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Abstract

With the availability of tracking data, the determination of pitch control (field own-

ership) is an increasingly important topic in sports analytics. This paper reviews

various approaches for the determination of pitch control and introduces a new field

ownership metric that takes into account associated sporting dynamics. The meth-

ods that are proposed utilize the movement of the ball and players. Specifically,

physical characteristics such as current velocity, acceleration and maximum veloc-

ity are considered. The determination of pitch control is based on the time that

it takes the ball and the players to reach a given location. The main result of our

investigation concerns the validation of the resultant pitch control diagram. Based

on a sample of 5887 passes, the team identified as having pitch control was the ob-

served recipient of the pass with 91% accuracy. The approach is generally applicable

to invasion sports and is illustrated in the context of soccer. Various parameters

are introduced that allow a user to modify the methods to alternative sports and

to introduce player-specific maximum velocities and player-specific accelerations.

Keywords : spatio-temporal modelling, tracking data.

1



1 INTRODUCTION

Pitch control (field ownership) has become an increasingly discussed topic in sports ana-

lytics ([9]). At a given point in time during a match, each location on the field may be

“dominated” by a particular player. Maps that depict this domination are referred to as

pitch control diagrams and the construction of these maps is the subject of this paper.

The determination of pitch control is an important component in the investigation of

tactics. For example, related to pitch control is the quantification of scoring opportunities

from off-the-ball positions in soccer ([24]). In turn, this provides an analysis of optimal

player movement, player tendencies, the evaluation of player movement and attacking

capability ([15]). [16] shows that pitch control models can be useful in applications such

as expected goals and the assessment of player market value. With pitch control as a basic

ingredient, [9] investigates a number of important questions of interest to the professional

soccer community including on-ball performance and off-ball performance. Even in sports

that are greatly different from soccer, pitch control is topic of increasing interest; see [19]

concerning an application in the National Football League (NFL).

The availability of tracking data is fundamental to the analysis of pitch control. Track-

ing data in soccer consists of the (x, y) coordinates of the ball and the 22 players on the

pitch recorded at regular and frequent time intervals. With tracking data, we know the

locations of all of the players at all times during a match, and this facilitates the deter-

mination of pitch control. A feature of our research is that the determination of pitch

control is easily automated whenever teams have access to tracking data. [13] provide a

review paper on spatio-temporal analyses used in invasion sports (including soccer) where

tracking data are available. [11] discuss a range of tactical problems in soccer based on

the use of tracking data. For example, the visualization of team formations is a problem

that has received particular attention ([29]). The analysis of tracking data has also been

prominent in the sport of basketball; see for example, [18]. For a review of statistical

contributions that have been made across major sports, see the text by [1].

In Section 2, we provide a literature review of prominent approaches that have been

utilized in the construction of pitch control diagrams. Commentary is provided that dis-
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cusses the relative strengths and weaknesses of the approaches. In Section 3, we introduce

a new pitch control metric which is illustrated in the context of soccer but is adaptable

to other invasion sports. A motivation of the approach is that it considers relevant soc-

cer dynamics. That is, we consider the location, speed and direction of both the ball

and the players in anticipation of their movement. We also consider realistic aspects of

motion such as maximum player velocity and acceleration. The approach is conceptually

straightforward compared to some of the approaches that have been introduced in the lit-

erature. This is an important as it allows users to vary parameters to suit their sporting

application. Our approach defines three categorical regions of control (Team A, Team B

and neither team). This has advantages over nonprobabilistic shaded regions that cannot

be assessed in terms of accuracy. In Section 4, we implement the proposed pitch control

metric in the context of an example. We evaluate the accuracy of the proposed pitch

control metric, an analysis that is novel in the pitch control literature. We conclude with

a short discussion in Section 5.

Since much of the code that has been developed in the pitch control literature is propri-

etary, we have provided an R function that determines pitch control (see Supplementary

file). The code is realistic in terms of physical motion and can be adapted to various

sports via intuitive parameters.

