
Computers & Operations Research 33 (2006) 1939–1950
www.elsevier.com/locate/cor

Optimal batting orders in one-day cricket�

Tim B. Swartza,∗, Paramjit S. Gillb, David Beaudoinc, Basil M. deSilvad

aDepartment of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
bDepartment of Mathematics and Statistics, Okanagan University College, Kelowna, BC, Canada, V1V 1V7

cDépartment de mathématiques et de statistique, Cité universitaire, Québec, QC, Canada, G1K 7P4
dDepartment of Mathematics and Statistics, RMIT University, GPO Box 2476V, Melbourne, Victoria, 3001, Australia

Available online 25 November 2004

Abstract

This paper concerns the search for optimal or nearly optimal batting orders in one-day cricket. A search is
conducted over the space of permutations of batting orders where simulated annealing is used to explore the space.
A non-standard aspect of the optimization is that the objective function (which is the mean number of runs per
innings) is unavailable and is approximated via simulation. The simulation component generates runs ball by ball
during an innings taking into account the state of the match and estimated characteristics of individual batsmen.
The methods developed in the paper are applied to the national team of India based on their performance in one-day
international cricket matches.
� 2004 Elsevier Ltd. All rights reserved.

Keywords: Log-linear models; Markov chain methods; Monte Carlo simulation; Simulated annealing; WinBUGS software

1. Introduction

In cricket, there is a long-standing tradition of general strategy that places the better batsmen near
the beginning of the batting order and the weaker batsmen near the end of the batting order ([1], p.
92–94). Within these general guidelines, subtle permutations of the batting order seem to be as much

� This work was initiated while Beaudoin was an M.Sc. candidate in the Department of Statistics and Actuarial Science at
Simon Fraser University. Swartz and Gill were partially supported by grants from the Natural Sciences and Engineering Research
Council of Canada. The authors thank two anonymous referees for valuable comments.∗ Corresponding author. Fax: 604 291 4368.

E-mail addresses: tim@stat.sfu.ca (T.B. Swartz), pgill@ouc.bc.ca (P.S. Gill), packersbills@hotmail.com (D. Beaudoin),
desilva@rmit.edu.au (B.M. deSilva).

0305-0548/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2004.09.031

http://www.elsevier.com/locate/cor
mailto:tim@stat.sfu.ca
mailto:pgill@ouc.bc.ca
mailto:packersbills@hotmail.com
mailto:desilva@rmit.edu.au

1940 T.B. Swartz et al. / Computers & Operations Research 33 (2006) 1939–1950

art as science, and depend on factors such as cohesive partnerships and team psychology [2]. Since not
all batsmen necessarily bat in a match, the general strategy is intuitively sensible as it provides greater
opportunities for the best batsmen to bat.

What is not clear is the optimal batting order or even what is meant by the ‘best batsmen’. There are
various criteria for ranking batsmen (for example, batting average and strike rate), and these criteria can
provide conflicting rankings [3]. In this paper, we explore optimal batting orders in the context of one-day
cricket. In particular, we use simulation techniques to identify promising batting orders for the national
team of India.

Although our literature searches have found no previous work on this topic, there exist papers on the
related topic of optimal scoring rates. See, for example, the papers by Clarke [4] and Preston and Thomas
[5] which utilize dynamic programming methods. A common theme in these papers is that teams would
be better served by scoring at higher rates early in the innings. Our focus is different, and does not concern
the way that cricketers should bat. Rather, given the way that they actually bat, we are interested in finding
optimal or nearly optimal batting orders. It is our hope that the techniques developed in this paper may
be of practical interest to teams that wish to explore alternative batting orders.

