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Abstract

This paper considers the quality of pitches in Major League Baseball (MLB). Based on

approximately 2.2 million pitches taken from the 2013, 2014 and 2015 MLB seasons, the

quality of a particular pitch is evaluated as the expected number of bases conceded. Quality

is expressed as a function of various covariates including pitch count, pitch location, pitch

type and pitch speed. The estimation of pitch quality is obtained through the use of random

forest methodology to accommodate the inherent complexity of the relationship between

pitch quality and the associated covariates. With the fitted model, various applications are

considered which provide new insights on pitching and batting.
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1 INTRODUCTION

The purpose of this investigation is the assessment of the quality of pitches thrown in Major

League Baseball (MLB). An initial reaction may be that this is a straightforward problem. For

example, if a pitch results in a home run, then it was a bad pitch. Alternatively, if a pitch leads

directly to an out, then it was a good pitch.

However, sometimes home runs occur on good pitches and sometimes outs occur on bad

pitches. We therefore want to assess the quality of a pitch without referring to its direct outcome.

If we are able to assess the quality of pitches, then a host of practical questions may be

addressed. For example, can we detect when a pitcher’s performance begins to deteriorate prior

to bad results? Can we determine pitch count rules for removing pitchers from a game? There

seems to a general rule of thumb of a limit of 100 pitches; is this sensible? Should pitch count

rules be pitcher dependent? Does warming up between innings contribute to tiredness and pitch

count limits? In a typical game, a manager monitors a pitcher’s performance. When the pitcher’s

control deteriorates or when the speed of his fastball diminishes according to the assessment of

the manager, these are signs that the pitcher is tiring and might be pulled. Hopefully, the

decision is made before a rash of runs occurs.

Most of the research related to the assessment of pitch quality has not been published in

peer reviewed journals. Rather, some work has been carried out confidentially by analytics

companies or by MLB teams who hope to gain a competitive edge. Other work has been

disseminated through websites and blogs. For example, Wilson (2015) used experts to assess the

quality of pitches QOP on a scale of -10 to 10. A fitted linear regression equation was obtained to

estimate QOP for future pitches based on observed covariates. Wilson (2015) used QOP to assess

pitchers and compared the approach with conventional pitching measures. Rosales and Spratt

(2015) developed a methodology known as Strike Zone Plus/Minus which measures a catcher’s

ability to “frame” a pitch as a strike that would otherwise been called a ball. Roegele (2013a,

2013b) divided the strike zone into 9 regions and averaged the outcomes of strike zone pitches

stratified according to handedness and pitch type. Using these averages as benchmarks for pitch

quality, various pitchers were compared together with their fastball velocities. The methods

proposed by Moore (2009) also attempt to measure pitch quality. Although the details are not

fully explained, Moore (2009) looked specifically at fastballs thrown by right-handed pitchers to

right-handed batters and used regression methods to investigate the quality of various types of

fastballs thrown by various pitchers. On a scale of 0-100, a variable referred to as the “Nasty

Factor” has been introduced (www.mlb.com/mlb/gameday/y2010) that attempts to assess the
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difficulty of hitting a pitch of a given type. Although the nasty variable depends on pitch velocity,

pitch sequence, pitch location and movement, the exact details of its calculation do not appear

to be publicly available.

This paper makes use of PITCHf/x technology which provides detailed information on pitches

thrown in MLB. Although research based on PITCHf/x has been mainly confined to blogs and

online sites such as “The Hardball Times” (www.hardballtimes.com), there is little doubt that

the analysis of PITCHf/x data will soon become standard fare in academic sports journals

(Albert, 2002 and Baumer and Zimbalist, 2014).

In Section 2, we describe the data as obtained through PITCHf/x technology. The PITCHf/x

database is large but is manageable due to various software initiatives. In Section 3, we propose

a simple statistical model which relates the quality of a pitch to various covariates. Pitch quality

(the dependent variable) is defined as the number of bases conceded from a given pitch. The

pitch is characterized according to one of 12 states corresponding to the count and a vector

referred to as the pitch descriptor. An expression is provided for the expected number of bases

conceded by a pitch. In Section 4, random forest methodology is utilized to predict the expected

number of bases by a future pitch. An advantage of random forests over some of the regression

type procedures previously mentioned is that it allows us to entertain many possible covariates

without specifying a specific functional relationship between the response and the covariates. As

will be seen, there are many potential covariates that are made available through PITCHf/x.