2 LITERATURE REVIEW

The simplest and a common approach for gaining appreciation of field ownership is based

on methods that compute the centroid of player activity. Using tracking data, the (x, y)

coordinates for a player are averaged during a period (e.g. perhaps the entire match),

and this provides the centroid (x̄, ȳ). The centroid gives an impression of where a player

spends most time on the field. Of course, it says nothing about field ownership at a

specific point in time and hence the centroid approach is mostly limited to analyzing

average team formations. Websites such as whoscored.com provide positional maps for

top-flight matches that illustrate the basic centroid approach. The centroid idea has been

extended in many directions with various applications; see for example, [17].
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The starting point for investigations of pitch control at instantaneous points in time

is Voronoi tessellations ([27]). In the two-dimensional setting with n distinct points, the

Voronoi diagram uniquely partitions the plane into n polygons such that each polygon

contains exactly one point where every location within the polygon is closer to that point

than to any other point. Figure 1 provides a Voronoi diagram on the unit square based

on n = 5 randomly generated points; Voronoi diagrams are easily produced using the

function deldir in R. From Figure 1, we observe that larger polygons correspond to points

that are located further away from other points. In a sporting context, each of the points

represents a player and the corresponding polygon represents the region of pitch control or

dominance by the player. That is, if the ball were placed anywhere in a player’s polygon,

then it would be expected that the player would gain possession/control of the ball by

virtue of the player being closer to the ball than any other player.

Pitch control as determined by Voronoi diagrams has been utilized by various inves-

tigators in soccer including [14]. However, there are some important limitations of the

Voronoi diagrams as they do not consider relevant features of the corresponding sporting

application. For example, a player could be moving in a particular direction. This is

relevant because it is easier for the player to control regions in the direction of travel and

it is more difficult to control regions that are opposite to the direction of travel. Clearly,

player velocities impact pitch control and this is not addressed with Voronoi diagrams.

[6] provides a critique of Voronoi diagrams in soccer and discusses properties that pitch

control methods should possess.
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Figure 1: Voronoi diagram based on n = 5 points generated on the unit square.
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In Figure 2, we provide a Voronoi diagram that is based on the instantaneous player

positions in an actual soccer match. The coloring no longer refers to individual players,

but rather the two teams. Consequently, we observe that the field is partitioned into two

sets.
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Figure 2: Voronoi diagram applied to a given snapshot of a soccer game based on the

location of the 22 players on the pitch. The shaded orange and purple areas correspond

the dominant regions for the home and away teams, respectively.

Prior to the advent of commercial tracking data, [25] developed a motion analysis

system whereby cameras and software were utilized to extract features from a soccer

match. In particular, they introduced the “dominant region” concept which addresses

pitch control. Unlike Voronoi diagrams, the dominant regions of [25] are not polygons,

but areas delineated by smooth curves. A dominant region for a player is defined as the

set of points where the player can arrive earlier than all other players. A player’s time

of arrival at a given point takes into account the player’s current location, current speed

and potential acceleration. The acceleration model is not fully disclosed in [25] but it

is based on patterns from an average player and permits reduced accelerations in the
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direction of movement. It also appears that the calculation of arrival time does not utilize

a cap on player velocities which seems to be a practical limitation of the approach. [10]

address the limitation of maximum velocity in their modified approach to pitch control.

A notable difference between the dominant region approach and the metric proposed in

Section 3 is that [25] does not take the dynamics of the ball into account. For example,

there could be a location which player A can reach in time tA and player B can reach

in time tB where tA < tB. However, it would be incorrect to assert that player A has

dominance at this location if it takes time t > tB for the ball to reach the location. In this

case, neither player has unique control over the location. [12] extend these ideas where

individual player characteristics are estimated from data. [26] provide more detail on the

dominant region approach and use the framework to evaluate teamwork in soccer.

[2] provide a probabilistic approach to the construction of pitch control diagrams based

on machine learning methods. They refer to this area of research as movement models.