An initial thought may be that this is a straightforward problem. Simply look at a team’s scoring results
under different batting orders and select the batting order that produces the highest number of runs in
an innings. Clearly, this is infeasible since there are many possible batting orders and relatively few
matches. Note also that there is randomness in the number of runs scored in an innings which compounds
the problem of finding the optimal batting order. Our approach to finding optimal batting orders is based
on simulation where we are able to generate the number of runs scored in an innings under any proposed
batting order.The generation of runs in one-day cricket is facilitated by the fact that there are a finite number
of batting outcomes on any ball bowled and there are a finite number of balls. Surprisingly, simulation
techniques in one-day cricket have not been fully explored. In the pre-computer days, Elderton [6] and
Wood [7] fit the geometric distribution to individual runs scored based on results from test cricket. Kimber
and Hansford [8] argue against the geometric distribution and obtain probabilities for selected ranges of
individual scores in test cricket using product-limit estimators. More recently, Dyte [9] simulates batting
outcomes between a specified test batsman and bowler using career batting and bowling averages as the
key inputs without regard to the state of the match. We simulate runs against an average opponent by
first estimating batting characteristics of team members based on their detailed performance in previous
matches. The estimation procedure uses WinBUGS software [10] implemented for a Bayesian log-linear
model. Given the estimated characteristics, it is straightforward to generate batting outcomes at any state
of the match.

Once the simulation technique has been developed, we turn to the problem of finding an optimal or
nearly optimal batting order at the start of a team’s first innings. A non-standard aspect of the optimization
is that the objective function (which is the mean number of runs per innings) is unavailable and is
approximated via simulation. The optimization is computationally intensive for two reasons: (1) there
are many batting orders to consider and (2) the estimation of the objective function requires many
simulations. Simulated annealing [11] is used to explore the space of permutations of batting orders.
Simulated annealing is a general approach used in combinatorial optimization, and fine tuning of the
algorithm is required to address our particular problem.

In Section 2, we explain the essential features of one-day cricket with a particular emphasis on how runs
are scored. We also motivate the paper by providing a hypothetical example that contradicts prevailing
wisdom concerning optimal batting orders. In Section 3, we describe a simple simulation technique

T.B. Swartz et al. / Computers & Operations Research 33 (2006) 1939–1950 1941

that generates first innings runs on a ball by ball basis. An important feature of the approach is that
the state of the match is taken into consideration so that batting outcomes are not independent. The
simulation is based upon the estimated characteristics of batsmen which are obtained from a Bayesian
log-linear model. Inference from the log-linear model is readily facilitated using WinBUGS software and
is demonstrated on data obtained from one-day international (ODI) matches involving India. In Section 4,
simulated annealing is used to obtain optimal or nearly optimal batting orders. The optimization procedure
is applied to the national team of India and provides some surprising results. We conclude with a short
discussion in Section 5.

2. The basics of one-day cricket

At a very simple level, one-day cricket (often called limited overs cricket) differs from the more
traditional variety of cricket in that matches last for only a single day. One-day cricket was introduced in
the 1960s to reduce the frequency of drawn matches and to increase excitement through more aggressive
batting.

One-day cricket involves one team batting (their innings) followed by the opposing team batting (their
innings). Whoever scores the most runs wins. A team’s innings is terminated whenever the team has
completed 50 overs or has lost 10 wickets. An exception to this is that the second team stops batting
whenever their score exceeds the score of the first team. The two criteria of 50 overs and 10 wickets are
the complicating factors. Ignoring some details, an over consists of 6 balls bowled by a bowler. Therefore,
there is a maximum of 50× 6= 300 balls and the batsman can score runs on each ball bowled. On each
ball, the batsman can be dismissed (this is called a wicket), or he can score 0, 1, 2, 3, 4, 5 or 6 runs. When
a batsman is dismissed, a new batsman enters the match. There are 11 players on a team and two batsmen
alternate batting at any one time. The pair of batsmen is known as a partnership and the batting alternates
from one batsman to his partner after a ball is bowled if either 1, 3 or 5 runs is scored, or if the ball is the
last (i.e. sixth) ball of the over (but not both).

Essentially, there are two extreme batting strategies from which intermediate strategies can be obtained:
(1) aggressive where a batsman tries to score runs at a high rate while at a greater risk of losing a wicket
and (2) conservative where the batsman tries to preserve wickets while scoring runs at a lower rate. The
state of the match influences the style of batting. For example, if there are ample wickets in hand but few
overs left in an innings, batsmen tend to be aggressive.

