
Distribution Theory and Inference forPolynomial-Normal DensitiesM. EvansDepartment of StatisticsUniversity of TorontoToronto, Ontario M5S 1A1T. SwartzDepartment of Mathematics and StatisticsSimon Fraser UniversityBurnaby, British Columbia V5A 1S6Key Words and Phrases : polynomial-normal densities; distribution theory;conditional inference; Gram-Charlier approximations; importance sampling.ABSTRACTThis paper considers a class of densities formed by taking the product ofnonnegative polynomials and normal densities. These densities provide a richclass of distributions that can be used in modelling when faced with non-normalcharacteristics such as skewness and multimodality. In this paper we addressinferential and computational issues arising in the practical implementation ofthis parametric family in the context of the linear model. Exact results arerecorded for the conditional analysis of location-scale models and an impor-tance sampling algorithm is developed for the implementation of a conditionalanalysis for the general linear model when using polynomial-normal distribu-tions for the error.1. INTRODUCTIONParametric statistical inference often relies on an assumption of normalityfor an error distribution. This assumption, although supported by the Central1



Limit Theorem, is widely recognized as arti�cial. It would therefore be usefulif there were a family of distributions that could be used in applied problemsto model a variety of non-normal shapes and for which exact (as opposed toasymptotic) inferences were available. In general, the di�culty with exactinference is that it often leads to intractable expressions; expressions involvingdi�cult and possibly high-dimensional integrals.This paper discusses the family of polynomial-normal densities. Thesedensities are de�ned as nonnegative polynomials times normal densities. Theycan be used in regression analysis to model a wide variety of non-normal shapes.Also the form of these densities allows for the development of algorithms forexact conditional inference methods. These two points suggest that this familycan make an important contribution to practical data analysis.In Section 2 a closure property for this family under linear combinationsis proved that does not appear to exist in the literature. In Section 3 ex-act results are obtained for the implementation of a conditional analysis, asdiscussed in Fisher(1934) or Fraser(1979), of a location-scale model when thedistribution form is a known polynomial-normal density. In Section 4 a �ttingalgorithm, for selecting a polynomial-normal density when the distributionform is not known, is developed. In Section 5 the relation of the polynomial-normal family to truncated Gram-Charlier expansions is discussed; see forexample Cramer(1946), Kendall and Stuart(1958), Johnson and Kotz(1970)for a discussion of these. Also in Section 5 the relation of the contents ofthis paper to the work of Bartlett(1935), Gayen(1949, 1950a, 1950b, 1951),Davis(1976) and Geweke(1989) is discussed.In Section 6 an importance sampling algorithm, based on the multivariatet-distribution, is developed for the implementation of a conditional analysis ofa general linear model when the error distribution is polynomial-normal. Thispermits the practical analysis of complicated data sets allowing for highly non-normal shapes for the error distribution. The development of this algorithmrelies intrinsically on the form of the polynomial-normal densities to produce�nite variance Monte Carlo estimates for various quantities of inferential inter-est. This is the most important contribution of the paper and it is the contentof Proposition 5. A numerical example of such an analysis is also presented.Copies of Fortran programs for all computer algorithms used in the paper canbe obtained by writing the authors. 2



2. THE FAMILY AND SOME DISTRIBUTION THEORYA polynomial-normal density function takes the formf(x) = kp�x� �1�2 � 1�2��x� �1�2 � (1)where �1 2 <, �2 > 0, p is a nonnegative polynomial, � is the N(0; 1) densityand the norming constant k is speci�ed byk�1 = Z 1�1 p(x)�(x)dx: (2)We will study this class of densities with no other restrictions on p but note thepossibility of examining interesting sub-classes by adding further constraintson the polynomial.Since the moments of the standard normal distribution are all known, theintegral (2) can be easily evaluated. Alternatively, as p is a polynomial ofdegree 2m, the integral (2) can be exactly evaluated by a Gauss-Hermite ruleof order m+ 1. That is to sayk�1 = m+1Xi=1 wip(xi)where the wi and xi are Gauss-Hermite weights and points respectively andthis is perhaps the preferred method of evaluation as it avoids the need tocalculate high-order moments of the normal. For more information on Gauss-Hermite quadrature, the theory of orthogonal polynomials and quadrature ingeneral, the reader is referred to Davis and Rabinowitz(1984).Similarly, if the random variable X has a polynomial-normal density asspeci�ed by (1) with deg(p) = 2m, thenE(Xn) = Z 1�1(�1 + �2x)nkp(x)�(x)dxwhich can be evaluated exactly by a Gauss-Hermite rule of order d(n+ 2m +1)=2e. We note that the moment calculations can also be obtained by usinga lower order Gauss rule corresponding to the particular polynomial-normaldensity. The weights and points for these quadrature rules can be derivedusing the algorithm of Golub and Welsch(1969) and Hermite integration orvia an algorithm of Kautsky and Golub(1983).In addition to the availability of the moments of X, an application ofRodrigue's formula (see Davis and Rabinowitz(1984)) yields a convenient ex-pression for the distribution function F (x). It is given byF (x) = ��x� �1�2 �� 2mXj=1 cjpj hj�1 �x� �1�2 ���x� �1�2 � (3)3



