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Abstract

The posterior probabilities of K given models when improper priors are used de-

pend on the proportionality constants assigned to the prior densities corresponding

to each of the models. It is shown that this assignment can be done using natural

geometric priors in multiple regression problems if the normal distribution of the

residual errors is truncated. This truncation is a realistic modification of the re-

gression models, and since it will be made far away from the mean, it has no other

effect beyond the determination of the proportionality constants, provided that the

sample size is not too large. In the case K = 2, the posterior odds ratio is related to

the usual F statistic in ”classical” statistics. Assuming zero-one losses the optimal

selection of a regression model is achieved by maximizing the posterior probability

of a submodel. It is shown that the geometric criterion obtained in this way is

asymptotically equivalent to Schwarz’s asymptotic Bayesian criterion, sometimes

called the BIC criterion. An example of polynomial regression is used to provide

numerical comparisons between the new geometric criterion, the BIC criterion and

the Akaike information criterion.
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1 Introduction

As was pointed out by D.R. Cox in a comment to Dempster (1971), a
Bayesian analysis of two models with flat priors requires a value for the
relative heights of the two priors densities. In the present paper it will be
shown that such a constant value can be found if the normal distribution of
the residual error is truncated. This truncation is a realistic modification
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of the model, and since it is made far away from the mean, it has no other
effect beyond the determination of the constant, provided that the sample
size is not too large.

In choosing a regression model one usually wants to test the null hy-
pothesis that some of the regression coefficients are zero, or equivalently
that some of the independent variables have no influence on the response.
Elimination of these variables leads to a regression submodel having fewer
independent variables. This process is called variable selection or subset se-
lection. We restrict our attention to a particular set of K submodels. After
the appropriate truncation of the likelihood function, the improper prior is
equivalent to a truncated proper prior that assigns equal prior probabilities
to these K submodels. The corresponding Bayesian analysis then provides
posterior probabilities for each of the K submodels. Assuming zero-one
losses the optimal subset selection is achieved by maximizing the posterior
probability of a submodel. When K = 2, the corresponding posterior odds
ratio is related to the usual F statistic. It will be shown that this criterion
is asymptotically equivalent to Schwarz’s (1978) asymptotic Bayesian cri-
terion, which is sometimes called the BIC criterion. For other procedures
of model selection see Chipman, George and McCulloch (2002), Berger and
Pericchi (1996), O’Hagan (1995), Kass and Wasserman (1995), Gelfand
and Dey (1994), Rueda (1992), Bhansali (1986), Smith and Spiegelhalter
(1980), Geisser and Eddy (1979), Akaike (1973) and Jeffreys (1961), as well
as the references therein.

In Section 2, we consider the truncation approach in the context of
the univariate normal model. This is extended in Section 3 to a simple
multivariate model. The general problem of variable selection in multiple
regression is then addressed in Section 4 where comparisons are made with
well known variable selection criteria.

2 Univariate normal model

Consider the problem of testing the simple null hypothesis H0 : µ = µ0

against the composite alternative Ha : µ 6= µ0 when the standard deviation
σ is known, and a sample of size n is available. Since we assume a normal
distribution, the sample mean X̄ is a sufficient statistic, and, if X̄ = x̄ is



On the probability of a model 3

the observed value, the likelihood function is proportional to

exp
{

− n

2σ2
(µ − x̄)2

}

. (2.1)

The uniform prior on the whole real line cannot be used to find the
posterior probability of the point null hypothesis H0: µ = µ0 because it
assigns zero prior probability to it, and therefore the corresponding poste-
rior probability is zero regardless of the data. Bartlett (1957) considered
a proper prior that puts probability π0 at µ = µ0 and distributes the rest,
1 − π0 uniformly over

µ0 − hσ < µ < µ0 + hσ

for some fixed h. He found that when h → ∞, the posterior probability of
H0 converges to 1, and so this method fails to identify a limiting prior that
represents ignorance concerning µ. Indeed, to obtain such a limiting prior,
π0 should be a function of h that converges to zero when h → ∞.

Limiting priors that represent ignorance are usually improper priors
that assign an infinite measure to the whole parameter space. The value
assigned to any subset is not a prior probability because it is not necessarily
bounded by 1, and it may be called a probability index. In particular, the
probability index of the null hypothesis H0 may be any positive constant
C > 0. Consider then the improper prior which assigns to µ = µ0 the
probability index C > 0 and is otherwise uniform on the whole real line,
with index density equal to 1.

The posterior index is the product of this improper prior and the like-
lihood function (2.1). The posterior index of Ha is the integral of (2.1),
namely

I (Ha|x̄) = σ
√

2π/n

and the posterior index of H0 is

I (H0|x̄) = C exp
{

−z2/2
}

where z =
√

n(x̄ − µ0)/σ. The posterior odds ratio for H0 is then

PO =
I (H0|x̄)

I (Ha|x̄)
=

C
√

n√
2π σ

exp
{

−z2/2
}
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and depends on the prior index C of the null hypothesis H0, as would be
expected. Therefore, in order to have a prior that represents ignorance, we
need to find a value C that is determined by the model. It will be shown
that this requires a slight modification of the model.

It should be recognized that in the real world, sampling distributions
have compact support. In the usual case when the sample space is a finite
dimensional vector space, this means that the sampling distribution assigns
probability 1 to a bounded set. For example, we usually say that the height
of a person of a given sex, age and race has a normal distribution, and a
normal distribution does not have compact support. But the normality
assumption is only a convenient approximation because we very well know
that (i) there cannot be persons with negative heights, and (ii) there cannot
be persons with arbitrarily large heights (say greater than 3 metres). In
the same book in which Gauss derived the normal distribution for the first
time, he recognized that normal distributions are really approximations:

The function just found cannot, it is true, express rigorously
the probabilities of the errors: for since the possible errors are
in all cases confined within certain limits, the probability of
errors exceeding these limits ought always to be zero, while our
formula always gives some value (Gauss 1809).