The movement model for a given player is described by the conditional density function

Pt∆(p | pt, vt) (1)

where p is the location attained during time horizon t∆. The density (1) is conditional

on the player’s position pt and velocity vt at the current time t. As locations refer to

positions on the field, p, pt and vt are two-dimensional variables. [2] suggest various

algorithms for the estimation of the conditional density (1) and its corresponding discrete

approximations. The algorithms are computationally intensive and use historical data

to inform player movement. In contrast to the approach developed in Section 3, the

conditional density (1) does not consider various aspects of the state of the game (e.g.

ball position, ball movement, and current player acceleration). It is also important to

note that not all historical movement data is pertinent to a given situation. For example,

players move slowly in situations where they are not active, and these movements are not

relevant to situations where they need to be active.

Having estimated the conditional density (1) for every player, [2] then define the “zone

of control” for a given player as the locations on the field where the player’s density (1)
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is greater than the density for any other player. The intuitive idea is that the zone is

attained with higher probability than other players.

[7] also use statistical methods to determine pitch control where their movement mod-

els are based on parametric distributions. For the ith player, they define an influence

degree Ii(p, t) for location p at a future time t. The influence degree is a density ratio

corresponding to a bivariate normal distribution that takes into account various soccer

dynamics such as current player velocity. Field ownership by a team is then assessed

through a kernel-based non-parametric point process which considers the cumulative in-

fluence degrees of all players on the field. An important feature of their approach is that

the method elicits degrees of field ownership rather than a binary outcome. It is also

important to note that the degree of field ownership is not a probability, and that the

Gaussian distributions do not permit skewness. It would be interesting to calibrate the

degrees of field ownership with empirical probabilities of field ownership. [16] provide

additional critique on the approaches developed by [2] and [7].

William Spearman has developed pitch control models for the Liverpool Football Club

where ideas are sketched out in a conference presentation ([23]) and also in the YouTube

video https://www.youtube.com/watch?v=X9PrwPyolyU. The approach is also proba-

bilistic and is based on the estimated time ti that it takes the ith player to reach a given

location. Players are labelled li = 1(0) according to whether they play on the home(road)

team. The probability that the home team ends up with possession at the given location

is given by

Prob(Home) =

(∑
i lit

−β
i∑

i t
−β
i

+ 1

)
/2 (2)

where β > 0 is a specified tuning parameter. An important insight that is mentioned in

the video (but is not fully disclosed) is that the motion of the ball is taken into account.

Although there is some intuition surrounding (2), it is not clear that there is a physical

process which suggests the proposed probability formulation. Also, it is not clear how

the estimation of the times ti impact the probabilities given by (2). The core idea in

[22] is based on how long it takes a player to reach and control the ball. Our approach
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emphasizes how long it takes a player to reach a certain location. In a Friends of Tracking

video ([21]), Laurie Shaw provides details on implementing a pitch control model based

on some of the ideas developed by [23].

A nice feature of the probabilistic models is that they conveniently lead to expected

possession value (EPV) calculations that assess the decision of passing the ball to a given

location. At its most basic level, the calculation is essentially

EPV = (Pitch Control Prob) * (Pass Impact) (3)

where pass impact is the probability of scoring a goal from the given location. Pass

impact is determined by historical data and soccer considerations such as the location on

the field, the relative position of defenders, etc. Of course, the simple formula given by

(3) does not take into account the difficulty of executing the pass successfully. A more

sophisticated way to build an EPV framework is discussed in [4] and [8].

All of the approaches reviewed in this section have a common element. The common-

ality is that there is an estimated minimal time for each player to reach a location. This

is even true in the case of Voronoi diagrams where the minimal time is proportional to

distance under the assumption that all players travel at a constant speed. Ownership

of the location is then determined by assessing these minimal times by providing more

weight to player ownership for players that can reach the location faster. In the following

section, we take a philosophically different approach where it is asserted that if two players

can reach a location by the time of ball arrival, neither player has a claim or advantage

involving field ownership. This results in a metric that is relatively simple and provides

regions of team dominance that do not form a partition of the field. Rather, there are

regions of dominance and contested areas. This type of mapping may prove advantageous

in some applications.