For posthoc analyses, the methodology can be used to assign an expected number of bases to

pitches that already form part of the database. In Section 5, various applications are considered.

We investigate how a typical pitcher’s performance changes over the course of a game. We also

produce some heatmaps that investigate the importance of pitch location. Finally, we use pitch

quality as a metric for evaluating pitchers. We conclude with a short discussion in Section 6.

For those not particularly interested in the game of baseball, our work can be viewed as a

case study with various lessons. For example, in this study and with the advent of recording

technologies in sport generally, sporting datasets are often extensive and complex, and have

unique features that are worthy of the attention of statisticians. In terms of statistical practice,

this paper demonstrates how more advanced statistical tools (i.e. random forests) can be utilized

in sports analytics, an area which relies heavily on simple descriptive statistics. Finally, a major

challenge in any statistical application is to convey results clearly to practitioners. We believe

that this study is successful in this regard by introducing an accessible response variable (total

bases) and displaying it via simple plots, heat maps and ranked lists.

3



2 DATA

The data that we use in this investigation arise from PITCHf/x technology. The PITCHf/x

service is a product of Sportvision and is comprised of three cameras installed in every MLB

stadium that are able to track every pitch. Through these cameras, PITCHf/x is able to gather

a massive amount of information. The information is organized into five tables: pitch, at-

bat, runner, action and po (pickoffs). Within each of these tables are variables that provide

information on the pitch, batsman, runners, and more. Some variables overlap between tables,

where the pitch and at-bat tables are by far the largest. The at-bat and pitch tables contain

all of the variables relevant to our investigation. All of the data is available on the Gameday

website (http://www.mlb.com/mlb/gameday/) through XML files. At the Gameday website,

information on MLB games are conveniently displayed including popular information such as

boxscores. In addition, the Gameday server stores XML files that are accessed by entering

specific urls. Since we need huge amounts of data for our investigation, we chose to download

the data and create a database to store our PITCHf/x data. Fast (2009) provides more detailed

information on PITCHf/x technology.

To download this data, we utilized the R package pitchRx (Sievert 2014, 2015) which facili-

tates the use of PITCHf/x data within the statistical software package R. Within pitchRx there

is a function scrape which pulls data (within a timeframe of your choosing) from Gameday onto

your computer. We utilized the scrape function to pull all PITCHf/x data from the 2013, 2014

and 2015 MLB seasons, and then stored the data in an SQL database. To access the stored

data, it was also necessary to install RSQLite (Wickham, James and Falcon 2014) and dplyr

(Wickham and Francois 2015). Once this data was downloaded and stored in a database, we

merged the at-bat table with the pitch table by matching the “url” and “num” variables so that

all of the data were stored in one large matrix. We then ordered each pitch by the variables “url”,

“num”, and “id” so that the pitches were in chronological order. The last step was to create

a new variable “Pitchcount” so that we could keep track of the number of pitches thrown by a

pitcher within a single game. The pitch count is distinct from the count a batter faces within an

at-bat. We retain the terminology to be consistent with common nomenclature. The resulting

data is a matrix comprised of 2,170,035 observations (pitches) and 74 corresponding variables

which describe aspects of the pitch such as count, strike zone, pitch speed, batter name, pitcher

name, game url, inning, spin, pitch type, whether the batter is right or left handed, outcome of

the at-bat (e.g. out, single), outcome of the pitch (e.g. ball, in play, run), etc.
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3 APPROACH

It is clear that the quality of a pitch depends on various underlying conditions. For example,

when the count is three balls and two strikes (i.e. a 3-2 count), throwing a ball on the next pitch

has a greater negative consequence to the pitcher than throwing a ball on a 0-0 count. In the

former situation, if the batter does not swing, then a walk is awarded to the batter. In assessing

the quality of a pitch, we therefore introduce the count variable C which has the following 12

possible states preceding the pitch

C : 0-0 1-0 2-0 3-0
0-1 1-1 2-1 3-1
0-2 1-2 2-2 3-2 .

