
A Characterization of the Degree of Weak and

Strong Links in Doubles Sports

Paramjit S. Gill and Tim B. Swartz ∗

Abstract

This paper proposes a model that characterizes the degree to which a doubles sport

(i.e. two team members) is a weak or a strong link game. The model is applied to the

sport of pickleball where interest is focused on the doubles version of the sport. As a

byproduct of the analysis, individual player rankings are obtained.
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1 Introduction

In team sports, there is some interest in knowing the degree to which a sport is a weak or

a strong link game. For example, it is well accepted that basketball is a strong link game.

In the NBA, it is difficult for teams to be successful without “superstars” (strong links). To

win an NBA championship without a superstar, one would need to go back to the 2003/2004

season where the Detroit Pistons were arguably a team without a superstar.

The topic of weak and strong link sports has received minimal attention in the literature.

Anderson and Sally (2013) have devoted two entertaining chapters (chapters 8 and 9) to the

topic where it is argued that soccer is a weak link game. The idea is that a weak soccer

player (especially a defender) can be exploited and goals can be scored against the player’s

team. Since goal scoring is rare in soccer (less than three goals per game on average in

top European leagues), the mistakes caused by a weak link player are often detrimental

to the team. By replacing the weakest player with a better player, it is possible for team

performance to improve considerably. Anderson and Sally (2013) provide graphical displays

of team performance versus player quality.

Novet (2017) provided a weak/strong link analysis to the sport of hockey based on data

from the National Hockey League (NHL). Novet (2017) concluded that hockey, like basketball

is a strong link game. Similar to Anderson and Sally (2013), Novet (2017) provided two

regressions; total team points versus the strength of the team’s weak link player (worst

player) and total team points versus the strength of the team’s strong link player (best

player). Novet also regressed total team points against measures of talent distribution such

as the Gini coefficient.

From the point of view of team composition, it is important to know whether a particular

sport is a weak or a strong link game. For example, would it be better for a team to spend

its money to replace their three weakest players with average players or would the team

be better served by spending its money on a single superstar? In a non-sports setting,

Gladwell (2016) extends the weak/strong link concepts in Anderson and Sally (2013) to

educational philanthropy. Gladwell makes the case that financial contributions to small

(weak link) programs make a greater difference to society than contributions to large (strong

link) programs.

In this paper, we attempt to formalize the notion of weak and strong links in doubles
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sports. In particular, we develop a regression model where a single parameter provides the

degree to which the sport is a weak or a strong link sport. Our measure lies on the scale from

0 to 1 where 0 represents a completely weak link sport (total reliance on the lesser quality

teammate), 1 represents a completely strong link sport (total reliance on the higher quality

teammate), and 0.5 denotes that the overall quality of a team is the mean of the individual

qualities of the two teammates. The proposed model contains non-standard covariates and

synchronicity terms that are treated using regularized regression.

In Section 2, we propose a continuous measure of the weak/strong link characterization

with an emphasis on parameter interpretability in the case of two players per team (i.e.

doubles). In Section 3, we introduce a regression model that contains the weak/strong link

measure as a parameter. As a byproduct, the model contains parameters that provide player

rankings. The model is set in a Bayesian framework where special paired player relationships

are introduced and are handled via regularization. Computational issues associated with the

model are discussed. The model is well-suited for analysis using the WinBUGS software

package (Spiegelhalter et al. 2003). In section 4, we apply the methodology to doubles

pickleball, a racquet sport with growing participation rates. We conclude with a short

discussion in Section 5.

2 Weak and Strong Link Formulation

In sports applications, there is no shortage of papers that consider models of the form

E(d) = qi − qj (1)

where E(d) is the expected point differential between teams i and j, qi describes the strength

of team i and qj describes the strength of team j. There are often variations to the model (1)

such as the inclusion of a term for the home team advantage and sometimes a link function

is imposed on E(d) as is done in generalized linear models. Another variation involves

modelling the points scored by one team rather than the point differential. The q term may

also consist of components involving individual players. For example, models of the above

type have been considered in basketball (Fearnhead and Taylor 2011), hockey (Macdonald
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2011), soccer (Karlis and Ntzoufras 2000) and cricket (de Silva, Pond and Swartz 2001).

