =

 σ2
α ραβσασβ

ραβσασβ σ2
β

 , Σε = σ2
ε

 1 ρεε

ρεε 1

 .

The parameters {σα, σβ, ραβ, σε, ρεε} are called the variance-covariance parameters (or

variance components). Note that the joint distributions (12) and (13) induce a dependence

structure amongst the observations yijk. The interpretation of the variance-covariance

parameters is naturally problem specific. However, for the sake of illustration, suppose

that the response yijk is the k-th measurement of how much subject i likes subject j.

In this case, ραβ represents the correlation between αi and βi, and we would typically

expect a positive value. That is, an individual’s positive (negative) attitude towards
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others is usually reciprocated. To complete the Bayesian model specification, hyperpriors

are assigned as follows:

θµ ∼ Normal(θ0, σ
2
θ0), σ−2

µ ∼ Gamma(a0, b0),

Σ−1
αβ ∼Wishart2((ν0R0)

−1, ν0),

σ−2
ε ∼ Gamma(c0, d0), ρεε ∼ Uniform(−1.0, 1.0)

(14)

where X ∼ Gamma(a, b) implies E(X) = a/b and hyperparameters subscripted with a 0

are set to give diffuse prior distributions (Gill and Swartz 2007).

We now consider a modification of the above social relations model where the prior

assumptions (11) through (14) are maintained except that (12) is modified according to

(αi, βi)
′ iid∼ G

G ∼ DP(m,Normal2 (0,Σαβ))

m ∼ Uniform(0.4, 10.0).

(15)

Via the DP prior, we have weakened the parametric normality assumption concerning

(αi, βi) and have also introduced the potential for clustering individuals according to

(αi, βi). In the context of interpersonal attraction, this is important as one can imagine

four broad classifications of individuals:

• those who like others and are also liked

• those who like others and are disliked

• those who dislike others and are liked

• those who dislike others and are also disliked .
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Whereas social relations models focus on the variance components which are characteris-

tics of the population, the social relations model using the Dirichlet process also permits

the investigation of individuals.

To demonstrate the approach, we consider a study of students who lived together in

a residence hall at the University of Washington (Curry and Emerson 1970). Data were

collected on n = 48 individuals and measured on occasions k = 1, 2, 3, 4, 5 according

to their pairwise levels of attraction. There is a missing data aspect to the problem as

measurements were only taken between pairs of 8 individuals in each of six dorm groups.

Markov chain Monte Carlo simulations were carried out in WinBUGS using the original

normal prior and the DP prior. We allow 5000 iterations for the sampler to converge and

another 10000 iterations for sampling from the posterior. Convergence is checked visually

and by using several starting points.

In Figure 3, we provide a plot of the posterior means of the 48 (αi, βi) pairs using the

DP prior. We have also included the line y = x for comparison purposes. Figure 3 suggests

a tendency of individuals to cluster together with points scattered about the line y = x

corresponding to individuals who extend friendship to a similar extent that friendship is

returned. The outlier in the bottom right corner corresponds to an individual who likes

others but is disliked. The two clusters of points in the top left corner correspond to

individuals who may be regarded as having false personalities; they do not generally like

others although they convey signals that in turn cause them to be liked. For comparison,

Figure 4 provides a plot of the posterior means of the 48 (αi, βi) pairs using the normal

prior (12). We observe that the posterior inferences for the pairs (α, β) differ considerably

from those obtained using the DP mixture model. To investigate the fit of the DP prior

in this example, we calculate the log pseudo marginal likelihood (LPML) proposed by

Gelfand, Dey and Chang (1992) as a model selection technique. Using the LPML, the
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DP prior is preferred (LPML = −5016.9) over the normal prior (LPML = −5180.9).

To investigate the effect of the prior choice involving the concentration parameter m in

(15), we consider various priors. For instance, let m ∼ Gamma(2.0, 0.1) which is greatly

different from the Uniform(0.4, 10.0) prior. In comparing these two priors, we find that

the posterior distributions of m differs substantially with E(m|y) = 9.3 under the Gamma

prior and E(m|y) = 6.6 under the Uniform prior. However, our applied focus does not

concern m. When looking at the posterior distributions of the (αi, βi) pairs under the

two priors, we see very little difference. This is comforting and provides us with a sense

of prior robustness with respect to the concentration parameter m.

4 DISCUSSION

In this paper, we have considered the use of Dirichlet process priors for network problems.

The relaxation of parametric assumptions and the ability to facilitate clustering are both

seen as advantages in network analyses. Furthermore, the models that we have considered

are easily implemented using WinBUGS software.

It is worth asking where DP priors can be reasonably employed in network models.

There are many networks where data can be modelled using a random effects specifica-

tion. When some of the random effects might possibly be the same, then it is good to

have methodology to accommodate and identify this type of clustering, and DP mixture

modelling accomplishes this goal. For example, in various disease transmission networks,

it is useful to identify individuals who have high probabilities of transmission. By clus-

tering these individuals, patterns of behaviour may be deduced and this may be useful

in disease prevention. As another example, consider the complex network structures that

can be studied between states or nations. These structures may involve trade, information
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flow, immigration/tourism, military cooperation, etc. Here, it may be useful to cluster

the states or nations so that idealogical categorizations can be inferred. For example,

it may be interesting to know which eastern countries (if any) are close idealogically to

western countries.

There are a number of future directions for this line of research. We are interested in

using the Dirichlet process in more complex network problems with more complex dyadic

dependencies. We are also interested in the treatment of longitudinal data and dynamic

data networks. The development of complementary software to handle the special features

of Dirichlet modelling may also be of value. Like other packages such as CODA, we

imagine software written in R that processes WinBUGS output.

We emphasize the simplicity with which WinBUGS code facilitates the implementa-

tion of DP process mixture models for the network problems described in this paper.

The WinBUGS program for Example 3 is available from the fourth author’s website at

www.stat.sfu.ca/∼tim. The program consists of roughly 40 lines of code.
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Figure 1: Plot of out-degree versus in-degree for the 71 lawyers in Example 2 where the
lawyers labelled with triangles are associates and the lawyers labelled with circles are
partners.
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Figure 2: Plot of pairwise clustering of the 71 lawyers based on the DP model in Example
2. Black (white) squares indicate posterior probabilities of clustering greater than (less
than) 0.5. Labels 1-36 correspond to partners and labels 37-71 correspond to associates.
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Figure 3: Posterior means of the (αi, βi) pairs under the DP prior in Example 3.
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Figure 4: Posterior means of the (αi, βi) pairs under the normal prior in Example 3.
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