Therefore, if we want to be more realistic, we have to truncate the nor-
mal distribution in our model. If the truncation points are far away from
the mean, this truncation will have almost no effect on the common statis-
tical inferences, except, as we are going to see now, on the determination
of the constant C needed to find the posterior probability of the null hy-
pothesis H0. Suppose then that we truncate the normal distribution at the
points µ ± hσ. Consider the case n = 1. The truncated normal density is

f(x) =

{

chσ−1 exp
{

− (x−µ)2

2σ2

}

if µ − hσ ≤ x ≤ µ + hσ

0 otherwise

where c−1
h =

h
∫

−h

exp
{

−t2/2
}

dt . Under Ha , the likelihood function is

chσ−1 exp
{

− (x−µ)2

2σ2

}

if x − hσ ≤ µ ≤ x + hσ
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and 0 otherwise. At this point in the analysis, we know that under Ha the
unknown mean belongs to the interval

x − hσ ≤ µ ≤ x + hσ (2.2)

with probability 1. Therefore it is possible to truncate the parameter space
to the interval (2.2). With this restricted model, inferences are focused
on the sampling distribution of a hypothetical response Y , independent of
the observed X = x. See Villegas and Martinez (1999). The prior is then
truncated to the interval (2.2) and the prior index under Ha is the length
of the interval Ix(Ha) = 2hσ. We note that Ix(Ha) = 2hσ does not depend
on x, and hence, we refer to it as the effective prior index I∗(Ha). Under
the assumption of prior ignorance, the prior index of the null hypothesis
I(H0) = C is then set equal to I∗(Ha). This implies C = 2hσ, and we have
therefore completed the construction of the prior when n = 1.

Of course the prior should be the same for any sample size n. Suppose
that we have a sample x = (x1, ..., xn). Then the likelihood function under
Ha is

cn
hσ−n exp

{

− 1

2σ2

n
∑

i=1

(xi − µ)2

}

if x(n) − hσ ≤ µ ≤ x(1) + hσ

and 0 otherwise where x(1) = mini{xi} and x(n) = maxi{xi}. The posterior
index of Ha is

I (Ha|x) = cn
hσ−n

∫ x(1)+hσ

x(n)−hσ
exp

{

− 1
2σ2

∑

(xi − µ)2
]

}dµ

and the posterior index of H0 is

I (H0|x) = cn
h2hσ −n+1 exp

{

− 1
2σ2

∑

(xi − µ0)
2
}

. (2.3)

Assumption 2.1. We assume that h is large enough so that the integral

∫ x(1)+hσ

x(n)−hσ
exp

{

− 1
2σ2

∑

(xi − µ)2
}

dµ

can be replaced by the integral from −∞ to +∞ with negligible error.
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Disregarding this error, the integral is equal to
√

2π σ√
n

exp

{

− 1

2σ2

∑

(xi − x̄)2
}

and substituting
∑

(xi − µ0)
2 = n (x̄ − µ0)

2 +
∑

(xi − x̄)2 in (2.3), it
follows that the posterior odds ratio is

PO =
I (H0|x)

I (Ha|x)
=

√

2n

π
h exp

{

−z2/2
}

(2.4)

where z =
√

n(x̄ − µ0)/σ. This is maximized by z = 0, and the maximum
is

MPO = h
√

2n/π.

The relative posterior odds ratio RPO is therefore

RPO = PO/MPO = exp
{

−z2/2
}

and we note that the relative posterior odds ratio does not depend on the
constant h.

The acceptance of one of the two hypotheses may be considered as a
decision problem. Under H0 the dimension p of the parameter space is 0
and under Ha, the dimension is 1. Let the decisions be p̂ =0 (accept H0 )
and p̂ =1 (accept Ha ) where p̂ is an estimate of p. There is underestimation
if p̂ =0 when p = 1 and overestimation if p̂ =1 when p = 0. If cu is the cost
of underestimation and co is the cost of overestimation, then the optimal
decision (i.e. Bayes rule) is to reject H0 if

PO ≤ cu/co.

The ratio cu/co is therefore the critical value of the posterior odds ratio
PO. Under the usual zero-one losses cu = co = 1, H0 is rejected if PO ≤ 1.
The formula (2.4) relates the critical value of PO to the critical value of z.
Solving for z2 we have

z2 = 2 log

(

√

2n
π

h
PO

)

. (2.5)

Equation (2.5) shows that for fixed PO, the critical value of z increases
as n increases, a qualitative rule that is now widely accepted. Bickel and
Doksum (1977, page 175) state:
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This problem arises particularly in goodness of fit tests when
we test the hypothesis that a very large sample comes from a
particular distribution. Such hypotheses are often rejected even
though for practical purposes ”the fit is good enough”. The
reason is that n is so large that unimportant small discrepancies
are picked up.

Table 1 shows critical values of z based on (2.5) for PO = 1 and selected
values of h and n. The value ǫ is the joint probability of the truncated tails
in the normal distribution. Logarithms of the probabilities of one tail were
taken from Pearson and Hartley (1954). Note that values of h smaller
than h = 5 have not been included because in these cases Assumption 2.1
may not be valid. Consider then comparisons with usual significance levels
based on n = 1. When h = 5, the critical value z = 1.66 corresponds to a
0.10 significance level. Also when h = 8.5, by interpolation from the table,
we get the critical value z = 1.96, corresponding to the significance level
0.05. Finally, when h = 19, the critical value of z is 2.33, corresponding to
the significance level 0.01.