The quality of a pitch also depends on the variable

D : pitch descriptor

where D may include measurements related to the pitch location, pitch speed, pitch type, hand-

edness of pitcher, handedness of batter, etc. One may also hypothesize that the batter himself

should be a component of the pitch descriptor. However, we take the view that a good pitch is

a good pitch regardless of the batter. This belief is supported by Cross and Sylvan (2014, 2015)

who argue that sweet/hot zones (areas where batters bat well) look similar across batters. This

somewhat counterintuitive result is also supported by Fast (2011) who argues that it is difficult

to identify hot and cold zones for individual batters. The introduction of hitter-specific covari-

ates is problematic due to small sample sizes but may be something that could be considered in

future work.

We now define TCD as the number of bases yielded corresponding to a pitch with count C

and pitch descriptor D. Therefore

TCD =



0 out
1 nonintentional walk or single
2 double
3 triple
4 home run
a(C) ball but not walk
b(C) strike but not out

(1)
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where we ignore all other possibilities such as sacrifice flies, errors, intentional walks, etc. When

the count of an at-bat is C, the number of effective bases corresponding to throwing a ball

a(C) and the number of effective bases corresponding to throwing a strike b(C) are discussed

and estimated in the next section. The quantities a(C) and b(C) are contextual; the merits of

throwing a ball or a strike depend on the count C. Also, although there is no immediate batting

outcome corresponding to a ball or a strike, a batting outcomes eventually occurs, and this is

the basis for evaluating a(C) and b(C).

As we have previously argued, pitch quality should not be measured directly on the results

defined in (1). Rather, pitch quality is an expected value that is dependent on both the count

C and the pitch descriptor D. Therefore, the expected number of bases yielded is given by

E(TCD) = 1 ∗ Prob(TCD = 1)

+ 2 ∗ Prob(TCD = 2)

+ 3 ∗ Prob(TCD = 3)

+ 4 ∗ Prob(TCD = 4)

+ a(C) ∗ Prob(TCD = a(C))

+ b(C) ∗ Prob(TCD = b(C)) (2)

when the count is C corresponding to a pitch with descriptor D. We have E(TCD) ≥ 0 and we

note that larger values of E(TCD) denote pitches of lesser quality. We emphasize that there is

a discrete probability distribution corresponding to the random variable TCD that depends on

both the pitch count C and the pitch descriptor D. In the next section, our goal is to estimate

E(TCD) in (2).

Before proceeding, it is worth considering the response variable TCD in (1). Rather than using

total bases, there is considerable interest in the sabermetrics community to consider runs. Runs

scored are obviously important in baseball as scoring runs leads directly to winning. For example,

the commonly cited WAR statistic (wins above replacement) is based on run calculations for both

position players and for pitchers. An issue with measuring runs directly is that the measurement

requires more context and a longer dependence structure. For example, a pitch leading to a triple

yields 0 runs when no runners are on base but yields x runs when x runners are on base. An

alternative approach to measuring runs directly involves the modification of the values 0, 1, 2, 3,

4, a(C) and b(C) in (1) with weights that better reflect the contribution of the batting outcome

in terms of runs. We note that the wOBA (weighted on-base average) batting statistic contains

weights assigned to batting outcomes where the weights correspond to run production. The
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statistic wOBA was developed by Tango, Lichtman and Dolphin (2007).

4 ESTIMATION OF EXPECTED BASES

Following (2), the estimation of the expected number of bases E(TCD) first requires the deter-

mination of a(C) and b(C).

4.1 Estimation of a(C) and b(C)

Recall that a(C) is the effective number of bases yielded by throwing a ball when the count is

C. We do not consider the counts 3-0, 3-1 and 3-2 since throwing a ball in any of these three

states leads to a nonintentional walk which corresponds to TCD = 1.

For illustration, consider the estimation of a(0-0). We use the entire history of MLB pitches

thrown in the 2013-2015 seasons. We then restrict our attention to the N at-bats where the

count went from 0-0 to 1-0. In these at-bats, we obtain the total number of bases B that are

eventually yielded (i.e. from subsequent pitches in the at-bat). The estimate of a(0-0) is B/N .

In Table 1, we provide the estimates of a(C). Note that there are physical constraints on

the estimates such that entries above or to the left of a given estimate in the table should be

larger than the estimate itself. For example, it is logical that a(1-0) > a(1-1) since the resultant

count 2-0 is more in the batter’s favor than the resultant count 2-1. Similarly, a(2-1) > a(1-1).