where � is the distribution function for the N(0; 1), hj is the jth orthonormalHermite polynomial andcj = Z 1�1 hj(x)kp(x)�(x)dxwhich can be evaluated exactly via Gauss-Hermite integration. Therefore givenexpression (3) and a uniform(0,1) variate u, a random polynomial-normal vari-ate x can be easily generated by solving the equation F (x) = u through bisec-tion.An interesting result concerns the closure of the polynomial-normal fam-ily under linear operations. This is developed more fully below and statedprecisely in Proposition 2.Proposition 1: Consider a density function f(x) with corresponding momentgenerating function m(t). The density f(x) is polynomial-normal of degree 2mif and only if m(t) = e�1t+�22 t2=2q(t) where q(t) is a nonnegative polynomial ofdegree 2m.Proof : Suppose that f(x) is a polynomial-normal density of degree 2m. Thenit's moment generating function ism(t) = Z 1�1 extkp�x� �1�2 � 1�2��x� �1�2 � dx = e�1t+�22 t2=2q(t)where q(t) = Z 1�1 kp(x+ �2t)�(x)dx (4)is a nonnegative polynomial of degee 2m in t.Conversely suppose that m(t) = e�1t+�22 t2=2q(t) for some nonnegative poly-nomial q of degree 2m. Then the characteristic function corresponding to f(x)is m(it) and by the Inversion Theorem and some straight-forward manipula-tions we obtainf(x) = 12� Z 1�1 q(it)exp "�� 222 (t2 + 2it(x� �1)=� 22 )# dt= ��x� �1�2 � 1�2 Z 1�1 q �iz�2 + (x� �1)=� 22��(z)dz:Now R1�1 q � iz�2 + (x� �1)=� 22� �(z)dz is a polynomial of degree 2m in x andsince f is a density it must be nonnegative.4



Note that (4) provides a convenient formula for computing the momentgenerating function of a polynomial-normal density. However, not all non-negative polynomials q give rise to valid moment generating functions. Thefollowing corollary characterizes those that do.Corollary 1: Consider a function m(t) = e�1t+�22 t2=2q(t) where q is a non-negative polynomial. Then m is a moment generating function if and only ifq(0) = 1 and p(x) = Z 1�1 q( it�2 + x�2 )�(t)dtis a nonnegative polynomial. Further when m is a moment generating functionit is associated with density (1) where p is given as above and k = 1.Proof : Suppose that m is a moment generating function. Then 1 = m(0) =q(0) and the nonnegativity of p follows from the if part of Proposition 1.Conversely put f(x) = p(x��1�2 )�(x��1�2 ) 1�2 and note that f is nonnegativeeverywhere. Applying the proof of Proposition 1, which does not require f bea probability density, only that m(t) exist in an open interval about 0, thenq(t) is given by (4) and this implies 1 = q(0) = R1�1 p(x)�(x)dx which impliesf is a density.Proposition 2: If X1; : : : ;Xn are mutually statistically independent randomvariables and Xi has moment generating function e�1it+�22it2=2qi(t) where qi is anonnegative polynomial of degree 2mi, then Y = a1X1 + : : : + anXn + c hasdensity p � y��� � 1�� �y��� � where � = c +Pni=1 ai�1i, �2 = Pni=1 a2i � 22i and p isthe nonnegative polynomial of degree 2(m1 + : : :+mn) given byp(x) = Z 1�1 nYj=1 qj �iajt� + ajx� ��(t)dt: (5)Proof : The moment generating function of Y is e(c+Pnj=1 aj�1j)t+Pnj=1 a2j�22jt2=2�Qnj=1 qj(ajt) and thus by Proposition 1, Y has a polynomial-normal density andby Corollary 1, p(x) is given by (5).The Hermite expansion of p in (5) can be evaluated by Hermite integrationand thus we have an exact expression for the density of Y .To deal e�ectively with the polynomial-normal family of densities we re-quire a convenient parametrization of the polynomials. We use the fact that5



a polynomial is nonnegative if and only if its roots are conjugate pairs. Hencewe write p(x) = mYi=1(�ix� 1)(�ix� 1) (6)where �1; : : : ; �m 2 C and hence 1=�i is a root of p. Note that, by letting someof the �i = 0, with this parametrization we get all nonnegative polynomials ofdegree less than or equal to 2m which do not have 0 as a root. In particularthe normal distribution is obtained as a polynomial-normal density when �1 =: : : = �m = 0. Alternative parameterizations can be chosen which do notexclude the polynomials having 0 as a root; e.g. use the roots rather than thereciprocals of the roots as we have done. Our choice of parameterization ismotivated by the �tting algorithm developed for this family in section 4. Fornote that if �i = 0 then the i-th factor is constant and this is an importantfeature for that algorithm. Little is lost by excluding the polynomials with 0 asa root as the corresponding polynomial-normal density can be approximatedby a polynomial-normal density for which p(0) 6= 0. To see this suppose fis any density with �rst and second moments �1 and �2. Then for � 2 C;g�(x) = (j �j2�2� (�+��)�1+1)�1 (�x�1)(��x�1)f(x) is the density obtainedby adding a quadratic factor corresponding to the root 1=�. As j � j! 1 wehave that g�(x)! g(x) = ��12 x2f(x) which is the density obtained by addingthe quadratic factor corresponding to the root 0.We denote by Fm the class of polynomial-normal densities of the form (1)where p is a nonnegative polynomial having parametrization (6), and �1 and�2 are de�ned by �1 = ��1�=�2� and �2 = 1=�2� where�1� = Z 1�1 xkp(x)�(x)dxand � 22� + � 21� = Z 1�1 x2kp(x)�(x)dx:Therefore the class of standardized polynomial-normal densities Fm consistsof polynomial-normal densities of the form (1) having zero mean, unit vari-ance, deg(p) � 2m and p(0) 6= 0. The correspondence between f 2 Fm and�1; : : : ; �m is not one-to-one as permutations of �1; : : : ; �m do not alter thedensity. However, the correspondence is one-to-one between f 2 Fm and setsf�1; : : : ; �kg where k � m and �i 2 C. 6