An idea about realistic values of h can be obtained in the case of human
heights from the Guinness Book of Records (1996), according to which the
world all-time record belongs to Robert Pershing Wadlow, born in 1918 in
Alton, Illinois. When he died in 1940, his height was 8 feet 11.1 inches,
or 272 cm. In Macdonell (1901) it is reported that the average height of
25,878 U.S. recruits was 170.94 cm. and the standard deviation was 6.56
cm. However, the mean height for men in the U.S. has increased during the
last century. Recent data for human heights in the U.S. may be found in
the NCHS Growth Curves for Children (1977). These data are based on a
national sample survey designed by the U.S. Bureau of the Census. On page
44, we find that for males of age between 24 and 25 years the mean height is
178.0 cm. and the standard derivation is 7.0 cm. Therefore, the world all-
time record is 13.4 standard deviations above the mean. According to the
same Guinness Book of Records (1996), the world’s shortest living adult
is believed to be Gul Mohammad of New Delhi, India, with a height of
22.5 in. or 17.3 standard deviations below the mean. When choosing h
to accommodate outliers such as the world’s tallest and shortest people, it
is in keeping with common statistical practice of using error distributions
with long tails. The Guinness Book of Records gives many other records
for plants and animals that suggest that it may not be unreasonable to



8 C. Villegas, T. Swartz and C. Martinez

n
h 1 2 4 8 10 50 200 500 ǫ

5 1.66 1.86 2.04 2.20 2.25 2.58 2.84 3.00 .6 × 10−6

6 1.77 1.96 2.13 2.29 2.33 2.65 2.90 3.06 .2 × 10−8

7 1.85 2.03 2.20 2.35 2.40 2.71 2.96 3.11 .3 × 10−11

8 1.93 2.10 2.26 2.41 2.45 2.76 3.00 3.15 .1 × 10−14

9 1.99 2.15 2.31 2.45 2.50 2.80 3.04 3.19 .2 × 10−18

10 2.04 2.20 2.35 2.50 2.54 2.84 3.07 3.22 .8 × 10−23

11 2.08 2.24 2.39 2.53 2.58 2.87 3.11 3.25 .4 × 10−27

12 2.13 2.28 2.43 2.57 2.61 2.90 3.13 3.28 .4 × 10−32

13 2.16 2.32 2.46 2.60 2.64 2.93 3.16 3.30 .1 × 10−37

14 2.20 2.35 2.49 2.63 2.67 2.96 3.18 3.32 .2 × 10−43

15 2.23 2.38 2.52 2.65 2.70 2.98 3.20 3.34 .7 × 10−50

16 2.26 2.41 2.55 2.68 2.72 3.00 3.22 3.36 .1 × 10−56

17 2.28 2.43 2.57 2.70 2.74 3.02 3.24 3.38 .8 × 10−64

18 2.31 2.45 2.59 2.72 2.76 3.04 3.26 3.40 .2 × 10−71

19 2.33 2.48 2.61 2.74 2.78 3.06 3.28 3.41 .2 × 10−79

20 2.35 2.50 2.63 2.76 2.80 3.07 3.29 3.43 .6 × 10−88

Table 1: Critical values of z based on (2.5) for PO = 1 and selected values of h

and n. The value ǫ is the joint probability of the truncated tails in the normal

distribution.

choose similar values of h whenever the response is of a biological nature.

It is worth remembering that C = 2hσ and hence one could instead
choose C. The advantage of choosing h over C is that h has a nice inter-
pretation as the number of standard deviations beyond the mean for which
sampling probability is negligible. When choosing h based on past data
as suggested above, one is really advocating an empirical Bayes approach
where the prior depends on the data. However, referring again to Table 1,
one may instead consider an objective approach by choosing a large value,
say h = 20, which may be seen to be adequate for many applications, and
is on the conservative side in the sense that H0 is rejected less often. In
the final analysis, it must be recognized that the truncation constant h is
a component of the model, and its determination is not very different from
the determination of the significance level of a ”classical” test.
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2.1 Unknown variance

In the previous section it was assumed that the standard deviation σ is
known. When σ is unknown, the parameter space is the union of

Ω0 = {(µ, σ) : µ = µ0} ,

the subset corresponding to H0, and

Ωa = {(µ, σ) : µ 6= µ0} ,

the subset corresponding to Ha. The likelihood function is

1
σn exp

{

− n
2σ2 [σ̂2 + (µ − x̄)2]

}

where σ̂ is the maximum likelihood estimate of the unknown σ. In the
previous section, the prior had a point mass C = 2hσ placed at µ = µ0 and
a density 1 on µ 6= µ0. Equivalently, since an improper prior is determined
only up to an arbitrary scale factor, the prior could have been chosen to have
a point mass 1 placed at µ = µ0 and a density (2hσ)−1 on µ 6= µ0. When σ
is unknown the natural parameter space for σ is the multiplicative group of
positive integers. The invariant measure in this group has differential dσ/σ
This structural prior is, in a Kleinian sense, a geometric prior for σ, and
therefore is a good candidate to represent ignorance. See Villegas (1990).
Thus the prior differential is

d(µ, σ) =







dµ
2h

dσ
σ2 on Ωa

dσ
σ on Ω0

.

Note that this prior is invariant under changes of scale (see Villegas
1990), and that on Ωa it is the inner (or Jeffreys) prior dµdσ/σ2, which
was used for the first time by Edgeworth (1883). For a good understanding
of the rationale behind the use of Jeffreys prior, see George and McCulloch
(1993). A simple calculation shows that the posterior odds ratio for H0 is

PO = h
√

2n
π

[

1 + t2

n−1

]

−
n
2

where t =
√

n(x̄ − µ0)/s and s2 =
∑

(xi − x̄)2/(n − 1).
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Therefore the relative posterior odds ratio is simply

RPO =

[

1 +
t2

n − 1

]−
n
2

and is equal to the corresponding relative density of a t-distribution with
n-1 degrees of freedom.