In (1), q represents team strength, and we would like to express q in terms of its com-

ponent players to explore the weak/strong link aspect of the sport. In doubles sports (i.e.

teams with two players), we denote θ1 and θ2 as the individual qualities of the two players.

Accordingly, min(θ1, θ2) is the strength of the lesser quality teammate and max(θ1, θ2) is the

strength of the higher quality teammate. With a weight function w ∈ (0, 1), the quality

(team strength) of the two-player team is given by

q = wmax(θ1, θ2) + (1− w) min(θ1, θ2) (2)

where the parameter w describes the weak/strong link relationship. When w = 0, we have

a completely weak link game; team strength q = min(θ1, θ2) is directly reliant on the lesser

quality teammate. When w = 1, we have a completely strong link game; team strength

q = max(θ1, θ2) is directly reliant on the higher quality teammate. When w = 0.5, the

overall strength of the team is q = (θ1 + θ2)/2, the mean of the individual qualities of the

two teammates. Therefore, w provides a simple interpretation as to the degree to which the

sport is a weak or strong link game.

Introducing some additional notation, let θ1 and θ2 be the individual qualities of the

teammates on team A, and let θ3 and θ4 be the individual qualities of the teammates on

team B. Further, let γij denote a special synchronicity term involving players i and j on the

same team such that their individual effects are not additive. For example, i and j may play

better or worse together than the “sum of their parts”. When γij is positive (negative), i

and j play particularly well (poorly) as teammates. Putting these ideas together, we propose

the following weak/strong link model for doubles sports

E(d) = w(max(θ1, θ2)−max(θ3, θ4)) + (1− w)(min(θ1, θ2)−min(θ3, θ4)) + γ12 − γ34 (3)

where d is the score differential by which team A defeats team B.
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Alternatively, we can express model (3) as

E(d) =


w(θ2 − θ4) + (1− w)(θ1 − θ3) + γ12 − γ34 θ1 < θ2, θ3 < θ4

w(θ2 − θ3) + (1− w)(θ1 − θ4) + γ12 − γ34 θ1 < θ2, θ3 ≥ θ4

w(θ1 − θ4) + (1− w)(θ2 − θ3) + γ12 − γ34 θ1 ≥ θ2, θ3 < θ4

w(θ1 − θ3) + (1− w)(θ2 − θ4) + γ12 − γ34 θ1 ≥ θ2, θ3 ≥ θ4

(4)

What makes model (3)/(4) unusual from a linear models perspective is that the right

hand terms do not follow the typical pattern βx where β is an unknown parameter and x is

a known covariate. Rather, in model (3)/(4), both w and the θi are unknown parameters.

Also, (4) has a piecewise representation which is nonstandard in traditional linear models.

To address these model features and a sparsity issue involving the γij terms, we set the

problem in a Bayesian framework in Section 3.

3 Modelling and Computation

Referring to model (3)/(4), we first require a distribution for the error term associated with

the score differential d. Tentatively, we assign a Normal(0, σ2) distribution to the error term

associated with the score differential d. With this error term, we may specify the hyperpa-

rameter σ taking into account the range of score differentials. Another possibility (and the

one which we adopt in Section 4) is the vague prior specification σ2 ∼ Inverse-Gamma(1, 1).

We also note that the model (3)/(4) does not contain an intercept term. This is appropriate

when there is no systematic advantage given to one of the two teams such as a home court

advantage or a serving advantage. Although we assume that player form does not change

over time, it is possible to weight the error term σ so that recent matches receive more

weight.

Apriori, we have no knowledge whether the sport in question is a weak or a strong link

sport. We therefore assign the prior specification w ∼ Uniform(0, 1).