Since the family Fm is completely determined by �1; : : : ; �m, there are2m+ 2 free parameters in the location-scale modelY = �+ �Z (7)where Z � f 2 Fm. Similarly, in a regression problem with k predictorsX1; : : : ;Xk there are 2m + k + 1 free parameters in the modelY = �1X1 + : : :+ �kXk + �Z (8)where Z � f 2 Fm.To illustrate the previous theory we consider some examples.Example 1: Suppose that X1; : : : ;Xn is a sample from the distributionwith polynomial-normal densityf(x) = kp(x)�(x) = (1 + j�j2)�1(�x� 1)(�x� 1)�(x)for some � 2 C. It is easy to verify that the mean and variance of Xi are givenby � = �(�+ �)=(1 + j�j2) and �2 = (3j�j2 + 1)=(1 + j�j2)� �2 respectively.Using Proposition 2 we have that the density of Y = X1 + : : : + Xn ispn � ypn� 1pn� � ypn� wherepn(x) = Z 1�1 qn  itpn + xpn!�(t)dt= Z 1�1 "Z 1�1 kp itpn + xpn + z!�(z)dz#n �(t)dt:The polynomial pn can be evaluated exactly using Gauss-Hermite rules for boththe inner and outer integrals. However, the best way to do this, when repeatedcalculations of pn(x) are required, is to �rst evaluate the Hermite expansion ofq and then of pn, as this cuts down on the amount of computation.To consider a speci�c case we choose the complex number � = (1; 1) andplot the density of the standardized variate Z = pn(X � �)=� for n = 1(Figure 1) and for n = 5 (Figure 2). The densities are plotted alongside theN(0; 1) density for comparison purposes. From these plots we see that althoughthe underlying distribution is strikingly di�erent from the normal, the CentralLimit Theorem is providing a good approximation by the time n = 5.Example 2: In this example we consider the underlying density f(x) =kQ4i=1(�ix�1)(�ix�1)�(x) where �1 = (0; 1), �2 = (1=2; 1=2), �3 = (1; 0) and7



�4 = (2; 1=2). In Figures 3 and 4 we give the plots of the standardized densitiesfor n = 1 and n = 5 respectively together with plots of the N(0; 1) density.We see that in this example the normal distribution is not providing a goodapproximation. As n increases the normal will inevitably be adequate by theCentral Limit Theorem. The point of this example is to show that the normalapproximation cannot always be relied upon with this family. Thus the exactdistribution must be computed or some alternative approximation techniqueused. In the following sections we develop the conditional approach to infer-ence with these models and show how to use Monte Carlo to obtain accurateapproximations to the conditional distributions of statistics of interest.3. INFERENCEIn this section we consider inference for the parameters � and � in thelocation-scale model (7) when we assume that the underlying density f 2 Fmis known. In Section 5 we discuss the selection of the nonnegative integer mand the polynomial-normal density f 2 Fm.Consider then a sample y1; : : : ; yn from the location-scale model (7) wherewe de�ne s2y = ky�y1k2, s2 = kz �z1k2 and d = (y�y1)=sy = (z �z1)=s. Sincez is a sample from the polynomial-normal distribution f 2 Fm, any functionalof z has a distribution which is independent of the location parameter � and thescale parameter �. Therefore quantities such as z, s and d all have distributionsthat do not depend on (�; �).In the case where � is known, inferences concerning � can be based on thepivotal z = (y � �)=�. For example, the distribution of z can be obtainedfrom Proposition 2 and using the formula for the cdf given in (3), constantsa1 and a2 can be found such that P (a1 � z � a2) = :95 It follows that a 95%con�dence interval for � is given by (y � a2�; y � a1�).In the case where � is unknown, marginal inference concerning the param-eters � and � can be based on the pivotal quantities t = z=s = (y��)=sy ands = sy=� respectively. In general, the distributions of the random variabless and t are computationally di�cult. However, for the class of standardizedpolynomial-normal densities (ie. z � f 2 Fm), the distributions are manage-able, at least for small to moderate n, and are given in Corollaries 2 and 3respectively. This approach is referred to as the unconditional approach.It has been argued (see Fisher(1934) or Fraser(1979)) that the conditionalapproach is the preferred approach for the analysis of the location-scale model(7) and more generally for the regression model (8). In the conditional analysiswe proceed as above except that we base our inferences on the pivotals sand t conditioned on the observed value of the statistic d. This simpli�es8



calculations and is partly justi�ed by the fact that d is an ancillary statistic.The conditional distributions of s and t are given in Propositions 3 and 4respectively. We note that in the case of a normal error the conditional andunconditional approaches are exactly the same since d is independent of boths and t. Thus the polynomial-normal family o�ers an opportunity to comparethe conditional and unconditional analyses for a non-normal family.First we consider the distribution of s where we denote the density of aChi(n) variable by gn(s) = sn�1e�s2=2=[2(n�2)=2�(n2 )].Proposition 3: Consider the location-scale model (7) based on a sample ofsize n. The conditional density of s given d is given bygsjd(sjd) = r(d)p1(s; d)gn�1 � s�2� 1�2 s > 0where r�1(d) = R10 p1(�2s; d)gn�1(s)ds is the inverse of the norming constantand p1(s; d) = Z 1�1 nYi=1 kp(u=pn+ sdi=�2)�(u)duis a positive polynomial in s.Proof : Since z1; : : : ; zn is a sample from the polynomial-normal distribution,the joint density of z is Qni=1 kp � zi��1�2 � 1�2� � zi��1�2 �. Letting P = (p1; : : : ; pn�1)be an orthonormal basis of L?(1) � <n, we write v = P 0d and note thatkvk2 = kdk2 = 1. Following Theorem 2.1.3 of Muirhead(1982) we can ex-press v 2 <n�1 in polar coordinates in terms of �1; : : : ; �n�2, say as v = u(�).Making the change of variables z ! (z; s; �), the Jacobian of the transfor-mation is n1=2sn�2j(�) where j(�) =sinn�3�1sinn�4�2 � ��sin�n�3 is derived inMuirhead(1982). Therefore the joint density of (z; s; �) isnYi=1 kp z + sdi(�)� �1�2 !� z � �1�2=pn! pn�2 gn�1 � s�2� 1�2A�1n�1j(�) (9)where An�1 = 2�(n�1)=2=� �n�12 � is the surface area of the unit sphere in <n�1and d(�) = Pu(�). The result then follows immediately from (9) as d is a 1-1function of �.Note that the quantities r(d) and p1(s; d) can be evaluated exactly using themoment formulae for the Chi and normal distributions respectively. Alter-natively, these quantities can be calculated exactly using Gauss rules for the9