3 A simple multivariate model

Let y(1), . . . , y(n) be a sample of size n from a truncated multivariate nor-
mal distribution in Rq with unknown mean µ = (µ1, . . . , µq)

′ and known
covariance matrix σ2Iq. The distribution is truncated to a q dimensional
coordinate cube Cq (µ) centered at µ with sides of known length 2hσ. Let

ȳ = 1
n

∑n
i=1 y(i) be the observed mean vector and let σ̂2 = 1

nq

n
∑

i=1

∥

∥y(i) − ȳ
∥

∥

2

where ||y|| denotes the norm of the vector y.

Let {Ak : k = 1, . . . ,K} be a family of different subsets of the finite set
A = {1, 2, . . . , q}, and let qk denote the cardinality of Ak . Without loss
of generality, we assume that the sets Ak are ordered so that the sequence
{qk : k = 1, . . . ,K} is monotone increasing. We assume that A1 = ∅ such
that q1 = 0. We then consider the hypotheses

Hk : µj = 0 if j /∈ Ak

and let Ωk be the set of all µ ∈ Rq that satisfy the condition Hk. Note that
Ω1 is the origin in Rq.

The parameter space Ω is the set of all pairs θ = (k, µ) where k ∈ {1,. . . ,
K } and µ ∈ Ωk. The likelihood is a function of θ given by

cnq
h σ−nq exp







− n

2σ2



qσ̂2 (k) +
∑

j∈Ak

(µj − ȳj)
2











(3.1)

where

σ̂2 (k) = σ̂2 + q−1
∑

j /∈Ak

ȳ2
j
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and ȳj is the jth coordinate of the mean vector ȳ. Note that when k = 1
the summation in (3.1) is over an empty set and can be dropped. Since we
are assuming that σ is known, the factor σ−nq may be dropped from (3.1).
However we are not dropping it because the results obtained in this way
are useful in the more realistic case in which σ is unknown.

We now construct a prior that represents ignorance. Since the prior
should not depend on the sample size n, suppose for a moment that n = 1.
The set of all pairs θ = (k, µ) with a fixed k constitute a copy of Rq that
we denote Rq

k. The parameter space Ω can therefore be viewed as a finite
set corresponding to the collection of all copies Rq

k, k ∈ {1, . . . ,K}. When
the parameter space is a finite set, uniform priors have been frequently
used to represent ignorance. As was pointed out by J.M. Keynes (1921),
this use, suggested by James Bernoulli, gained wide acceptance under the
name of the principle of non-sufficient reason, later called the principle of
insufficient reason.

Accordingly, a prior Π that represents ignorance should have a uniform
restriction Πk on the copy Rq

k, with a constant density that may be different
on each copy. To determine these constant densities, consider what happens
when the observation y becomes known. Under Hk, and assuming k > 1,
the mean µ belongs to the cube Ck (y) ∈ Ωk with sides of length 2hσ and
volume (2hσ)qk . Suppose that the parameter space Ω is truncated to a
subspace Ω(y) which is the set of all pairs θ = (k, µ) with µ ∈ Ck (y). Then
the prior Π should also be truncated to Ω(y). This truncated prior is now
a proper prior and to represent ignorance it should assign equal probability
K−1 to all K hypotheses Hk. Therefore the original prior Π assigns mass
K−1 to Rq

1, and for k > 1, the prior differential corresponding to Rq
k is

K−1 (2hσ)−qk

∏

j∈Ak

dµj . (3.2)

Obviously this is also the prior that should be used for any sample size
n. The posterior index of H1 is simply

I (H1|Y ) = K−1cnq
h σ−nq exp

{

− 1

2σ2
‖Y ‖2

}

where Y is the n× q matrix whose ith row transposed is y(i) and the norm

||Y || is defined by ‖Y ‖2 =
∑

∥

∥y(i)
∥

∥

2
. If k > 1, the posterior index of Hk is



12 C. Villegas, T. Swartz and C. Martinez

the integral over Ωk of the product of (3.1) and (3.2), namely

I (Hk|Y ) = K−1cnq
h σ−nq

[

1

h

√

π

2m

]q
k

exp

{

−nqσ̂2 (k)

2σ2

}

. (3.3)

This formula also includes the case k = 1 because σ̂2 (1) = 1
nq

n
∑

i=1

∥

∥y(i)
∥

∥

2
.

Now assume a common loss for choosing a wrong model. Then to
minimize the expected loss we should choose the hypothesis that maximizes
the posterior index I (Hk|Y ). Equivalently we may minimize

nqσ̂2 (k)

σ2
+ q

k
log

2nh2

π
.

It is also natural to use a coordinate free truncation under which the
support of the distribution of the random variables y(i), i ∈ {1, . . . , n} is a
q dimensional ball (or solid sphere) centered at µ with volume (2hσ)q equal
to the volume of the cube in the coordinatewise case. Since the truncation
is done far away from the mean of the sampling distribution the difference
between the likelihood functions produced by the two types of truncation
is negligible. A similar argument shows that the prior has differential (3.2)
when k > 1, and mass K−1 when k = 1. The posterior index is again
given by (3.3). Therefore, our testing criteria is the same using either a
coordinatewise or a coordinate free truncation.

4 Multiple regression

4.1 Basic results

Consider the multiple regression model

y = Xβ + σu (4.1)

where the n × q design matrix X is of full rank q, the random vector u
has a standard multivariate normal distribution, σ is an unknown positive
number and β is the unknown regression vector. The maximum likelihood
estimate of β is the vector β̂ given by

β̂ = (X ′X)
−1

X ′y
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and the regression equation (4.1) may be written in matrix notation as
[

I 0
β σ

] [

X ′

u′

]

=

[

X ′

y′

]

. (4.2)

The group G of matrices of the form

θ =

[

I 0
β σ

]

(4.3)

is called the regression group. If we set

v =

[

X ′

u′

]

, z =

[

X ′

y′

]

,

the regression equation (4.2) becomes

θv = z. (4.4)

Let g be a fixed matrix of the regression group and consider the change of
variables y → y∗ given by

z∗ = gz, z∗ =
[

X y∗
]

′

.