Given m players, the strength parameters θ1, . . . , θm suffer from non-identifiability. For

example, it is immediate that the likelihood is invariant if θi is substituted with θi+k for any

constant k and for all players i = 1, . . . ,m. The non-identifiability is managed by assigning

independent priors θi ∼ Normal(0, σ2
θ). This parameterization has several advantages. First,
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the zero-mean specification provides a convenient interpretation as players are classified

according to θ < 0 (below average) and θ > 0 (above average). Second, provided σθ is

not too large, the prior specification keeps the estimation of θi rooted about zero, and does

not allow θi to grow large as may happen with the non-identifiability issue. We have used

σ2
θ ∼ Inverse-Gamma(1, 1). Alternatively, non-identifiabilities of this type are sometimes

handled by imposing a constraint such as
∑m

i=1 θi = 0 (Ntzoufras 2009). Thirdly, the common

mean for the θi’s provides a shrinkage advantage where players who have not competed in

many matches are not characterized as excessively weak nor strong.

The model may be further expanded to include a gender-specific variance component

alternative to σ2
θ involving male and female players in mixed doubles. This may be helpful

to rank male and female players separately and to compare the heterogeneity of abilities.

A byproduct of the estimation of the θi terms is a ranking of players in terms of their

ability. This differs from the traditional ranking method used in doubles pickleball which is

described in Section 4.

In model (3)/(4), the γij are the adjustment parameters (interaction terms) that describe

the special relationship between players i and j. It may not be the case that the team

strength involving players i and j is adequately described by (2). We expect these sorts

of special relationships to be rare, and given that there are m(m − 1)/2 parameters γij,

i < j, it would be advantageous if many of the γij = 0. Fortunately, regularized regression

is a popular technique that forces many of the γ terms equal to zero, and therefore reduces

the dimensionality of the parametrization. Only outstandingly large or small relationships

characterized by the γ’s are assigned non-zero values. Although regularization is prominent

in a classical context (Hastie, Tibshirani and Friedman 2001), regularization also has a

Bayesian analogue. One version of Bayesian regularization is L1 regularization which is

carried out using the Double-Exponential(λ) prior with probability density function π(γ) ∝
exp{−λ

∑
i 6=j|γij|} where λ > 0 is a tuning parameter. The larger the value of λ, the greater

the “penalty” and the fewer γij are assigned non-zero values. Regularization in a Bayesian

framework via Markov chain Monte Carlo (MCMC) permits straightforward inference as the

generated parameters may be used to infer relevant posterior distributions.

One complication concerning the γij parameters is that the estimation is nonsensical if

i and j have not played together. Moreover, if i and j have only played together a single

6



time then model (3)/(4) suggests that γij will be overfit. Accordingly, we let nij denote

the number of times that i and j have played together. We therefore modify the prior

distribution

γij ∼

{
Double-Exponential(λ) nij ≥ 2

I0 nij = 0, 1
(5)

where I0 denotes the distribution with point mass at zero.

Our Bayesian model is conveniently implemented in the WinBUGS programming envi-

ronment (Spiegelhalter et al. 2003). One of the advantageous of WinBUGS is that the user

does not have to write detailed MCMC code. Instead, the user only has to provide the model

specification and MCMC calculations are done in the background. Our WinBUGS program

consists of fewer than 40 lines of code and is available from the authors upon request. Lykou

and Ntzoufras (2011) provide a tutorial on WinBUGS programming and devote a section to

a particular implementation of regularization.

3.1 Model Selection

A popular method for model selection uses the predictive performance criterion proposed by

Laud and Ibrahim (1995). Given a finite number of candidate models, the criterion is based

on the predictive performance of a model in terms of its ability to predict a replicate of the

data.

Let Ypred denote a replicate of the observed data Yobs. That is, Ypred is generated from

a predictive distribution. The particular predictive distribution is the one whose covariates

match up to the covariates of Yobs. In this way, Ypred is a replicate of Yobs. The predictive

density of Ypred under model M is

f (M)(Ypred|Yobs) =

∫
f(Ypred|η(M)) π(η(M)|Yobs) dη

(M) (6)

where η(M) denotes all the parameters under model M , π(η(M)| Yobs) is the posterior density

and f(Ypred| η(M)) is the density of a predicted (or future) value. The model selection
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criterion called the expected predictive deviance (EPD), chooses the model M with the

smallest value of

E(M)[d(Ypred,Yobs)|Yobs] (7)

where d(Ypred, Yobs) is a discrepancy function and the expectation is with respect to the

predictive distribution given by (6). One discrepancy measure that we use is the absolute

prediction error: d(Ypred,Yobs) = ||Ypred− Yobs||. It is straightforward to estimate (7) as

part of MCMC sampling. In each loop of an MCMC run, Ypred is generated and d(Ypred,

Yobs) is calculated. The sample mean of the generated d(Ypred,Yobs) values is then used to

estimate the EPD (7).