Chi(n-1) distributon and Hermite rules respectively. From the conditionaldensity for s we get the form of the marginal density for s.Corollary 2: Consider the location-scale model (7) based on a sample of sizen. The (unconditional) density of s is given bygs(s) = p1(s)gn�1 � s�2� 1�2 s > 0where p1(s) = R 2�0 R �0 � � � R �0 p1(s; d(�))A�1n�1j(�)d� is a positive polynomial in s.Proof : The result follows immediately from (9).Note that the evaluation of p1(s) involves the integration of powers of sinesand cosines. This can be carried out exactly using spherical quadrature rules.We see that the conditional and unconditional densities of s take the formof a positive polynomial times a Chi(n-1) density, a natural generalization ofnormal theory. Further these polynomials are related in a simple way anddemonstrate the di�erence between a conditional and unconditional analysisfor �.Now we consider the distribution of t.Proposition 4: Consider the location-scale model (7) based on a sample ofsize n. The conditional density of t = z=s given d is given bygtjd(tjd) = r(d) expf�n� 21=2� 22 gp2(t; d)hn�1(qn(n � 1)t)qn(n� 1)wherep2(t; d) = Z 10 exp n�1tv�2p1 + nt2! nYi=1 kp v(t+ di)p1 + nt2 � �1�2! gn(v)dv;hn�1(t) is the density of the Student(n � 1) distribution and r(d) is given inProposition 3.Proof : From expression (9) we obtain the conditional density of (z; s) givend by dividing by r�1(d(�))A�1n�1j(�). Then make the transformation (z; s) !(t; v) where t = z=s and v = sp1 + nt2=�2. This transformation has Jacobianv� 22=(1 + nt2). Integrating out the variable v gives p2(t; d) from which followsthe conditional density of t given d. 10



Note that the troublesome term in the evaluation of the conditional densityof t given d is p2(t; d). This can be approximated using the Gauss quadraturerule based on gn(v). Alternatively an exact calculation can be obtained byobserving that the essential integration in the evaluation of p2(t; d) takes theform R10 vkeave�v2=2dv = ea2=2 R1�a(u + a)ke�u2=2du = ea2=2Pki=0  ki ! ak�i �R1�a uie�u2=2du for some positive integer k and some constant a. A single ap-plication of integration by parts gives R1�a uie�u2=2du = (�a)i�1e�a2=2 + (i �1) R1�a ui�2e�u2=2du. Repeated applications then lead to either R1�a ue�u2=2du =e�a2=2 or R1�a e�u2=2du = p2�(1 � �(�a)) depending on whether i is odd oreven. This establishes that p2(t; d) is a bounded function of t. We shall seein section 6 that this fact proves useful in our development of a more generalcomputational approach. The form of the marginal density of t now followseasily.Corollary 3: Consider the location-scale model (7) based on a sample of sizen. The unconditional density of t = z=s is given bygt(t) = expf�n� 21=2� 22 gp2(t)hn�1(qn(n� 1)t)qn(n � 1)where p2(t) = R 2�0 R �0 � � � R �0 p2(t; d(�))A�1n�1j(�)d�.Proof : Take the product of gtj� = gtjd from Proposition 4 and the marginaldensity of � which is r�1(d(�))A�1n�1j(�) and can be derived from (9). Thisgives the joint density of (t; �). The result follows after integrating out thevariable �.Hence the conditional and unconditional densities of t generalize the the normaltheory result for t.Thus closed form expressions have been obtained for both the conditionaland unconditional analyses of the location-scale model (7) when the error dis-tribution is given by a polynomial-normal density. Although the formulaeare at times complex, they are well within the capabilities of modern com-puting, particularily for the conditional analyses. In fact, for small n exactexpressions for the various densities may be derived using symbolic languagessuch as Mathematica and Maple. Practically speaking, however, the formulaeare more interesting for the way they show how inference changes when wemove away from normal errors and the contrast between the conditional andunconditional analyses. 11



Similar formulas can also be obtained for the regression model (8) basedon polynomial-normal errors. However the densities have even more compli-cated expressions. As such, the general approach to the distribution theory,as discussed in this section, is not practical. Consequently, an alternative ap-proach is developed in Section 6 and this is also the preferred approach in thelocation-scale context when actually doing calculations.4. FITTING THE FAMILYIn the previous section we developed the inferential theory for the parame-ters � and � in the location-scale model (7) based on polynomial-normal errors.In doing so we assumed that the underlying polynomial-normal error densityf 2 Fm is known. In this section we discuss the selection of the nonnegativeinteger m and the polynomial-normal density f 2 Fm for the location-scalemodel. The discussion generalizes easily to the regression model (8).One approach is to select m rather large, as Fm contains all polynomial-normal densities of degree 2m or less, and then select f 2 Fm using only d.One possibility is to maximize the marginal likelihood r�1(d) as a functionof f 2 Fm, see for example Fraser(1979). In this context this is unwieldy aswe are forced to carry out a maximization of a complicated function of 2mvariables. Note that this di�culty also prevents us from using more elaboratemodel selection criteria such as AIC.Instead we adopt an approach that is computationally feasible in this con-text and that works well in the examples we have tried. For this we viewpn � 1d as an estimate of the error vector z. This is supported by the follow-ing result.Lemma 1: If z1; : : : ; zn is a sample from a continuous distribution P havingmean 0 and variance 1, then for any interval A1n nXi=1 IA(pn� 1di) �! P (A)almost surely as n!1.Proof : See the appendix.In the case of the regression model (8) a result similar to Lemma 1 canbe obtained. For the regression model we treat pn� kd as a sample fromf 2 Fm where d = (y � X�̂)=sy, sy = ky � X�̂k, �̂ = (X 0X)�1X 0y andX = (x1; : : : ; xk). 12