Then the new regression equation is

θ∗v = z∗ (4.5)

where the new parameter θ∗ is

θ∗ = gθ. (4.6)

The new regression model (4.5) with parameter θ∗ is identical to the old
regression model (4.4) with parameter θ, and therefore there is no reason
why the prior π∗ that represents ignorance concerning θ∗ should be different
from the prior π that represents ignorance concerning θ. Therefore π∗ = π
should be a left invariant measure in the regression group G (see Villegas
1981). This is, in a Kleinian sense, the natural geometric prior on the group
G. It is well known that it is also the Jeffreys prior for the group model
(see George and McCulloch 1993).

Theorem 4.1. The natural geometric prior for the multiple regression
model (4.1) has differential

dβdσ/σq+1. (4.7)
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Proof. Set

g =

[

I 0
γ′ τ

]

. (4.8)

Substitution of (4.3) and (4.8) in (4.6) gives the values for the new param-
eters β∗ and σ∗:

β∗ = τβ + γ, σ∗ = τσ.

Let π∗(β∗, σ∗)dβ∗dσ∗ be the prior differential for the new parameters. We
substitute the old variables β and σ in two stages. In the first stage we
substitute σ for σ∗ and obtain the intermediate prior differential

τπ∗ (β∗, τσ) dβ∗dσ.

In the second stage we substitute β for β∗ and obtain

τ q+1π∗ (τβ + γ, τσ) dβdσ. (4.9)

Let π(β, σ)dβdσ be the prior differential for the old variables. Hence from
(4.9) we have

π (β, σ) = τ q+1π∗ (τβ + γ, τσ) . (4.10)

Since π∗ = π, substitution in (4.10) gives the functional equation for π,

π (β, σ) = τ q+1π (τβ + γ, τσ) (4.11)

which must hold for arbitrary values β, σ, τ and γ. Given β and σ, choose
τ and γ such that τβ + γ = 0 and τσ = 1. Substitution in (4.11) gives

π (β, σ) = π (0, 1) /σq+1.

But π(0,1) is an arbitrary value which can be chosen equal to 1, and the
conclusion follows immediately.2

Following Villegas (1981) the natural geometric prior (4.7) is called the
inner prior, and the corresponding posterior is called the inner posterior.

Let H be the q × q lower triangular matrix with positive diagonal ele-
ments defined by the Cholesky decomposition

X ′X = HH ′,
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and let γ and γ̂ be defined by

γ = H ′β, γ̂ = H ′β̂.

Then γ̂ has a multivariate normal distribution with mean γ and covariance
matrix σ2Iq. The maximum likelihood estimate of σ is σ̂ defined by

σ̂2 =
1

n
‖y − ŷ‖2

where ŷ = Xβ̂. The random variables β̂ and σ̂ (i.e. γ̂ and σ̂) are indepen-
dent sufficient statistics and their sampling distributions are given by the
equations

σ−1H ′

(

β̂ − β
)

= u, (4.12)

σ̂

σ
=

χ√
n

(4.13)

where χ has the chi distribution with n − q degrees of freedom and is
independent of u.

The likelihood function is the function of β and σ (i.e. γ and σ),

1

σn
exp

{

− 1

2σ2

[

nσ̂2 + ‖γ − γ̂‖2
]

}

(4.14)

and the inner posterior differential is therefore the product of (4.14) and
(4.7). It can be shown that the inner posterior distribution is also given by
equations (4.12) and (4.13) if β̂ and σ̂ are fixed at the observed values and
χ has a chi distribution with ν = n degrees of freedom.

Elimination of σ between (4.12) and (4.13) gives

σ̂−1H ′

(

β̂ − β
)

= t (4.15)

where t =
√

nu/χ has a Student multivariate t-distribution with ν = n
degrees of freedom. The equation (4.15) gives the marginal posterior dis-
tribution of β. Since the posterior differential of χ is proportional to

χn exp
{

−χ2/2
} dχ

χ
,

it follows that the marginal posterior differential of σ is proportional to

σ−n exp

{

−nσ̂2

2σ2

}

dσ

σ
.
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4.2 Variable selection

In the present section we consider the linear model (4.1) with replications
because we are interested in asymptotic results when the number of repli-
cations tends to infinity. Consider then the multiple regression model with
m replications for each covariate setting

y(i) = Xβ + σu(i), {i = 1, . . . ,m} (4.16)

where σ is known.

Let ȳ = m−1
∑

y(i) be the observed mean vector. The maximum like-
lihood estimate of β is

β̂ = (X′X)−1X′ ȳ.

There are 2q possible submodels of the model (4.16) where each sub-
model assigns the value zero to some components of the regression vector
β. Equivalently, each submodel excludes a particular subset of the columns
of X . We restrict our attention to a particular set of K submodels. We
denote by Xk the n× qk matrix consisting of those columns of X which are
included in the kth submodel. We assume that the submodels are ordered
in such a way that the sequence qk is monotone increasing. Thus when
k = 1, the corresponding value q1 may be zero. If q1 = 0 then the first
submodel assigns the value zero to all components of the regression vector
β . Otherwise the kth submodel is

y(i) = Xkβ
(k) + σu(i), {i = 1, . . . ,m} (4.17)

where β(k) is the unknown qk dimensional regression vector. The maximum
likelihood estimate of the regression vector β(k) is

β̂(k) = (Xk
′Xk)

−1Xk
′ ȳ.