In the examples that follow, we also compute the model selection diagnostic DIC known

as the Deviance Information Criterion (Carlin and Louis 2008). DIC is a counterpart to the

Akaike Information Criterion (AIC) and is an immediate byproduct of sampling from the

posterior. In WinBUGS, DIC is an option on the Inference menu. As with AIC, smaller

values of DIC suggest preferred models where differences greater than 3-5 are typically

regarded as meaningful.

4 Example: Doubles Pickleball

The sport of pickleball was invented in the summer of 1965 by Joel Pritchard, Bill Bell and

Barney McCallum of Bainbridge Island, Washington, USA (http://ifpickleball.org/history-

of-pickleball-and-the-ifp/). The sport has evolved from humble beginnings into a popular

sport played throughout the US and Canada. The game is growing internationally as well,

with Mexico and many European and Asian countries introducing pickleball clubs. It is a

sport that is related to tennis, badminton and ping-pong. Pickleball is played both indoors

and outdoors on a court which is the same size as a doubles badminton court (measuring 20

× 44 feet). The same court is used for both singles and doubles play. The net height is 36

inches at the sidelines and 34 inches in the middle. The court is divided into right and left

service areas with a 7-foot non-volley zone in front of the net (referred to as the “kitchen”).

Courts can be constructed specifically for pickleball or they can be converted using existing

tennis or badminton courts. Figure 1 shows the pickleball court layout.

In a pickleball game, the team first reaching the score of 11 points is declared the winner.
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Figure 1: Pickleball court layout (www.usapa.org).

A point is scored when the serving team wins the rally. The alternation between serving

and receiving teams is described at www.usapa.org. The scoring system has implications for

modeling the score differential d where we had previously assigned d ∼ Normal(0, σ2). To

partially account for the scoring system, we truncate the Normal(0, σ2) distribution described

in Section 3 to the interval (−11.1, 11.1). We note that the truncated normal still lacks some

realism since score differentials are discrete, and in a no-draw contest such as pickleball, the

outcome d = 0 is impossible.

The Pickleball Kelowna Club (in Kelowna, British Columbia) has more than 500 members

of varying skill levels. The club organizes various doubles leagues from May to October.
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Detailed match data are kept for two of the leagues called the “Monday Mixed Ladder” and

the “Tuesday Men’s League”.

For the two leagues, players register weekly through an online system called TrackitHub

(www.trackithub.com). Player groups are then formed by the software so as to have groups

of similar skill levels. Therefore, players are compared within homogeneous strata and not

across all of the club players.

In a typical pickleball doubles league, each player is awarded a percent performance

index. This index is the percent of maximum possible points earned by a player in all the

games played that he played during a session. For example, if a player participated in four

doubles matches and the game scores were 11-9, 4-11, 11-3 and 8-11 in favour of his teams,

then his total score for that day is (11 + 4 + 11 + 8) = 34 and his percent performance index

is (34/44)100% = 77.3%. The player’s performance index over all sessions is a measure of

the player’s ability. It is evident that a major failing of the performance index is that it

does not directly take into account the abilities of his partner and his opponents. Recall

that the parametrization (3) characterizes the strength of all four players in a doubles game.

Another issue with the performance index is that it has high variability when a player has

participated in a small number of matches. On the other hand, in the Bayesian model, the

estimates of θi shrink towards the mean value of zero for players with a small number of

games.

4.1 Tuesday Men’s League

In the Tuesday Men’s League, the players who sign up (∼60), are mostly divided into groups

of 8 players each. Within each group, there are (82) = 28 possible pairs of players where each

pair plays exactly one game within a session. The player rotation is arranged so that each

player plays twice against each of the other 7 players. Table 1 provides one such configuration

(a special resolvable balanced incomplete block design with 8 treatments and block size 4)

where the integers from 1 to 8 indicate players’ labels.