Now viewing pn � 1d as a sample from some f 2 Fm, a �rst thoughtin �tting a member of the family Fm to the data, might be to choose f̂ 2Fm whose distribution function F̂ is \closest" to the empirical distribution ofpn � 1d. This could be done by �rst specifying l points x1; : : : ; xl and thenminimizing lXj=1(F̂ (xj)� pj)2 (10)where pj = 1n Pni=1 I(�1;xj](pn� 1di). There does not appear to be an optimalway to select l and the xi. We note the reasonable conjecture, however, thatif l � 2m then f 2 Fm is completely determined by the values of F (xi)independent of speci�c values of the xi. This conjecture is discussed furtherin section 5 where it is proven to be true for an important subclass of Fm.Irrespective of this conjecture it makes sense to choose l relatively high to avoidover-�tting at just a few points and to choose the xi to span the region whereprobability will be concentrated for a distribution with mean 0 and variance1. Note that Chebyshev's inequality implies that 8/9 of the probability lies in(-3,3) for such a distribution.For all but the smallest values of the parameter m, the 2m-dimensionalminimization of (10) is again computationally di�cult. Therefore we considera compromise; a �tting algorithm which tackles the minimization iterativelyin manageable steps and also provides a method of determining m. Lettingf̂0 2 F0 denote the standard normal density, in step i of the algorithm, werequire that f̂i 2 Fi take the formf̂i(x) = ki ��i �x� �1i�2i �� 1� ��i �x� �1i�2i �� 1� f̂i�1 �x� �1i�2i �and minimize (10) over all such choices.Hence we are �tting by quadratic factors and the determination of f̂i fromf̂i�1 involves a 2-dimensional minimization only. This can be carried out by asimple search algorithm which we describe below. Recall from Section 1 thatthe parameters ki, �1i and �2i are prescribed given the quadratic polynomial(�ix � 1)(�ix � 1). The algorithm is terminated and m is speci�ed when asubsequent step of the algorithm provides a quadratic factor with �i su�cientlyclose to (0; 0). As the search is over a �nite grid which includes (0,0) thealgorithm typically terminates with this choice.To implement the minimization step of the algorithm, we consider an alter-native parametrization of the polynomial. This allows the search for the min-imum to be carried out over a 2-dimensional compact set. We put h0i(x) = 1,13



h1i(x) = x and h2i(x) = D�1i (x2 � �3ix � 1) where �3i = R1�1 x3f̂i�1(x)dxand D2i = R1�1(x2 � �3ix � 1)2f̂i�1(x)dx. These are the �rst 3 orthonormalpolynomials with respect to f̂i�1(x). We can then write a quadratic polyno-mial qi uniquely as qi(x) = aih0i(x) + bih1i(x) + cih2i(x). Now given f̂i�1(x),Lemma 2 shows that the only possible values for the coe�cients (ai; bi; ci) liein a 2-dimensional compact set.Lemma 2: The function g(x) = qi(x)f̂i�1(x) is a density function if and onlyif ai = 1, 0 � ci � Di and (biDi � ci�3i)2 � 4ci(Di � ci).Proof : See the appendix.Example 3: Consider the density f 2 F2 speci�ed by �1 = (1=2;p3=2) and�2 = (1;p3). Using l = 11 points given by xi 2 f0;�:25;�:5;�1;�2;�3gwe use the algorithm of �tting by quadratic factors to determine f̂1 2 F1 andf̂2 2 F2. Here we use the exact values of F (xi) instead of estimates and so thereis no sampling error involved. The search algorithm is based on 100 equispacedpoints in each of the ci and bi coordinates. Figures 5 and 6 give plots of the�tted densities f̂1 and f̂2 respectively together with the underlying density f .Fitting another factor produced no further improvement. The results indicatethat f̂2 provides an excellent approximation to f . Of course, a �ner grid forthe search would produce a better approximation.Example 4: In this example we �t a polynomial-normal density from thelocation-scale model to the logarithms of 100 stress-rupture lifetimes of Kevlarpressure vessels. The dataset can be found in Andrews and Herzberg(1985),page 183. Using the �tting algorithm as described in example 3 we obtainedm = 1 and �1 = (�1:565; 0). The �tted density together with the standardnormal density is plotted in Figure 7. Fitting another factor produced nofurther improvement. It is clear that this is a highly non-normal dataset. Thisis con�rmed in a histogram plot of pn� 1d which indicates that the secondarymode is not a spurious aspect of the �tting algorithm.The examples above and other examples, see example 5 for a context whereits merits can be assessed when sampling error is present, support the useof the proposed �tting algorithm. In addition to the empirical evidence, thealgorithm is convenient and intuitive. It begins by �nding the \best" quadratic-normal density according to criterion (10), and continues with each subsequentfactor improving on the �t in the sense of (10).14