We observe that all of the estimates in Table 1 satisfy the logical constraints. This is due to the

enormity of the dataset.

a(2-0) = 0.79 a(1-0) = 0.61 a(0-0) = 0.51
(22669) (74564) (222363)

a(2-1) = 0.69 a(1-1) = 0.51 a(0-1) = 0.42
(32469) (76907) (116315)

a(2-2) = 0.55 a(1-2) = 0.39 a(0-2) = 0.32
(50985) (77336) (63841)

Table 1: Estimates of a(C) where the entries in parentheses are the numbers of at-bats used in
the calculation.

The estimates of b(C) are calculated in a similar fashion to the estimates of a(C). We note

that the counts 3-2, 2-2, 1-2 and 0-2 remain the same when a fouled strike occurs. We disregard

these states since they are redundant with other states. For example, the effect of throwing a

strike on a 3-1 count is the same as the effect of a fouled strike on a 3-2 count. Therefore the
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estimate of b(3-1) is used as the estimate of b(3-2). Table 2 provides the estimates of b(C) where

again we have the same constraint structure where entries above or to the left of a given estimate

in the table should be larger than the estimate. We observe that all of the estimates in Table 2

satisfy the logical constraints.

b(3-0) = 0.68 b(2-0) = 0.51 b(1-0) = 0.42 b(0-0) = 0.37
(14303) (37640) (108469) (281951)

b(3-1) = 0.54 b(2-1) = 0.38 b(1-1) = 0.31 b(0-1) = 0.28
(22018) (52948) (98522) (114678)

Table 2: Estimates of b(C) where the entries in parentheses are the numbers of at-bats used in
the calculation.

There is one further set of constraints involving the estimates of a(C) and b(C). Logically,

the effect of throwing a ball on a 0-1 count should be the same as the effect of throwing a strike

on a 1-0 count since in both cases, the count advances to 1-1. Considering all of the states,

we should have six equalities a(0-1) = b(1-0), a(1-1) = b(2-0), a(2-1) = b(3-0), a(0-2) = b(1-1),

a(1-2) = b(2-1) and a(2-2) = b(3-1). Although these equalities do not hold exactly between

Table 1 and Table 2, the pairs of estimates are all within 0.01 tolerance. For our final set of

estimates of a(C) and b(C), we use weighted averages to combine the relevant pairs. Therefore,

instead of the 9 + 8 = 17 estimates that are presented in Table 1 and Table 2, we have only

17− 6 = 11 estimates in total.

4.2 Estimation of E(TCD) using Random Forests

Having estimated a(C) and b(C), perhaps the first inclination is to estimate E(TCD) using

standard regression methodology. In regression, the observed values TCD are regressed against

the covariates C and D. In this application, the form of the parametric relationship between

the response TCD and the covariates is unknown. For example, when considering the horizontal

pitch location variable, it is intuitive that E(TCD) is maximized for pitches in the middle of the

plate. However, it is unclear how the relationship changes as pitches extend from the central

region and beyond the strike zone. Pitch count is another variable which is likely nonlinear.

Another challenge with regression methodology is the huge number of potential covariates and

possible interaction terms. For example, suppose that we have the pitch descriptor D coarsely

discretized on the following subset of covariates:

• 13 regions for pitch location (the strike zone divided into 9 rectangles and four regions

corresponding to pitches that are outside, inside, high and low)
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• six intervals for pitch speed

• 8 types of pitches

• four types of handedness (both batter and pitcher) .

Together with the 12 states corresponding to the count C, this leads to 13(6)(8)(4)(12) ≈ 30, 000

parameters. With roughly 2.2 million pitches during the 2013-2015 MLB seasons, this leaves

on average only 2200000/30000 ≈ 73 data values per parameter. Such sparsity often leads to

unreliable parameter estimation. On the other hand, one of the attractive features of standard

regression models is interpretability. With a fitted regression model, one can readily ascertain

the change in E(TCD) by modifying a covariate value.

Due to some of the above difficulties with standard regression procedures, we have taken

a regression tree approach where “important” covariates are determined by the splits in the

tree. The approach is attractive when we do not know in advance which variables (e.g. pitch

location, pitch speed, pitch type, handedness) are predictive. With regression trees, there is

also no need to arbitrarily discretize variables that are naturally continuous (e.g. the x and y

coordinates corresponding to pitch location). Regression tree methodology consists of recursively

partitioning the covariate space by finding the value of a single covariate that will optimally

reduce the training MSE when the split is applied and the sample means are calculated for each

partition. The terminal nodes, also called the leaves of a resultant tree provide estimates of

E(TCD) whereby future pitches with the same characteristics (i.e. splits) as a particular leaf are

predicted to have the corresponding value. Regression tree methodology is discussed in the texts

by Hastie, Tibshirani and Friedman (2009) and James et al. (2014). The partitioning procedure

allows for complex response surfaces, including those with discontinuities, to be estimated.