It is difficult to assert which of the approaches to pitch control are dominant in soccer.

We know that many “big” teams are interested in pitch control and have their in-house

programs. However, teams wish to maintain a competitive edge and are generally reluc-

tant to communicate their technical work.
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3 METHODS: A PITCH CONTROL METRIC

We stress that a distinguishing feature of the proposed approach is that there exist regions

that are not dominated by either team. With some methods, all regions on the pitch are

dominated by either one team or the other team. Alternatively, other methods provide

color-coded regions that express degrees of dominance. An advantage of the proposed

approach is that we can assess the accuracy of the metric using historical data, as is

carried out in Section 4.2. Such an analysis is less straightforward with color-coded

regions where the colors do not correspond to probabilities.

Another distinguishing feature is that our approach takes intent into account. When

we consider the movement of a player to a particular location, the modelling assumes that

the player moves to that location as quickly as possible to gain pitch control. We con-

trast this with the probabilistic approaches reviewed in Section 2. With the probabilistic

approaches, a given trajectory is assessed probabilistically with respect to the population

of potential trajectories.

The objective of this research is the development of a pitch control metric that is

intuitive, realistic and adaptable. Accordingly, we let tb denote the time that it takes

the ball to reach a location of interest on the pitch. Similarly, we define th and tr as the

minimum times that it takes a player from the home team and the road team, respectively,

to reach the location of interest. According to this setup, pitch control at the location of

interest is determined according to the simple heuristics of Table 1.

3.1 Criteria for Pitch Control

In the first two lines of Table 1, we have the ball reaching the location of interest after the

arrival of both players. Since both players are waiting for the ball, neither team can lay

claim to pitch control. In the third line of Table 1, the player on the home team awaits

the ball, and the ball arrives before the road team player can reach the location. In this

case, the home team has pitch control, and by symmetry, the road team has pitch control

according to the conditions in the fourth line of Table 1. In the fifth line of Table 1, the

ball arrives first. In many instances, the ball can be passed slower than stipulated which
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modifies the inequality to th < tb < tr, and provides the home team with pitch control.

By symmetry, the road team has control according to the sixth line of Table 1.

Note that we may introduce a tuning parameter ε > 0 in Table 1 which corresponds

to a time interval. For example, we might introduce a more stringent condition involving

pitch control for the home team in the fifth line by modifying tb < th < tr to the condition

tb < th + ε < tr. This states that the player on the home team must have a little bit

of time to gain possession (relative to the arrival of the road player) in order for pitch

control to be established. For example, we might set ε = 0.5 seconds for professional soccer

players. The consequence of such modifications is to partition the field with larger regions

corresponding to “neither team”. The introduction of free spaces that are controlled by

neither team has also been investigated by [3].

Time Inequality Pitch Control
th < tr < tb neither team
tr < th < tb neither team
th < tb < tr home team
tr < tb < th road team
tb < th < tr home team
tb < tr < th road team

Table 1: The determination of pitch control at a given location given time inequalities
involving tb, th and tr.

In what follows, we use the Cartesian coordinate system where locations, velocities

and accelerations are described by ordered pairs. Distances and times are measured in

metres and seconds, respectively.
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3.2 Timing of the Ball

According to the previous discussion, we wish to estimate the time tb that it takes the

ball to reach the location of interest. We define

(x0, y0) − current ball location

(x1, y1) − location of interest

s − speed that the ball is passed

[21] provide speeds of 15 metres/sec for balls that are passed between teammates.

Maximum speed of kicked soccer balls has been estimated as high as 30 metres/sec

(https://soccerballworld.com/soccer-ball-physics/). For this application, we have set the

speed of the ball at s = 18 metres/sec based on an investigation of all completed passes

during the 2019 season of the Chinese Super League (CSL).