As previously mentioned, provided that the number l of points xi chosenis greater than 2m, it is reasonable to conjecture that f 2 Fm is completelydetermined by the values F (xi). If this conjecture holds, and we were to �tf 2 Fm by minimizing (10) over all such f , then Lemma 1 would establishthe consistency of this estimate. The examples indicate that proceeding byquadratic factors does not produce serious problems for the accuracy of ourinferences. Further research is needed, however, to assess the e�ect of samplingerrors on this algorithm and also to see if there are better approaches. At thispoint the evidence indicates that the algorithm is working well and we notethe lack of any practical alternatives.5. COMPARISON WITH GRAM-CHARLIER APPROXIMATIONFollowing Kendall and Stuart(1958), page 148, with appropriate changesof notation, the Gram-Charlier Type A series for the density g(x), where g(x)has all its moments and in particular mean �1 and variance � 22 , is given by1Xi=0 bihi �x� �1�2 ���x� �1�2 � 1�2where bi = R1�1 hi �x��1�2 � g(x)dx and hi is the ith orthonormal Hermite poly-nomial. This is a formal series and is not necessarily convergent. Using thefact that h0(x) = 1, h1(x) = x and h2(x) = (x2 � 1)=p2, we have that b0 = 1,b1 = 0 and b2 = 0.The corresponding Gram-Charlier approximation of degree 2m is then givenby gm(x) = p�x� �1�2 ���x� �1�2 � 1�2 (11)where p(x) = P2mi=0 bihi(x). Since odd degree polynomials cannot be nonnega-tive, we consider only the even degree case. It is easy to verify that the meanand variance of gm are also �1 and � 22 .The traditional approach to �tting (11) to data is based on the methodof moments as �1; �2 and the bi are all simple functions of the moments ofg. Hence if x1; : : : ; xn is a sample we put �1 = �x; �2 = sx=pn� 1 and bi =1n Pni=1 hi(pn� 1di).There are several di�erences between a Gram-Charlier approximation (11)and a polynomial-normal density function (1). We point these out below andalso discuss some of their relationships.First, �1 and �2 in (11) are constrained to be the mean and standarddeviation of the distribution. The polynomial-normal densities do not have15



this restriction. Hence there are two additional degrees of freedom with apolynomial-normal density of the same degree. This is reected in the factthat the weight function �(x��1�2 ) 1�2 can take on a wider range of possibilities.Second, there is no guarantee that (11) is a legitimate probability density.The polynomial may take on negative values. We could restrict, as is done inGeweke(1989), our attention to Gram-Charlier approximations gm(x) wherethe polynomial is nonnegative. We refer to these as Gram-Charlier densitiesand let Gm denote the class of Gram-Charlier densities of the form p(x)�(x)where p(x) is a nonnegative polynomial of degree � 2m. Thus the class Gmconsists of all Gram-Charlier densities having zero mean and unit variance.Since b0 = 1, b1 = 0 and b2 = 0, Gm is a (2m � 2)-dimensional subfamily ofFm. A practical problem with Gm is its lack of a convenient parametrization.In other words, it is di�cult to �nd appropriate constraints on the bi, i > 2 toensure nonnegativity.We now show that the method given in Section 4 for �tting is consistentwhen we have a location-scale model with Z � g 2 Gm. The distributionfunction for such a g takes the form, following (3), G(x) = �(x) + r(x)�(x)where r(x) is a polynomial of degree less than 2m. Hence if we specify G atl � 2m points xi then this speci�es the value of r(x) = (G(x)��(x))=�(x) at lpoints. Since r is a polynomial of degree less than 2m these values completelyprescribe r and hence g. This together with Lemma 1 implies that if we �tg 2 Gm by minimizing (10) over such g then this gives a consistent estimateas well. This result supports our approach to �tting elements of Fm and ourconjecture that f 2 Fm is prescribed by the values of its distribution functionat 2m points.The traditional approach to �tting Gram-Charlier densities cannot be ap-plied to �t a general element of Fm since �1 and �2 in (1) are complicatedfunctions of the moments of f which we have not been able to obtain in closedform. Hence we developed the alternative approach of section 4. Also, theGram-Charlier series for f 2 Fm n Gm need not converge; for a discussion ofthe convergence of such series see Kendall and Stuart(1958).Geweke(1989) has used the method of maximum likelihood to �t Gram-Charlier densities. We have also experimented with maximum likelihood inthe �tting of polynomial-normal densities. Like Geweke(1989), we have expe-rienced the di�culties associated with multimodal likelihoods. For this reason,and some of the reasons stated above, we prefer our algorithm of �tting byquadratic factors.Previous authors have also developed distribution theory results when thebasic density is a polynomial times a normal density. Bartlett(1935) derives an16



asymptotic expression for the unconditional density of the t-statistic when thepolynomial is of degree 4, not necessarily nonnegative and with retrictions onthe coe�cients. Under similar assumptions Gayen(1949, 1950a, 1950b, 1951)derives asymptotic expressions for the unconditional densiities of many statis-tics of inferential interest. Under the assumption that the basic density hasa Gram-Charlier expansion, Davis(1976) derives asymptotic series expressionsfor the unconditional densities of many statistics. In section 6 we develop analgorithm which permits the computation of conditional probabilities to prac-tically meaningful accuracies for any statistic when the model is a linear modelwith polynomial-normal error.6. COMPUTATIONS FOR REGRESSIONWhereas exact expressions can often be obtained for the distributions ofquantities of inferential interest, these expressions do not necessarily providethe best approach to implementing the computations. This is particularlytrue in the regression context, where instead, we consider a version of adap-tive importance sampling. Adaptive importance sampling ideas have beenused by various authors including Smith et. al.(1987), Evans, Gilula andGuttman(1989) and Oh and Berger(1992).In the regression model (8) we de�ne sy = ky �X�̂k, s = kz � Xbk andd = (y � X�̂)=sy = (z � Xb)=s where �̂ = (X 0X)�1X 0y, b = (X 0X)�1X 0zand X = (x1; : : : ; xk). Inference concerning � is based on the conditionaldistribution of s = sy=� given d and inference concerning � is based on theconditional distribution of t = b=s = (�̂ � �)=sy given d.To implement a conditional analysis we need to be able to calculate con-ditional expectations of various functions of (b; s); e.g. to tabulate the con-ditional distribution function of ti which then leads to conditional con�denceintervals for �i. While we don't need the explicit form of the joint density of(b; s) to describe our algorithm, an unnormalized version is given in (15). Itturns out to be convenient for the necessary integrations to make the trans-formations (b; s)! (t; s) and (t; s)! a wherea = 0@ pn � kRtq2(n� k)log(s=pn� k) 1AX = QR, R is an upper triangular matrix with positive diagonal elements,and Q is a column-orthonormal matrix. With normal errors, the vector a isasymptotically normal with mean vector 0 and variance-covariance matrix I.Denote the unnormalized conditional density of a given d, obtained from17