Since the total number of players signing up on a given day may not be a multiple of

8, some groups consist of five or six players. Typically, five-player groups play games to 15

points and each player plays four games in four of the five rounds. Rather than throwing

away data from five-player groups, we rescaled the scores out of 11 points. For example, if
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round 1 round 2 round 3 round 4 round 5 round 6 round 7
26 v 18 45 v 16 38 v 14 67 v 13 58 v 36 12 v 35 23 v 46
34 v 57 28 v 37 56 v 27 48 v 25 17 v 24 47 v 68 15 v 78

Table 1: An example of a session involving 8 players in doubles pickleball. In a session, there
are 7 rounds each consisting of two games.

a game score is 15-10, we recorded this as 11-7.3.

For the Tuesday Men’s League, we have data from 1278 matches recorded for the 2017

season, with m = 135 players. Table 2 shows posterior summaries for the parameters corre-

sponding to three Bayesian models. The three models that we considered involve decreasing

penalization (i.e. decreasing the tuning parameter λ) in the regularization of the synchronic-

ity terms γij. The resulting estimates were based on 5,000 simulations in WinBUGS with a

burn-in of 5,000 iterations. Under these inputs, standard convergence diagnostics appeared

satisfactory. The simulation procedure required approximately two minutes of computation

on an ordinary laptop computer. We observe that the posterior mean of the weak/strong

link parameter w ≈ 0.87 for all three models. This indicates that doubles pickleball is a

strong link game, an observation that coincides with our intuition. In doubles pickleball,

the stronger player may assert himself to execute more of the shots and take control of the

game. We also observe that the parameter estimates σ and σθ are similar under all three

models suggesting that regularization does not have a great effect in this dataset. However,

we do see that the effect of regularization (although small) behaves in the expected way. For

example, for smaller values of the tuning parameter λ, “unusual” data are better modeled

such that σ decreases (i.e. there is less error variability).

In Table 3, we provide diagnostics of fit for the three proposed models. We observe

that the simple unregularized model (i.e. no γij terms) does not fit quite as well as the

regularized models (cf. EPD and DIC). As expected, as λ increases (i.e. a greater penalty

on the synchronicity terms γij), a smaller number of “special” effects λij become active.

However, in comparing the three models, our preferred model is the simple Model 1 (without

regularization). A reason for this is based on the prior distribution (5) used in regulatization.

In the Tuesday Men’s League dataset, there are only 1502 instances amongst the m(m −
1)/2 = 9045 pairs of players where nij ≥ 2. It is difficult for us to believe that special

11



Model Parameter Post Mean Post Std Dev
Model 1 w 0.87 0.10

(unregularized; σ 5.08 0.09
i.e. λ→∞) σθ 0.88 0.17

Model 2 w 0.86 0.11
(regularized; σ 5.07 0.09
λ = 100.0) σθ 0.91 0.13
Model 3 w 0.87 0.10

(regularized; σ 4.98 0.09
λ = 2.0) σθ 0.90 0.16

Table 2: Posterior summaries of the model parameters for the Tuesday Men’s League.

synchronicity exists in such a high percentage (1359/1502)100% = 90.5% of the pairings.

We have defined the existence of special synchronicity for players i and j when |γij| > 0.05.

Moreover, an “optimized” value of the tuning parameter λ can be obtained by introducing

a prior distribution. We have done this (i.e. λ ∼ Inverse-Gamma(1,1)) where the resultant

posterior mean λ̂ = 1.7 is close to the tuning value λ = 2 utilized in Model 2. We prefer

the simplicity of Model 1 over the small gains in fit obtained by Model 2 and Model 3.

However, we believe that the consideration of regularization is a useful exercise, as we have

demonstrated that the computations are feasible, and it may be the case that regularization

proves useful in other pickleball leagues or other doubles sports.

Model EPD DIC No. of γij 6= 0
Model 1 5.9 8047.0 0
Model 2 5.9 8045.0 10
Model 3 5.7 8031.0 1359

Table 3: Model fit diagnostics for the Tuesday Men’s League.