This leads to the quantity of interest

tb =
√

(x1 − x0)2 + (y1 − y0)2/s (4)

which is based on historical data using the approximation that a kicked ball travels at a

constant speed.

3.3 Timing of Players

The time that it takes a player to reach the location of interest is a more complex cal-

culation than the time tb in (4) for the ball to reach the location of interest. Although

there are n = 22 players on the soccer pitch, we use simplified notation where we suppress

player subscripts. We consider a single player where we use t to denote the time that

it takes the player to travel from their current location to the location of interest with
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intent. We further define

(x0, y0) − current player location

(x1, y1) − location of interest

(xt, yt) − location of player at time t

(vx0 , vy0) − current velocity of player

(vxt , vyt) − velocity of player at time t

(ax, ay) − acceleration of player

a − non-directional acceleration of player

smax − maximum speed of player

Before proceeding with the calculation of the time t that it takes the player to reach

the location of interest, we discuss some of the assumptions related to our motion model.

We label these assumptions and the associated discussions (A) - (C).

Assumption A regarding (vx0 ,vy0): We obtain the current velocity (vx0 , vy0) directly

from the tracking data. The current player velocity may be approximated from the

tracking data by considering the change in location by the player during a small time

increment surrounding the current time; e.g. vx0 = ∆x0/∆t where ∆x0 is the distance

travelled in the x-coordinate direction in a window of time length ∆t surrounding the

current time. For this application, we have set ∆t = 0.4 seconds. Some exploratory

procedures for accurately estimating speed in tracking data are discussed by [28].

Assumption B regarding smax: We impose a limit on maximum player speed. This is

realistic and is player-dependent. The values for smax can be estimated from the tracking

data. For context, the Canadian international Alphonso Davies who plays for Bayern

Munich has the top speed of 36.0 km/hour recorded in the 2020/2021 season of the

German Bundesliga (see https://www.bundesliga.com/en/bundesliga/stats/players/top-

speed). For contrast, the 356th player on the list is Jiri Pavlenka of Werder Bremen

with a top speed of 31.0 km/hour. For illustration in the remainder of the paper, we
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set the common value smax = 9.2 metres/sec which corresponds to 33.1 km/hour. For

comparison, we note that [7] uses s = 13.0 metres/sec and [2] use smax = 8.0 metres/sec

for maximum speed. With the two-dimensional representation of velocity, we therefore

introduce the constraint v2
xt + v2

yt ≤ s2
max for all times t.

Assumption C regarding (ax, ay):

Acceleration is the component of our motion model which allows players to change

direction and velocity. Like player velocities, player accelerations are player-dependent,

and can be informed from the tracking data. However, for illustration, we set the common

value a = 5.0 metres/sec2 for all players. For comparison, we note that [21] uses a = 7.0

metres/sec2 and [2] use a = 4.2 metres/sec2. The differences in the literature involving

maximum speeds and accelerations is notable and is one reason for differences in vari-

ous pitch control diagrams. With the two-dimensional representation of acceleration, we

therefore introduce the constraint a2
x + a2

y = a2 during periods of acceleration.

Our most limiting assumption concerning acceleration is that players accelerate with

constant non-directional acceleration a until they reach maximum velocity. Once players

reach their peak speed smax, their acceleration drops to zero. This movement assumption

is related to intent, where a player attempts to reach the location of interest as soon

as possible. There is support for the constancy of acceleration (at least for short time

periods) as displayed in nearly linear velocity curves for sprinters ([5]).

We now return to the calculation of the time t that it takes the player to travel from

the current location (x0, y0) to the location of interest (x1, y1). The first step is the

determination of the time t∗ that it takes the player to reach the prescribed maximum

speed smax, where t∗ is a function of the acceleration (ax, ay) profile. Therefore, consider

an acceleration vector (ax, ay) which lies on the circle a2
x+a2

y = a2. Given the acceleration,

maximum player speed is achieved at time t∗ when

(vx0 + axt∗)
2 + (vy0 + ayt∗)

2 = s2
max . (5)
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The quadratic equation (5) is solved via

t∗ = t∗(ax, ay) =
−(vx0ax + vy0ay)±

√
(vx0ax + vy0ay)

2 − (a2
x + a2

y)(v
2
x0

+ v2
y0
− s2

max)

a2
x + a2

y

(6)

where negative solutions in time are non-sensical. It can be proven that there is a unique

solution t∗ > 0.