(15) and the transformations, by L(ajd). Thus the general problem is to cal-culate E[ujd] = Z 1�1 u(a)L(ajd)da = Z 1�1 L(ajd)da (12)for various functions u. Note that the denominator is the norming constant.If we generate values a1; : : : ; aN from a density w on <k+1, we get an im-portance sampling estimator of (12) as given byÊ[ujd] = NXi=1 u(ai)L(aijd)w(ai) = NXi=1 L(aijd)w(ai) : (13)The Strong Law of Large Numbers gives almost sure convergence of Ê[ujd] to(12). In addition, provided that the numerator and denominator in (13) bothhave �nite variance, then using Theorem A, page 122 of Sering(1980), (13)is asymptotically normal. The following proposition gives conditions underwhich the numerator and denominator in (13) have �nite variance for certainfunctions u when w is a multivariate Student density.Proposition 5: Suppose that u is bounded in absolute value by a polynomialin a of degree r. Further let w be the density of � + ��e, where � 2 <k+1,�� 2 <(k+1)�(k+1) is a lower triangular matrix with positive diagonal elementsand the random vector e is distributed as a (k + 1)-dimensional Student(�)with � � n� 2k � 4 � 2r. Then (13) has �nite variance.Proof : The variance of the numerator of (13) is �nite if and only ifZ 1�1 u2(a)L2(ajd)w(a) da <1: (14)The result follows when we have established the �niteness of (14) for u(a) = arifor i = 1; : : : ; k + 1.The proof proceeds as follows. We �rst show that all of the conditionalmoments of s exist and determine what conditional moments of t will existwhen sampling from a polynomial-normal density. The next step is to notethat L2(ajd), when considered as a function of (b; s), takes the form of anunnormalized conditional density of (b; s), when sampling from a polynomial-normal density, times a power of s. Then using w(a) / (1 + (a� �)0��1(a��))��+k+12 , and combining this with the above steps, the result will be obtained.18



Generalizing the proof of Proposition 3 it can be shown that the conditionaldensity of (b; s) given d is proportional tonYi=1 p0@ 1�2 kXj=1(xijbj + sdi)� �1�21A expf�(s2 + b0X 0Xb)=2� 22 g �expf�1(b0X 01 + sd01)=� 22 gsn�k�1: (15)From (15) it is immediate that all of the conditional moments of s exist ase�s2=2�22 times ecs, for any constant c, times a polynomial has a �nite integral.In (15) make the transormation (b; s) ! (t; s), which has Jacobian sk, andthen integrate out s to get that the conditional density of t is proportional to(1 + t0X 0Xt)�n=2 timesZ 10 nYi=1 p u�2 [Pkj=1 xijtj + dip1 + t0X 0Xt ]� �1�2! expf�1�2u (t0X 01 + d01)p1 + t0X 0Xtggn(u)du: (16)Now observe that (16) is of the same form as p2(�; d) in Proposition 3 and theargument after the proof of that result shows that (16) is bounded as a functionof t. Hence the factor (1 + t0X 0Xt)�n=2 determines that all the moments of texist of order less than or equal to n� k � 3. This completes the �rst step ofthe proof.Now make the transformation a ! (b; s) in (14). The Jacobian of thetransformation is 1=sk+1. It follows that L2(ajd)=sk+1, as a function of (b; s),is proportional to (15) squared times sk+1. Therefore, looking at the formof (15), we have that L2(ajd)=sk+1, as a function of (b; s), is proportional tosn times the conditional density of (b; s) given d when z0 = (z1; : : : ; zn) is asample from p� � z��1�2=p2�� � z��1�2=p2� 1�2=p2 with p�(x) = p2(x=p2). This completesthe second step.Now as a function of ai, w�1(a) behaves like jaij�+k+1 for large jaij. Ifu(a) = ari for i � k, then u2(a) = (n�k)2r(e0iRt)2r where ei is the i-th standardbasis vector. Combining this with steps one and two we get that (14) holds forsuch a function u whenever 2r+ �+ k+1 � n� k� 3 or � � n� 2k � 4� 2r.If u(a) = ark+1 = (2(n� k))r=2(logs=pn � k)r, then u2(a) = O(s2r) for large s.Since all of the conditional moments of s exist, it follows that (14) also holdsfor this coordinate. This completes the proof.We note that Proposition 5 provides a rare instance where one can actuallyestablish the appropriate degrees of freedom for the multivariate Student to19