Single regression trees are known to be very sensitive to small differences in covariate im-

portance, especially when making splits early in the tree. Therefore, we do not base our predic-

tions on a single tree but instead use random forest methodology where many trees are utilized

and predictions consist of averages over the individual trees. The details of the random forest

methodology can be found in the Hastie, Tibshirani, and Friedman (2009) and James et al.

(2014) references as well. Random forests are known to provide improved predictions compared

to single trees. In our implementation, we use the randomForest function from the randomForest

package in R (Liaw and Wiener 2002). The random forest procedure has various parameters

for tuning the method to optimize predictive performance. For the application discussed later

in this paper, we trained the random forest on a simple random sample of n = 100, 000 pitches

from the data set. We then used the remaining observations as a validation set for choosing the

9



tuning parameters. The optimal predictive performance was found using 5,000 trees, each with

a maximum of 250 nodes. At each node, the best split was found by searching over a random

size 4 subset of the total covariates. This random subsetting causes the individual trees in the

random forest to be less correlated and allows the model to identify subtle effects of covariates

that might otherwise be missed by individual regression trees.

One of the challenges of random forests is that their complexity does not lead to straight-

forward interpretation. In particular, it is difficult to view the entire random forest. In this

investigation, it is instructive to know which covariates are the most important in determining

pitch quality. We measure the importance of covariates using a variance decomposition approach

from Saltelli et al. (2008) that is standard in the sensitivity analysis literature. The intuition

is that the predicted pitch quality from the random forest will vary more for inputs that are

important. The total variability of predicted pitch quality can be broken down based on the

changes due to individual inputs (main effects), changes in pairs of inputs (two-way interaction

effects), and so on. We can also obtain total effects, which indicate the importance of a variable

through it’s main effect and all interactions involving that variable. The variability for each

effect is divided by the total variability to give a percentage attributed to that input. The total

effect percentage can exceed 100% because the variability due to interactions is shared between

inputs. In Table 3, we provide a list of the covariates in the random forest ordered from the most

important to the least important based on their main effects. We see that the count variable C

is the most important. This corresponds to baseball tradition where pitchers are careful when

they are ahead of hitters and need to throw strikes when they are behind in the count. Also,

corresponding to our intuition, the location variable for the pitch (both horizontal and vertical)

plays an important role. Although the covariates speed, Pitchcount and pitch type show weaker

effects, they are instrumental in the overall predictive capability of the random forest. The

two-way interactions between count and both horizontal and vertical locations each contributed

about 9.2% to the prediction variance, indicating that the relationship between location and

pitch quality depends strongly on the count. No other two-way interactions were as important.

5 APPLICATIONS

In this section, we investigate various applications that arise from an assessment of expected

bases E(TCD). We remind ourselves that for any pitch that has occurred in the dataset, its

characteristics (C,D) yield a value E(TCD) from the random forest.
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Covariate Main Effect Total Effect
count C 69.5% 93.5%
horizontal location 2.8% 15.1%
vertical location 1.3% 13.5%
speed 0.5% 5.4%
Pitchcount 0.5% 2.4%
pitch type 0.5% 2.0%

Table 3: Relative importance of the six covariates in determining pitch quality listed from the
most important to the least important.

5.1 Change in Pitching Performance Throughout a Game

Over the years, there has been a stunning decrease in the number of complete games in MLB (i.e.

games where a starting pitcher is not relieved). For example, the percentage of complete games

in the 1984, 1994, 2004 and 2014 MLB seasons has decreased according to 15.0%, 8.0%, 3.1%

and 2.4%, respectively. Part of this phenomenom can be attributed to the fear and prevention

of injury to pitchers, and the subsequent adherence to pitch count maxima. Another reason is

that there has been a growing specialization with respect to relief pitchers where the notion is

that a relief pitcher can provide better performance than an overworked or overexposed starting

pitcher.