With this basic understanding of one-day cricket, the question arises as to the determination of optimal
batting orders. Consider then the unrealistic scenario where there is a team of 11 cricketers, 10 of whom
are fantastic batsmen who score one run with probability 1.0 on every ball bowled. The 11th batsman
is poor (by almost anyone’s standards) as he is dismissed with probability 0.5 and scores 6 runs with
probability 0.5 on every ball bowled to him. Now, conventional wisdom places the ‘poor’ batsman at the
end of the batting order, and the team always scores 300 runs in the first innings since the first partnership
remains intact, scoring 1 run on each ball bowled. If, however, we place the poor batsman at the beginning
of the batting order, then the expected number of runs scored by the team in the first innings is

1

2
(0+ 299)+ 1

4
(6+ 298)+ 1

8
(12+ 297)+ · · · + 1

2300 (1794+ 0)+ 1

2300 (1800) ≈ 304.

Therefore the accepted practice is not optimal in this hypothetical example.

1942 T.B. Swartz et al. / Computers & Operations Research 33 (2006) 1939–1950

For some, the general strategy of placing the better batsmen near the beginning of the batting order may
be obvious (or even sacred), and the previous example may be dismissed as pathological. However, with
a team of 11 cricketers, there are nearly 40 million (i.e. 11!) potential batting orders, and even skeptics
ought to concede that there may exist undiscovered yet promising batting orders. This is the essential
motivation of our work.

3. Simulation of runs

In this section, we consider the simulation of runs in the first innings for a specified batting order.
For simplicity, we investigate the first innings runs since the batting strategy of the team batting second
depends on the number of runs scored by the team batting first.

In one-day cricket, there are a finite number of outcomes arising from each ball bowled. Ignoring certain
rare events (such as scoring 5 runs), and temporarily ignoring wide-balls, no-balls, byes and leg-byes, let
Xi denote the outcome of the ith ball bowled, i = 1, . . . , 300 where

Xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if the batsman scores 0 runs,
1 if the batsman scores 1 run,

2 if the batsman scores 2 runs,
3 if the batsman scores 3 runs,
4 if the batsman scores 4 runs,
5 if the batsman scores 6 runs,
6 if the batsman is dismissed

and Xm+1 = · · · =X300 = 0 if the innings terminate on the mth ball where m < 300.
Using square brackets to generically denote probability mass functions, the joint distribution of

X1, . . . , X300 can be written as

[X1, . . . , X300] = [X300 |X1, . . . , X299][X299 |X1, . . . , X298] · · · [X2 |X1][X1 |X0], (1)

where we express [X1] = [X1 |X0] for convenience. Letting q1 denote the probability of a wide-ball or a
no-ball and letting q2 denote the probability of a bye or a leg-bye, we then use (1) to obtain the following
simulation algorithm for generating the number of runs R scored in the first innings:

• R = 0,
• for i = 1, . . . , 300.

1. Generate u1 ∼ uniform(0,1).
2. If u1 < q1,

then
R← R + 1
return to step 1

else
if u1 < q1 + q2,
then

R← R + 1

T.B. Swartz et al. / Computers & Operations Research 33 (2006) 1939–1950 1943

else
generate Xi ∼ [Xi |X1, . . . , Xi−1]
R← R +XiI (Xi �4)+ 6I (Xi = 5).

Note that in the case of wide-balls and no-balls, a run is assigned to the batting team but the ball is not
counted. We have considered the cases of extras (i.e. wide-balls, no-balls, byes and leg-byes) separately
since data on these outcomes are not typically collected for individual batsmen but are recorded as
aggregate team values. We also recognize that the treatment of extras could be improved slightly by
allowing the possibility of more than one run. The proposed algorithm is extremely simple and requires
only that we be able to generate from the discrete distributions [Xi |X1, . . . , Xi−1]. In the following
subsection, we estimate the distributions [Xi |X1, . . . , Xi−1] using historical batting records.