guarantee the �nite variance of the importance sampling estimator. Hence wewill use importance samplers w that are a�ne transformations of multivariateStudent distributions with appropriate degrees of freedom.The question arises as to which a�ne transformation should be chosen.A general principle of importance sampling is to choose w to mimic L(�jd).In that way the variance of the estimator Ê[ujd] is typically small. To thatend, we attempt to match the mean vector and variance matrix of w to theconditional mean and conditional variance matrix of a. As the conditionalmean and variance matrix of a are unknown, we proceed adaptively. We beginwith �0 = 0 and �0 = I. Then we generate a1; : : : ; aN from w0 where w0 isthe density corresponding to �0+q��2� �0e with e distributed as a Student(�)distribution and the factor q��2� standardizes the Student distribution to havevariance matrix equal to the identity. From this sample, we obtain the esti-mates �1 and �1 of the conditional mean vector and variance matrix of a using(13) and appropriate choices of the u functions. Next we generate a1; : : : ; aNfrom w1(a), the density corresponding to �1 + q��2� �1e. We then combinethis sample and the previous sample, weighting each sample point by the ap-propriate multivariate Student density, to produce new estimates �2 and �2.We continue this for �nitely many steps and obtain a �nal importance samplerw�(a). We then use w�(a) to estimate expectations of interest via straightimportance sampling.Example 5: We consider a regression model where we observe 50 y-values,10 from each of Y = �i + �Z, i = 1; : : : ; 5. Setting �i = i and � = 1, wesimulate the data by generating 50 independent and identically distributedvariates from f 2 F3 speci�ed by �1 = (1=2;p3=2), �2 = (�1=2;p3=2) and�3 = (1=2; 0). Applying the �tting algorithm to the residual vector pn� kdwe obtain m = 1 with � = (:7686; :5771). The error density f together withthe �tted density are plotted in Figure 8. While the estimate of m is not verygood we notice that the �tted density is doing reasonably well at picking upthe main features of the error distribution.We now use the �tted error distribution and the adaptive importance sam-pling algorithm to calculate conditional con�dence intervals for the �i. Ap-plying Proposition 5 we require a 6-dimensional Student(34) distribution toensure that the importance sampling estimators have �nite variance when weare only concerned with estimating 1st and 2nd moments and probability con-tents. To be conservative we use a 6-dimensional Student(10) distribution.With N = 1000 we carry out 10 iterations of adaptive importance sampling,20



where we begin adapting to the variance matrix after the third iteration. Weobtain the estimatesÊ[ajd] = (�:031;�:015;�:162;�:483; 1:065; :083)0and V̂ [ajd] = 0BBBBBBBB@ :993:025 :599:070 :026 :844:049 :017 :016 :652�:002 �:083 �:072 �:073 :703:376 :106 :251 :154 �:036 1:330 1CCCCCCCCABased on a much larger simulation we conclude that these estimates are ac-curate to within �:02. Under normality, E[aijd] = 0, V ar[aijd] = 1 andCov[ai; ajjd] = 0 whenever 1 � i; j � 5. Clearly the non-normal analysis ismaking a big di�erence. These computations require only 2 seconds of CPUtime on an IRIS 40/220 computer.At the end of the 10 iterations of adaptive importance sampling, a �nalimportance sampler w� is obtained. Additional simulations are then carriedout, from which the quantiles of the conditional distribution of a given d are es-timated. Transforming back, we obtain the following 95% con�dence intervalsfor the �i based on a further sample of 10,000.�1 : (0:38; 1:58) where �̂1 = 0:95�2 : (0:91; 2:05) where �̂2 = 1:50�3 : (2:61; 3:72) where �̂3 = 3:10�4 : (3:22; 4:18) where �̂4 = 3:55�5 : (4:34; 5:35) where �̂5 = 5:17Note that the con�dence intervals may be skewed. In particular, the intervalfor �4 is highly asymmetric. APPENDIXProof of Lemma 1 : Let � > 0 and z1; z2; : : : be a sequence such that1n Pni=1 IA(zi)! P (A) whenever A is an interval and �z ! 0; s=pn� 1! 1 asn ! 1. This holds, with probability 1, for a sequence of i.i.d. values fromP by the Glivenko-Cantelli Theorem and the Strong Law of Large Numbers.21



Let A = (a; b) be an interval in <. By the continuity of the distribution P ,there exists a1 < a < a2 < b1 < b < b2 such that B = (a1; a2)[ (b1; b2) satis�esP (B) � �=4. Now jIA(pn� 1di)� IA(zi)j = jIA(pn� 1(zi� z)=s)� IA(zi)j =jIA4(z+(s=pn�1)A)(zi)j where 4 denotes symmetric set di�erence. Since z !0 and s=pn� 1 ! 1 we can �nd N1 such that n > N1 implies A4(z +(s=pn� 1)A) � B. We can also �nd N2 and N3 such that n > N2 impliesj 1n Pni=1 IA(zi)�P (A)j < �=2 and n > N3 implies j 1n Pni=1 IB(zi)�P (B)j < �=4.Putting the above pieces together, we have that n > maxfN1; N2; N3g impliesj1n nXi=1 IA(pn� 1di)� P (A)j� j1n nXi=1 IA(pn� 1di)� 1n nXi=1 IA(zi)j+ j1n nXi=1 IA(zi)� P (A)j� 1n nXi=1 IB(zi) + �=2 � j1n nXi=1 IB(zi)� P (B)j+ P (B) + �=2� �=4 + �=4 + �=2 = �and this establishes the result for �nite intervals. A straightforward modi�ca-tion gives the result whenever jaj or jbj is in�nite.Proof of Lemma 2 : We have that g(x) is a density if and only if 1 =R1�1 g(x)dx = ai and qi(x) � 0. Given that ai = 1, qi(x) = ciD�1i x2 + (bi �ciD�1i �3i)x+1�ciD�1i , for qi(x) � 0, the coe�cient of x2 must be nonnegative.That is, ciD�1i � 0. In addition for qi(x) � 0, the discriminant correspondingto the equation qi(x) = 0 must be nonpositive. That is, (bi � ciD�1i �3i)2 �4ciD�1i (1� ciD�1i ) � 0. Together these last two inequalities imply 0 � ci � Diand the result follows. ACKNOWLEDGEMENTSBoth authors were supported in part by grants from the Natural Sciencesand Engineering Research Council of Canada. The authors thank two refereesfor a number of constructive and useful comments.BIBLIOGRAPHYAndrews, D.F. and Herzberg, A.M. (1985). Data. Springer-Verlag.22
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