To investigate pitching performance over a game, we considered the 12,760 occasions during

the 2013-2015 MLB seasons where starting pitchers threw at least 80 pitches in a game. From

these pitching performances, a subset of 6,033 starting pitchers continued in their games and

threw at least 100 pitches. In Figure 1, we provide a plot of E(TCD) for each pitch number

in a game averaged over all pitching occasions. For example, the average number of expected

bases eventually yielded in the at-bat from the first pitch of a game is 0.412. From Figure 1, we

observe an interesting trough where the best pitching tends to occur roughly between the 20th

and the 70th pitches. Pitching performance tends to deteriorate beyond the 70th pitch, and

even more quickly beyond the 100th pitch. However, what is also interesting is that pitchers do

not seem to start games quite as sharply as one might expect. It may be the case that pitchers

need to ”find their groove” early in games before settling into a natural rhythm. Warming up

in the bullpen prior to a game is not the same as pitching in an actual game. We also note that

it is typically good batters (i.e. at the top of the batting order) that face the first 20 pitches.

Perhaps these batters cause pitchers to be overly cautious and they do not pitch as well in these

circumstances.
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Figure 1: Expected bases versus pitch number based on all pitching occasions during the 2013-
2015 seasons where pitchers threw at least 80 pitches in a game.

5.2 Heatmaps based on Pitch Location

In Section 1, we mentioned that the variable “nasty” has been proposed to assess the quality of

pitches and that nasty is included as part of the PITCHf/x dataset. In Figure 2, we provide a

heatmap of the nasty variable with respect to pitch location where only right-handed batters were

considered. The data forms 32.6% of the observations from the 2013 MLB dataset. The heatmap

(quiltplot) and the subsequent figures were produced using the fields package in R (Nycha,

Furrer and Sain 2015). What is most prominent in Figure 2 is the symmetry corresponding to

nasty. Clearly, the developers of nasty imposed constraints on the calculation of nasty and did

not allow the data to fully inform pitch quality. For example, there is a strong delineation of the

strike zone. Nasty makes it impossible for a pitch that is only slightly outside the strike zone to

be considered a good pitch. Pitches that are inside but near the four corners of the strike zone

are deemed the most difficult for batters to hit.

By contrast, in Figure 3, we provide a plot of expected bases E(TCD) for right-handed batters.

Average values are obtained for each pixel using pitches from the 2013-2015 seasons. The colors

in Figure 3 do not directly correspond to those in Figure 2 because of the different scales in which

E(TCD) and nasty are calibrated. Here, the data tell us something different. The most difficult

pitches to hit are those that are low and away. Also, outside pitches are generally more difficult

to hit than inside pitches. We note that similar features were observed when restricting the

data to left-handed batters. As expected, pitches within the strike zone (the inner rectangle) are

generally better than pitches outside the strike zone. High pitches (especially high and inside)

12



Figure 2: Heatmap of the nasty variable for right-handed batters as viewed behind the batter.
The axes are labelled in feet.

are not very good from the pitcher’s point of view; typically batters lay off these pitches and

they are called balls.

In Figure 4, we stratify the data further by considering right-handed batters who faced left-

handed pitchers. What is most interesting here is that pitches that are high and inside (but in

the strike zone) are also difficult to hit. This may have something to do with the ball motion

of a left-handed pitcher but a physical explanation is not obvious to us. In any case, this seems

to be something that is not widely known. We remark that symmetric results where obtained

when considering the matchup between left-handed batters who faced right-handed pitchers. We

experimented further by stratifying the data on the type of pitch but did not find any noteworthy

results.

5.3 Evaluation of Pitchers

The evaluation of pitchers is not straightforward. Perhaps the most commonly reported pitching

statistic is the win-loss record. The win-loss record for a pitcher is simply the tabulation of the

number of games that are credited to a pitcher as wins throughout the season versus the number

of games that are credited as losses. However, it is well-known that the win-loss record is highly

dependent on the performance of a pitcher’s teammates. If a pitcher’s team does not score many

runs while he is pitching, it is unlikely that he will be credited with a win even if he is pitching

well.
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Figure 3: Heatmap of E(TCD) for right-handed batters as viewed behind the batter.

Another commonly reported pitching statistic is the earned run average (ERA). The ERA is

the number of earned runs that a pitcher allows over a season relative to 9 innings. Although ERA

is a better pitching performance metric than the win-loss record, ERA is subject to considerable

variability (Basco and Davies, 2010).