3.1. Estimation of batting characteristics

The conditional distributions [Xi |X1, . . . , Xi−1] depend on many factors including:

• the batsmen,
• the number of wickets lost,
• the number of balls bowled,
• the bowler,
• the opposing team,
• the coach’s advice,
• the condition of the pitch, etc.

We consider the first three factors and define pjwbk as the probability corresponding to outcome
k= 0, . . . , 6 for the jth batsman when w= 0, . . . , 9 wickets have been lost and b= 0, . . . , 299 balls have
been bowled. Since extras have been excluded as possible outcomes of Xi , we have

∑
k pjwbk = 1 for

all j, w, b. With estimates p̂jwbk , the simulation algorithm generates outcomes according to

Prob(Xi = k |X1, . . . , Xi−1)= p̂jwbk

for i = 1, . . . , 300 and k = 0, . . . , 6 where extras are excluded and less than 10 wickets have been lost.
To obtain an estimate of q1, we look at first innings results from 239 ODI matches dating back from May

2003. We include all matches between teams belonging to the International Cricket Council (ICC). Over
these 239 matches, we calculate q̂1 as the total number of runs awarded as wide-balls or no-balls in the
first innings divided by the total number of balls bowled over these first innings. We obtain q̂1 = 0.0356.
The simulation algorithm also requires an estimate q̂2 of the probability of byes or leg-byes. Using the
same set of matches, we obtain q̂2 = 0.0208.

To obtain the estimates p̂jwbk , we introduce a Bayesian log-linear model. We first summarize historical
match data so that Tjwbk is the number of times that outcome k = 0, . . . , 6 occurs over the Njwb trials
involving the jth batsman where w wickets have been lost and b balls have been bowled. The model
also requires the resource function R(w, b) developed by Duckworth and Lewis [12] in the context of
resetting targets in interrupted one-day cricket matches. The function R(w, b) expresses the percentage
of resources used in a match when w wickets have been lost and b balls have been bowled. For example,

1944 T.B. Swartz et al. / Computers & Operations Research 33 (2006) 1939–1950

R(0, 0)= 0 and R(10, b)= 100.0. The data are distributed according to

[Tjwb0, . . . , Tjwb6] ∼ multinomial(Njwb, pjwb0, . . . , pjwb6), (2)

where the parameters pjwbk are forced to be probabilities via pjwbk = qjwbk/
∑

k qjwbk and

log(qjwbk)= �jk + �k

(w

9

)
+ �k

(
b

299

)
+ �k

(
R(w, b)

100

)
. (3)

To overcome nonidentifiability in the model, we assign �6= �6= �6= 0 and �j6= 0 for each batsman j.
Note that the covariates in the log-linear relationship (3) have been standardized to the interval [0,1].This

allows us to more readily assess the contribution of the individual parameters. Observe that the parameter
�jk may be interpreted as a baseline value at the beginning of the match when w= b=R(0, 0)= 0. The
rationale behind (3) is based on the recognition that batsmen have different abilities, yet as the match
progresses we assume that their characteristics change in a common manner. The resource function may
be thought of as an interaction term involving the wickets and the balls.

To complete the model specification, we assign the following independent prior distributions:

�jk ∼ normal(0, �2
k), where �−2

k ∼ gamma(0.001, 0.001),

�k ∼ normal(0, �2
�), where �−2

� ∼ gamma(0.001, 0.001),

�k ∼ normal(0, �2
�), where �−2

� ∼ gamma(0.001, 0.001),

�k ∼ normal(0, �2
�), where �−2

� ∼ gamma(0.001, 0.001),

for each batsman j and k= 0, . . . , 5. The hyper-parameters of the gamma distributions have been chosen
so that the prior distributions of the variance parameters are diffuse. One of the advantages of the model
is that it allows us to infer characteristics of batsmen at stages of a match where the batsmen have little
or no actual batting experience. For example, bowlers typically bat near the end of the batting order, yet
the model allows us to estimate how they would bat near the beginning of the batting order.