Based on the stated motion assumptions, the location of the player at time t is therefore

given by

xt =

{
x0 +

∫ t
0
(vx0 + axt) dt t < t∗

x0 +
∫ t∗

0
(vx0 + axt) dt+

∫ t
t∗

(vx0 + axt∗) dt t > t∗

=

{
x0 + vx0t+ (1/2)axt

2 t < t∗

x0 + vx0t∗ + (1/2)axt
2
∗ + (t− t∗)(vx0 + axt∗) t > t∗

(7)

and similarly,

yt =

{
y0 + vy0t+ (1/2)ayt

2 t < t∗

y0 + vy0t∗ + (1/2)ayt
2
∗ + (t− t∗)(vy0 + ayt∗) t > t∗

. (8)

Equations (7) and (8) present an algorithm for computing t by setting the location

of interest (x1, y1) = (xt, yt). The algorithm proceeds by stepping through acceleration

vectors (ax, ay) according to the constraint a2
x+a2

y = a2. For a given (ax, ay), we determine

t∗ = t∗(ax, ay) according to equation (6). Having solved for t∗, this simplifies equations

(7) and (8). For equation (7), we have the solution t(x), and for equation (8), we have

the solution t(y). If t(x) = t(y), this means that for the acceleration vector (ax, ay), the

player arrives at the coordinates x1 and y1 at the same time, and we have a solution

t = t(x) = t(y). If there are multiple solutions for different values of (ax, ay), then we select

the minimum time according to the assumption that players go to the location of interest

with intent.

To operationalize the algorithm, suppose that for a given (ax, ay), we determine the
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unique solution t∗ according to equation (6). Then, if t < t∗ and ax 6= 0, we solve a

quadratic equation and obtain

t(x) =
−vx0 ±

√
v2
x0
− 2ax(x0 − x1)

ax
. (9)

If t < t∗ and ax = 0, then

t(x) = (x1 − x0)/vx0 . (10)

However, if t > t∗, we solve a linear equation and obtain

t(x) =
x1 − x0 + (1/2)axt

2
∗

vx0 + axt∗
. (11)

Analogous equations to (9), (10) and (11) are available for t(y). Non-sensical solutions

t(x) and t(y) imply that it is not possible for the player to reach the location of interest

(x1, y1) under the given acceleration vector (ax, ay).

4 RESULTS

In the development of our pitch control metric in Section 3, we emphasized that control

of the pitch needs to be unambiguous. That is, a player on the team on possession must

be able to reach a location before a player on the opposing team, and the ball must be

delivered in a timely fashion. Consequently, our regions of dominance are typically smaller

than alternative pitch control diagrams.

Using the tracking data, we computed the current velocity vector (vx0 , vy0) for the same

example as displayed in Figure 2. The arrows indicating velocity are depicted in Figure

3. We observe that some of the velocities are large and some are small; this together with

the relative positioning of players determines the resultant pitch control diagram.
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Figure 3: Current velocity vectors for the example depicted in Figure 2.

In Section 3.3, we presented a motion model that derived the time t that it takes a

player to reach the location (x1, y1) on the pitch given the initial location (x0, y0) and

given initial velocity (vx0 , vy0). In Figure 4, the time is presented for both a stationary

player (left plot) and a player with a northwest velocity (right plot). In the left plot, we

observe colors that radiate in circles such that the player can reach any location of constant

distance in the same amount of time. This corresponds to the Voronoi tessellations. We

observe non-circular color contours in the right plot where the player can reach positions

in the northwest quicker than in other directions of similar distance. The right plot

introduces the reality of players having initial velocities that impact the time that it takes

to reach various locations.
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Figure 4: The left plot uses colors to depict the time that it takes a stationary player to

reach field locations given the current location marked with a dot. The right plot does

likewise but introduces an initial velocity (arrow) for the player.