We also compare the ranking procedures provided by our estimated θi terms and the

traditional performance index. In Figure 2, we provide a scatterplot of the player skill

parameters θi based on Model 1 versus the traditional pickleball peformance index, i =

1, . . . , 135. Although there is good agreement between the two measures (correlation =
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0.82), there are cases where disagreements exist. For example, there is a player (far right in

Figure 2) who is a little better than average (θi = 0.56) but is the best player in the league

according to the player performance index. In this case, the player only played 7 games,

winning five and losing two. We believe that such a player should not be rated extremely

high since there is little information. We view this as a feature of the methodology as ability

estimates have a shrinkage property when the data are sparse.
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Figure 2: Scatterplot of the player skill parameters θi based on Model 1 versus the traditional
pickleball peformance index.

4.2 Monday Mixed League

Both men and women players compete in the Monday Mixed League. Players sign up every

week and are divided into groups of five players. Each player plays four out of five games

where they sit out one of the games. That way, each player pairs up with every other player
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exactly once and plays exactly two games against every other player. Whenever the total

number of players is not an exact multiple of five, some of the sessions consist of four players

who each play three games and a game is played to 15 points. For such games, we rescale

the team scores out of 11.

For the Monday Mixed League, we have data from 846 matches recorded during the 2017

summer season with 166 active players (84 men and 82 women) who have each played at

least four matches.

We fit two Bayesian models to these data. Model 1a corresponds to the best fitting

Model 1 in the Tuesday Men’s League. This is the model without regularization. Model 1b

is an analogue of Model 1a where we have introduced gender-specific variance components

σ2
θM

and σ2
θF

as described in Section 3. In Table 4, we provide model summaries for Model

1a and Model 1b. Although the fit diagnostics are similar for both models, we prefer the

more complex Model 1b. We prefer Model 1b since there is some evidence of gender-specific

variance components. Specifically, the men appear to have skills that are more variable

than the women. Based on the first author’s personal experience, not only do some highly

skilled men from the Tuesday Men’s League compete in the Monday Mixed League, but

there are also beginner men who avoid the Tuesday Men’s League and only compete in the

Monday Mixed League. The parameters σ and w in Models 1a and 1b are consistent with

the estimates from Model 1 in the Tuesday Men’s League (Table 2). However, we observe

that weak/strong link parameter w = 0.80 in Model 1b is slightly smaller than w = 0.87

found in Model 1 in the Tuesday Men’s League (Table 2). We conjecture that the slight

decrease in w for the Monday Mixed League may be that men are playing in a more “polite”

fashion where strong players do not dominate the ball in the same way that they do in the

Tuesday Men’s League.

5 Discussion

We have provided a model which allows us to characterize the degree to which doubles

pickleball is a weak or a strong link game. From the analysis of data based on a large

number of games from two leagues, we learn that doubles pickleball is a strong link game.

Of course, with other leagues of different strengths, the style of play may differ and result
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Model Parameter Post Mean Post Std Dev EPD DIC
Model 1a w 0.72 0.13

σ 5.16 0.11 6.0 5408.0
σθ 1.47 0.18

Model 1b w 0.80 0.16
σ 5.18 0.12 6.0 5410.0
σθM 1.60 0.29
σθF 1.15 0.32

Table 4: Posterior summaries of the model parameters for the Monday Mixed League.

in different estimates of the weak/strong link parameter w.

As a byproduct of the analysis, player rankings are obtained which may be superior to

the traditional performance indices. A limitation of our approach exists when there is not

sufficient mixing of players during matches. Without mixing, a weak player A belonging to

a strong group may have a lower ranking than a strong player B belonging to a weak group

even though A may otherwise be a better player than B.

The applicability of the approach to other doubles sports appears limited to amateur

events where team composition is randomized by league organizers. For example, although

professional tennis has doubles competitions, partners do not tend to mix greatly. Pairs of

top-end tennis players tend to stay together for long periods of time. Without sufficient

mixing, it is difficult to separate the component skill levels θ1 and θ2 of the teammates.

In the case of teams consisting of more than two players, it is even more difficult to think

of tournament situations where team members are randomized over games. If there were

such a scenario, then it may be possible to generalize the model in this paper to account for

the strength of all players. Instead of team strength characterized by equation (2), it may

be possible to obtain some formulation that is a function of the order statistics θ(i).
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