Let Hk be the qk × qk lower triangular matrix with positive diagonal
elements defined by the Cholesky decomposition

X ′

kXk = HkH
′

k,

and let γ(k) and γ̂(k) be defined by

γ(k) = H ′

kβ
(k), γ̂(k) = H ′

kβ̂
(k).
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Then γ̂(k) has a multivariate normal distribution with mean γ(k) and covari-
ance matrix (σ2/m)Iq

k
. The likelihood function for the kth model assuming

q1 6= 0 is the function of γ(k) (i.e. β(k)),

1

σN
exp

{

− m

2σ2

[

nσ̂2(k) +
∥

∥

∥
γ(k) − γ̂(k)

∥

∥

∥

2
]}

(4.18)

where N = mn and

σ̂2(k) =
1

N

m
∑

i=1

∥

∥

∥
y(i) − Xkβ̂

(k)
∥

∥

∥

2
.

If q1 = 0, the likelihood function for the first submodel is defined only
for β = 0 and is given by

1

σN
exp

{

− 1

2σ2
‖Y ‖2

}

.

As was pointed out in Section 2, it should be recognized that in the
real world the random vectors y(i) have compact support. A more realis-
tic model is therefore obtained by assuming that under the kth submodel
the y(i) are independent multivariate normal random vectors with covari-
ance matrix σ2In truncated to a coordinate cube centered at the mean
µ(k) = Xkβ

(k) with sides of length 2hσ. Note that this is a coordinatewise
truncation and it is not equivalent to a coordinatewise truncation of the
sampling distribution of Xkβ̂

(k).

Let rk(h) be the radius of a ball in qk dimensional space with volume
(2hσ)qk , equal to the volume of a coordinate cube with sides of length 2hσ.
A ball (or solid sphere) Bk on the regression subspace centered at Xkβ

(k)

and with radius rk(h) is the orthogonal projection of ȳ on the regression
subspace of a uniquely defined cylinder Ck. The sampling distribution of ȳ
is truncated to the cylinder Ck. Since the truncation is done far away from
the mean of the sampling distribution the difference between the likelihood
functions corresponding to the two types of truncation (to a cube or to
a cylinder) is negligible . The truncation to a cylinder is equivalent to a
spherical coordinate free truncation of the sampling distribution of Xkβ̂

(k)

in the regression subspace to the ball Bk, and it is also equivalent to the
truncation of the sampling distribution of γ̂(k) to a ball B∗

k centered at
γ(k) and with radius rk(h). With this truncation the likelihood function is
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zero if
∥

∥γ(k) − γ̂(k)
∥

∥ ≥ rk(h) and otherwise it can be still considered to be
proportional to (4.18), because the truncation is made far away from the
population mean.

We now have to construct a prior that represents ignorance. We begin
by constructing a prior for the kth submodel where qk > 0. Since this
regression model belongs to the exponential family, the method developed
in Villegas (1990) may be applied. Under the kth submodel, a prior Πk that
represents ignorance concerning the unknown parameter γ(k) should be a
uniform prior on the qk dimensional Euclidean space, having a constant
density that may depend on k. To determine these constant densities,
consider what happens when m = 1 and the observation y(1) becomes
available. Under the kth submodel, the mean γ(k) is then known to belong
to a ball B̂∗

k centered at γ̂(k) with radius rk(h). Suppose for a moment that

the parameter space for this submodel is truncated to the ball B̂∗

k. The

prior Πk should also be truncated to B̂∗

k. The truncated prior is now a
proper prior and to represent ignorance it should assign to this submodel a
probability which should be the same for all K submodels, and is therefore
K−1. If q1 = 0, the prior should assign to the first submodel the probability
K−1. If qk > 0, the prior should be a uniform prior on the full qk Euclidean
space with constant density K−1 (2hσ)−q

k . Obviously, this is also the prior
that should be used for any sample size m. If q1 = 0, the posterior index
for the first submodel is simply

K−1σ−N exp

{

− 1

2σ2
‖Y ‖2

}

(4.19)

and otherwise, the posterior index for the kth submodel is

K−1σ−N

[

1

h

√

π

2m

]q
k

exp

{

−Nσ̂2 (k)

2σ2

}

. (4.20)

Note that if q1 = 0, the formula (4.20) for k = 1 gives (4.19) and there-
fore (4.20) gives the posterior index in all cases. Now assume a common loss
for choosing a wrong model. Then to minimize the expected loss we choose
the submodel that maximizes the posterior index (4.20). Equivalently we
minimize

Nσ̂2(k)

σ2
+ q

k
log

2mh2

π
.



On the probability of a model 19

Note that when m is large we effectively minimize

N
σ̂2 (k)

σ2
+ q

k
log N. (4.21)

The asymptotic Bayesian criterion proposed by Schwarz (1978), called the
BIC criterion by Akaike (1977) minimizes (4.21) and is therefore asymp-
totically equivalent to our new criterion.

When the submodels to be considered are such that no two of them have
the same number of independent variables, a piecewise linear loss function

L(k̂, k) =

{

cu(qk − qk̂) if k̂ < k

co(qk̂ − qk) if k̂ > k

may be used where L(k̂, k) is the loss when k̂ is chosen and k is the true
value. Here cu is the unit cost of underestimation and co is the unit cost
of overestimation. As is well known, the optimal decision k̂ is simply the
cu/(cu + co) quantile of the posterior distribution of k.

As was stated in Section 3, the posterior distribution obtained with a
coordinatewise truncation on the regression space is the same as the poste-
rior distribution obtained with a coordinate free truncation, and therefore
both cases lead to the same variable selection criterion.

4.3 Unknown variance

We now extend the multiple regression model previously considered to the
more realistic case where σ is unknown.

The likelihood function (4.18) is the same as before but with σ viewed
as an additional variable. The prior is the same as before but multiplied
by dσ/σ. To find the posterior index for the kth submodel we integrate the
unknown parameters σ and γ(k). This can be done in two stages. In the
first stage, integration with respect to γ(k) gives (4.20) multiplied by dσ/σ.
In the second stage, further integration with respect to σ gives, disregarding
factors that do not depend on k,

[

1

h

√

π

2m

]q
k

σ̂ (k)−N .