To determine pitch control regions, we discretize the soccer field (105x68) metres into

1-by-1 metre grids and compute the time taken to reach the centre of each grid for each

player. We have set the tuning parameter ε = 0.5 seconds as described in Section 3.1

which requires that players arrive at least 1/2 second earlier than opponents to achieve

pitch control. The time variables tb, th and tr are computed according to the methods

described in Sections 3.2 and Sections 3.3, and Table 1 is used to determine the pitch

control regions. Figure 5 provides the resultant pitch control map. When comparing

the proposed approach illustrated in Figure 5 with other approaches, we emphasize that

Figure 5 contains grey ambiguous areas where neither team has pitch control. This is

sensible as there are locations where players on both teams can arrive before the ball,

and therefore neither team can lay claim to the location. There are also grey locations

which a player on one team cannot reach ε = 0.5 seconds in advance of the opponent. For

example, there are locations in the top-left regions of the field where player #22 (home)

and player #21 (road) would arrive at roughly the same time.

Comparing Figure 5 with Figure 2 (Voronoi), we see that initial velocities play an

important role in the determination of the pitch control diagram. For example, in Figure
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5, there is a location of interest immediately southeast of player #8 (road), yet it is

controlled by the home team. This is not the case in Figure 2. Here, player #9 (home)

can reach this location quicker than player #8 (road) even though player #9 is further

away. The reason is that player #9 is moving towards the location whereas player #8 is

moving away and needs to reverse direction.
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Figure 5: Pitch control diagram using the proposed methods for the example depicted in

Figure 2.

4.1 Computation

It takes approximately 0.2 seconds on a laptop computer to evaluate a pitch control

decision for a given location on the field. Whereas this seems reasonable, pitch control

applications become computationally intensive as there are typically many locations of

interest and many temporal-spatial snapshots of interest involving the initial locations

and velocities of the 22 players. Fortunately, parallel processing may be implemented for

the repeated tasks.

As an example of a realistic application, suppose that a team was interested in a
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striker’s decision making based on all of his touches in a given match. For example,

for each touch, an analyst may wish to investigate the location of the player’s passes

relative to pitch control dominance. For top-level soccer, [20] observe that strikers have

in the vicinity of 30-60 touches. Therefore, with 50 touches, and 10 parallel machines,

the evaluation of pitch control at 2500 1-by-1 metre grid locations (attacking third of the

pitch) would require approximately 50(2500)(0.2 sec)/10→ 42 minutes of computation.

For a given target location on the field, we perform a grid search over 2000 combina-

tions of ax and ay subject to the constraint a2
x + a2

y = a2 to find the pair (ax, ay) that

gives the shortest time t to reach the target location. For a pitch control diagram, the

computational time is heavily affected by the number of grids specified for the soccer field.

By halving the size of grids, we could reduce the computation time by a factor of four.

More sophisticated optimization algorithms for the evaluation of t could be considered in

future work. Such algorithms may avoid the consideration of unpromising acceleration

pairs (ax, ay). It may also be possible to introduce computing efficiencies by eliminating

some players in the determination of minimum time t to reach a location. Players who

are distant from the location of interest cannot reach the location in minimum time.

4.2 Accuracy of the Metric

Whereas the literature has introduced various approaches to pitch control, the literature is

sparse on validation. Validation is particularly difficult when color-codings are not prob-

abilistic. In our approach, we are able to investigate validation as the field is segmented

in three regions according to ownership by the two teams and neither team.

We sampled 10 games from the 2019 season of the CSL and obtained data on 7901

intended passes. We first classified the passes as either successful or intercepted. We

then calculated our pitch control metric for each of these passes and further classified the

destination location as either controlled by the intended team, the opponent or neither

team. The results of the two-way classification are given in Table 2.