In an attempt to further evaluate pitching, the statistic “fielding independent pitching” (FIP)

has been proposed which is a composition of variables that are directly controllable by the pitcher

(i.e. home runs, walks, strikeouts and the number of times that batters are hit by pitches). FIP

has gained some traction in the analytics literature and is believed to be a better measure of

pitching ability (http://www.fangraphs.com/library/pitching/fip).

In this exercise, we compare E(TCD) against some of the above pitching metrics for starting

pitchers. We only considered the 248 starting pitchers who pitched at least 1000 pitches over

the 2013-2015 MLB seasons. We then averaged E(TCD) for each pitcher over all his pitches.

For ERA and FIP, these values were also calculated over the entire 2013-2015 seasons and were

obtained from www.fangraphs.com. The correlation between E(TCD) and ERA for these pitchers

is 0.33. The correlation between E(TCD) and FIP for these pitchers is 0.48. The correlations are

statistically significant and provide some evidence that E(TCD) is a viable measure of pitching

quality.
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Figure 4: Heatmap of E(TCD) for right-handed batters who faced left-handed pitchers as viewed
behind the batter.

From the pitchers considered above, we list the top 15 pitchers according to their average

of expected bases allowed E(TCD) in Table 4. We then make a comparison with their ERA

calculated over the three seasons 2013-2015. Many of the expected names appear near the top of

the list. What is most interesting are the discrepancies between E(TCD) and ERA. For example,

we note that Phil Hughes, Vidal Nuño, Kevin Slowey and Brandon McCarthy are perhaps better

pitchers than indicated by their ERAs. It is worth emphasizing the interpretation of the E(TCD)

values in Table 4. In the case of Phil Hughes, he gives up on average 0.392 bases during an

at-bat based on a typical Phil Hughes pitch.

Whereas we do not claim that E(TCD) is the preferred and definitive measure for the evalu-

ation of pitchers, we believe that it offers insights that may not be present in the other pitching

statistics. E(TCD) solely judges pitch quality whereas other measures are based on run scoring

which is subject to greater variability.
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Pitcher E(TCD) ERA (rank)
1. Phil Hughes 0.392 4.27 (143)
2. Jordan Zimmermann 0.395 3.19 (29)
3. Vidal Nuño 0.396 4.12 (134)
4. Max Scherzer 0.396 2.94 (14)
5. Michael Pineda 0.397 3.57 (62)
6. Kevin Slowey 0.397 4.45 (158)
7. Clayton Kershaw 0.399 1.92 (1)
8. Hisashi Iwakuma 0.399 3.17 (26)
9. Brandon McCarthy 0.400 4.35 (148)

10. Cliff Lee 0.400 3.08 (20)
11. Carlos Carrasco 0.400 3.63 (68)
12. David Price 0.400 3.01 (16)
13. Chris Sale 0.400 2.92 (12)
14. Madison Bumgarner 0.401 2.90 (11)
15. Michael Wacha 0.402 3.21 (35)

Table 4: Top 15 average values of E(TCD) for starting pitchers during the 2013-2015 seasons
compared to ERA. The ERA rank (in parentheses) gives further context for the pitchers success
relative to others in the league.

6 DISCUSSION

Although baseball analytics (also known has sabermetrics) has been active for a long time,

PITCHf/x technology has now brought big data to the forefront. In this paper, we have used

machine learning techniques on a massive dataset to learn about the quality of pitches. One

of the attractive features of the approach is that the outcome variable total bases yielded is a

true measure of what is important with respect to pitching. Also, we have made no assumptions

regarding the functional relationship between total bases and the myriad of potential covariates.

This paper only begins to explore what may be possible when the quality of pitches is

quantified. We have seen that pitch count is relevant to pitch quality. What may not be so well

known is that the optimal period of pitch quality for starters lies roughly between the 20th pitch

and the 70th pitch. We have also investigated heatmaps that suggest that low outside pitches

within the strike zone are generally the best pitches from a pitcher’s point of view. Also, we

have taken a cursory look at the evaluation of pitchers.

In future work, it may be possible to look at the importance of pitch sequencing and potential

game theory issues that come to bear on pitch selection. It may also be possible to develop pitch

count rules (when to relieve a pitcher) that are pitcher dependent. There seems to be no shortage

of interesting questions that may be addressed once the quality of pitches has been quantified.
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