Therefore our variable selection criterion chooses k which minimizes

N log σ̂2 (k) + qk log
2mh2

π
. (4.22)



20 C. Villegas, T. Swartz and C. Martinez

This criterion will be called the geometric criterion. When m is large,
(4.22) is asymptotically equivalent to

N log σ̂2 (k) + q
k
log N (4.23)

which is the BIC criterion proposed by Schwarz (1978).

”Classical” statistics is particularly concerned with the case K = 2, in
which we have to choose one of two regression models, M1 with q1 indepen-
dent variables and M2 with q2 independent variables. The posterior odds
ratio is given by

PO =
P(M1|Y )

P(M2|Y )
=

[

2mh2

π

]

q2−q1
2

[

σ̂(q2)

σ̂(q1)

]N

.

If q1 < q2, we have

σ̂2(q2)

σ̂2(q1)
=

q2 − q1

N − q2
F + 1

where F is an F -statistic with q2 − q1 and N − q2 degrees of freedom.
Therefore if q1 < q2,

PO =

[

2mh2

π

]

q2−q1
2

[

1 +
q2 − q1

N − q2
F

]

−
N
2

whence PO is a monotone decreasing function of the usual F statistic.

Example. Guttman (1967) considered the problem of fitting a polynomial
curve to data generated by Monte Carlo simulation from the fifth degree
polynomial regression model

yij = 5.50 + 0.07xi + 2.64x2
i − 0.27x3

i − 1.12x4
i + 0.85x5

i + uij (4.24)

{i = 1, . . . , 9; j = 1, . . . , ni}. The values of the independent variable are
xi = i − 5 and the uij/σ are independent standard normal variates. The
number of replications of xi is ni = 10 for i 6= 5 and n5 = 100. The same
model has been analyzed by Hager and Antle (1968), Halpern (1973) and
Akaike (1977). Akaike (1977) also considered two modified models in which
the coefficients were reduced by the factors 0.1 and 0.01.

To construct an example, we consider m = 2 replications of a basic
polynomial model similar to (4.24) in which
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(i) the coefficients are reduced by the factor 0.01

(ii) ni = 1 for i 6= 5 and n5 = 10

(iii) two different values σ = 1.0 and σ = 1.5 are used in generating data

Only submodels corresponding to polynomials of degree less than or equal
to 8 are considered, because this ensures that all of the submodels are full
rank.

To choose a submodel Akaike (1973) proposed the AIC criterion (Akaike
information criterion) that minimizes

N log σ̂2(k) + 2qk. (4.25)

The AIC criterion (4.25), the BIC criterion (4.23) and the geometric crite-
rion (4.22) are all of the form

N log σ̂2(k) + λqk

and differ only in their respective values of λ. The geometric criterion (4.22)
and the BIC criterion (4.23) give the same result when

n =
2h2

π
. (4.26)

Similarly the AIC criterion (4.25) gives the same result as the geometric
criterion (4.22) when

h

√

2m

π
= e. (4.27)

Since for the chosen design m = 2 and n = 18, substitution in (4.26)
shows that BIC gives the same result as a geometric criterion with h = 5.31.
Similarly, substitution in (4.27) shows that AIC gives the same result as
a geometric criterion with h = 2.41. Note that h = 2.41 is small and it
may not satisfy the assumption that the truncation is done far away from
the mean. Therefore model probabilities computed with h = 2.41 may
be suspect. Data sets were obtained by Monte Carlo simulation. These
simulations were repeated 6 times, giving 6 independent data sets when
σ = 1 and 6 independent data sets when σ = 1.5. Since the geometric
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criterion depends on a given h, four different geometric criteria were used,
corresponding to the values h = 6, 8, 10, 15.

Table 2 (for σ = 1) and Table 3 (for σ = 1.5) give the frequency of
selection of submodels by each of the criteria. Note that the frequencies
corresponding to BIC and to the geometric criterion with h = 6 are inden-
tical, as was to be expected since BIC is formally equivalent to a geometric
criterion with h = 5.31.

Polynomial Degree
criterion 1 2 3 4 5 6 7 8

AIC 0 0 1 1 2 1 0 1
BIC 0 0 2 1 1 1 0 1
Geometric, h = 6 0 0 2 1 1 1 0 1
Geometric, h = 8 0 0 2 2 1 0 0 1
Geometric, h = 10 0 0 2 3 0 0 0 1
Geometric, h = 15 0 0 3 2 1 0 0 0

Table 2: Frequency of selection of submodels by each of the criteria for σ = 1.

Polynomial Degree
criterion 1 2 3 4 5 6 7 8

AIC 0 0 2 1 1 1 0 1
BIC 0 0 3 2 0 0 0 1
Geometric, h = 6 0 0 3 2 0 0 0 1
Geometric, h = 8 0 0 4 2 0 0 0 0
Geometric, h = 10 0 0 5 1 0 0 0 0
Geometric, h = 15 0 0 5 1 0 0 0 0

Table 3: Frequency of selection of submodels by each of the criteria for σ = 1.5.

Note that in both Tables 2 and 3, the column corresponding to a polyno-
mial of the third degree has values that increase as the value of h increases.
In general, it can be said that as the value of h increases, the criteria are
more parsimonious. Note also that as we go from σ = 1.5 to σ = 1, the
frequency distributions become more concentrated around the true value 5.
The probabilities assigned to the 8 models using the geometric prior with
h = 6 are given in Table 4 when σ = 1.5. The probabilities corresponding
to h = 8 and σ = 1.5 are given in Table 5.
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Polynomial Degree
Data Set 1 2 3 4 5 6 7 8

1 0.00 0.00 0.17 0.54 0.21 0.04 0.03 0.01
2 0.00 0.00 0.72 0.13 0.12 0.02 0.01 0.00
3 0.00 0.00 0.48 0.35 0.15 0.02 0.00 0.00
4 0.00 0.00 0.09 0.11 0.09 0.14 0.03 0.54
5 0.00 0.00 0.24 0.35 0.16 0.20 0.03 0.02
6 0.01 0.00 0.77 0.15 0.06 0.01 0.00 0.00

Table 4: Model probabilities using the geometric prior with h = 6 and σ = 1.5.