An initial observation from Table 2 is that there are naturally more successful passes

(6826) than intercepted passes (1075). This corresponds to a successful pass rate of 86%.

If we omit the “neither team” designation, there are 5887 passes of which 5275 + 55 =
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5330 are controlled by the predicted team according to the pitch control model. This

is suggestive of a 91% accuracy rate in pitch control designation. However, it can be

demonstrated that this is a conservative estimate. For example, there may be some passes

that arrive at a player’s feet and should be controlled. However, by some technical error

on the part of the player, the opponent gains control. When we look at the passes whose

pitch control designation is “neither team”, we observe that this corresponds to 25% of the

passes (i.e. 1470+544 = 2014 passes out of 7901). These cases are truly more doubtful, as

only 27% of them are received as intended (i.e. 1470 passes out of 2014). We emphasize

that our model provides two tuning parameters that allow us to increase/decrease the

number of passes that are classified as “neither team”. By increasing the speed s of

the ball (Section 3.2), the ball will rarely lag the players to the location of interest, and

consequently, this will reduce the size of ambiguous regions according to Table 1. Also,

by increasing the time ε that a player needs to arrive before the opponent (Section 3.2),

this will increase the size of ambiguous regions.

Successful Pass Intercepted Pass
PC by Intended Team 5275 476
PC by Opposition Team 81 55
PC by Neither Team 1470 544

Table 2: The classification of 7901 intended passes according to whether pitch control
(PC) was designated to the intended team, the opponent or neither team.

5 DISCUSSION

From the original work on pitch control established via Voronoi tessellations, there has

been various attempts to define field ownership. In this manuscript, we have provided

a motion model and heuristics (Table 1) that are straightforward but adhere (at least

approximately) to the physics of running. A difference between our approach and most

of the methods proposed in the literature is that we define regions corresponding to the

home team, the road team and neither team. This allows us to validate the accuracy
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of pitch control diagrams (Section 4.2) whereas this is not possible with approaches that

provide non-probabilistic color-codings. We have reported a 91% accuracy rate of the

proposed pitch control region which is a conservative estimate. In addition, unlike some

of the proprietary methods for pitch control, we have provided code (see Supplementary

file) for determining pitch control regions. The code is realistic in terms of physical motion

and can be adapted to various sports via intuitive parameters.

Our pitch control model offers opportunities to enhance/modify the approach. For

example, it is possible to introduce player-specific maximum velocities and player-specific

accelerations. For example, it is well-known that a fast player in a wide open space

poses an attacking threat, and this may be better illustrated through the introduction of

player-specific parameters. Such parameter settings may be obtained through historical

data.

It is also possible to vary the tuning parameter ε which dictates the amount of time

needed by players to gain control of the ball. This affords flexibility in the approach

where, for example, youth soccer players require more time to achieve ball control than

professional soccer players. The parameter ε may also be formally explored in sensitivity

studies to see how the regions of ambiguous pitch control decrease with increasing ε. For

example, one may vary ε to achieve the greatest accuracy rate according to the pitch

control study of Section 4.2.

We have argued that the categorization of pitch control into three regions (Team A,

Team B, neither team) is realistic. However, if we wish to reduce the categorization

to the more common control regions (Team A, Team B), this is easily implemented by

adjusting the tuning parameters. Specifically, one sets ε = 0.0 seconds such that players

require no time to control the ball and smax = ∞ metres/sec such that the ball arrives

instantaneously at the location of interest.

A limitation of our work is the setting of the ball speed at s = 18 metres per second.

Clearly, a player in possession has some control over the speed of a pass. Also, long passes

tend to be made at faster speeds than short passes. Therefore, s = 18 metres/sec ought

to be viewed as an approximation to reality. In future work, it may be possible to improve

on this by estimating the speed of the pass based on the distance of the pass. We note
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that faster ball speeds decrease the size of the ambiguous regions where neither team has

pitch control.
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