Polynomial Degree
Data Set 1 2 3 4 5 6 7 8

1 0.00 0.00 0.24 0.56 0.17 0.02 0.01 0.00
2 0.00 0.00 0.81 0.11 0.07 0.01 0.00 0.00
3 0.00 0.00 0.57 0.32 0.10 0.01 0.00 0.00
4 0.00 0.00 0.21 0.20 0.12 0.14 0.02 0.31
5 0.00 0.00 0.35 0.38 0.13 0.12 0.01 0.01
6 0.02 0.00 0.82 0.12 0.04 0.00 0.00 0.00

Table 5: Model probabilities using the geometric prior with h = 8 and σ = 1.5.

Acknowledgments

This paper is dedicated to the memory of our friend and lead author, Ce-
sareo Villegas. The intellectual ideas found in the paper are almost entirely
those of Professor Villegas and continue his lifelong pursuit of the devel-
opment of prior distributions in statistics. We thank the Editor, W.G.
Manteiga for the handling of this paper; well beyond his term of duty.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood
principle. 2nd International Symposium on Information Theory ( B.N. Petrov
and F. Csaki, eds.) Budapest: Akademiai Kiado. Reprinted in Breakthroughs
in Statistics, 1 (1992). (S. Kotz and N.L. Johnson, eds.) New York: Springer-
Verlag.



24 C. Villegas, T. Swartz and C. Martinez

Akaike, H. (1977). On entropy maximization principle. Applications of Statistics
(P.R. Krishnaiah, ed.) Amsterdam: North-Holland, 27-42.

Bartlett, M,S. (1957). A comment on D.V. Lindley’s statistical paradox. Biometrika,
44, 533-534.

Berger, J.O. and Pericchi, L.R. (1996). The intrinsic Bayes factor for model se-
lection and prediction. Journal of the American Statistical Association, 91,
109-122.

Bhansali, R.J. (1986). Asymptotically efficient selection of the order by the crite-
rion autoregressive transfer function. Annals of Statistics, 14, 315-325.

Bickel, P.J. and Doksum, K.A. (1977). Mathematical Statistics: Basic Ideas and
Selected Topics. San Francisco: Holden-Day, Inc.

Chipman, H., George, E.I. and McCulloch, R.E. (2002). The practical implemen-
tation of Bayesian model selection. To appear in the IMS monograph, Model
Selection.

Dempster, A.P. (1971). Model searching and estimation in the logic of inference.
Foundations of Statistical Inference (V.P. Godambe and D.A. Sprott, eds.)
Toronto: Holt Rinehart and Winston of Canada, 56-81.

Edgeworth, F.Y. (1883). The method of least squares. The London, Edinburgh
and Dublin Philosophical Magazine and Journal of Science Series, 16, 360-375.

Gauss, K.F. (1809). Theoria Motus Corporum Coelestium, Hamburg. English
translation by C.H. Davis 1963; New York: Dover.

Geisser, S. and Eddy, W.F. (1979). A predictive approach to model selection.
Journal of the American Statistical Association, 74, 153-160.

Gelfand, A.E. and Dey, D.K. (1994). Bayesian model choice: asymptotics and
exact calculations. Journal of the Royal Statistical Society Series B, 56, 501-
513.

George, E.I. and McCulloch, R. (1993). On obtaining invariant prior distributions.
Journal of Statistical Planning and Inference, 37, 169-179.

Guttman, I. (1967). The use of the concept of a future observation in goodness-
of-fit problems. Journal of the Royal Statistical Society Series B, 29, 83-100.

Hager, H. and Antle, C. (1968). The choice of the degree of a polynomial. Journal
of the Royal Statistical Society Series B, 30, 469-471.

Halpern, E.F. (1973). Polynomial regression from a Bayesian approach. Journal
of the American Statistical Association, 68, 137-143.

Jeffreys, H. (1961). Theory of Probability, 3rd edition. Oxford, Oxford University
Press.



On the probability of a model 25

Kass, R.E. and Wasserman, L. (1995). A reference test for nested hypotheses and
its relationship to the Schwarz criterion. Journal of the American Statistical
Association, 90, 928-934.

Keynes, J.M. (1921). A Treatise on Probability. London: Macmillan.

Macdonell, W.R. (1901). On criminal anthropometry and the identification of
criminals. Biometrika, 1, 177-227.

NCHS Growth Curves for Children (1977). National Center for Health Statistics.
U.S. Department of Health, Education and Welfare.

O’Hagan, A. (1995). Fractional Bayes factors for model comparison (with discus-
sion). Journal of the Royal Statistical Society Series B, 57, 99-138.

Pearson, E.S. and Hartley, H.O. (1954). Biometrika Tables for Statisticians, vol.
1, 3rd edition. Cambridge: University Press.

Rueda, R. (1992). A Bayesian alternative to parametric hypothesis testing. Test,
1, 61-68.

Smith, A.F.M. and Spiegelhalter, D.J. (1980). Bayes factors and choice criteria for
linear models. Journal of the Royal Statistical Society, Series B, 42, 768-776.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics,
6, 461-464.

Villegas, C. (1981). Inner statistical inference II. Annals of Statistics, 9, 768-776.

Villegas, C. (1990). Bayesian inference in models with Euclidean structures. Jour-
nal of the American Statistical Association, 85, 1159-1164.

Villegas, C. and Martnez, C.J. (1999). On the concepts of coherence and admis-
sibility. Test, 8, 319-338.