To investigate the Bayesian log-linear model, we collected data on ODI matches involving the national
team of India. We chose India for two reasons: (1) there is considerable current interest in India as they are
a formidable side having finished second to Australia in the 2003 World Cup and they are supported by a
populous country with a strong tradition in cricket, and (2) the Indian team has kept a fairly stable lineup
over the past few years which has resulted in a good set of data for individual team members. The 13
members of the Indian team for whom we collected data are recorded in Table 1. Bearing the constraints
in mind, there are 13(6)+ 6+ 6+ 6= 96 primary parameters of interest corresponding to (3). To reduce
the computational burden, the data were grouped forming larger Njwb values in (2). Specifically, the
data were collapsed according to whether the number of balls b resided in the first 5 overs, the next 5
overs, etc. It is our opinion that batting characteristics do not change substantively within these narrow
categories. The data summarization resulted in 404 multinomial distributions. The model was fit using
WinBUGS software [10] where posterior estimates of the parameters are obtained by averaging output
from a Markov chain. The estimates are recorded in Table 1. We observe that the better batsmen (e.g.
Tendulkar, Ganguly and Dravid) have higher baseline values (i.e. �jk) for producing 1 run, 2 runs and 4
runs. We also observe that the signs of the common parameters (i.e. the �’s, �’s and �’s) generally agree
with our intuition. For example, as wickets are lost, a batsman typically becomes more conservative, and
hence the probabilities of 2’s, 3’s, 4’s and 6’s decrease (i.e. �̂2, �̂3, �̂4 and �̂5 are negative).

T.B. Swartz et al. / Computers & Operations Research 33 (2006) 1939–1950 1945

Table 1
Estimated characteristics of India’s batting behaviour based on 71 first innings ODI matches dating from December 1998 through
the completion of the World Cup in March 2003. The indices 1 through 11 correspond to India’s batting order in the 2003 World
Cup final

k = 6 k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

�̂k 0.00 1.49 1.41 −0.34 −0.28 −1.19 −2.04
Common parameters �̂k 0.00 −0.35 4.22 0.25 −1.33 −1.04 1.91

�̂k 0.00 −2.44 −4.54 0.29 −1.02 1.13 0.50

1 S.R. Tendulkar �̂1k 0.00 4.15 2.56 1.40 −0.26 2.12 −1.41
2 V. Sehwag �̂2k 0.00 3.30 1.29 0.50 −0.63 1.67 −1.61
3 S.C. Ganguly �̂3k 0.00 4.06 2.37 0.86 −0.26 1.70 −0.79
4 M. Kaif �̂4k 0.00 3.59 1.86 0.33 −0.23 1.24 −2.43
5 R. Dravid �̂5k 0.00 4.30 2.56 1.10 −0.04 1.77 −2.29
6 Y. Singh �̂6k 0.00 3.84 1.67 0.50 −0.17 1.42 −1.79
7 D. Mongia �̂7k 0.00 3.68 1.91 0.49 −0.19 1.54 −2.05
8 H. Singh �̂8k 0.00 3.03 0.81 −0.05 −0.29 1.28 −2.08
9 Z. Khan �̂9k 0.00 3.36 0.44 0.13 −0.25 1.06 −1.13

10 J. Srinath �̂10k 0.00 3.55 1.01 −0.77 0.04 0.89 −2.33
11 A. Nehra �̂11k 0.00 3.60 0.93 −0.68 −0.07 −0.89 −2.22
12 A. Kumble �̂12k 0.00 4.01 1.38 −0.24 0.21 0.45 −3.54
13 A. Agarkar �̂13k 0.00 3.31 1.21 0.09 −0.32 1.06 −2.13

simulated runs

ac
tu

al
 r

un
s

100 150 200 250 300 350

100

150

200

250

300

350

Fig. 1. Q–Q plot corresponding to the actual runs scored in 71 first innings ODI matches for India dating from December 1998
through the completion of the World Cup in March 2003 versus simulated runs based on India’s batting lineup in the 2003 World
Cup final.

To investigate the simulation procedure using the estimates in Table 1, we collected additional team
data on India corresponding to ODI matches from December 1998 through the completion of the World
Cup in March 2003. We considered only the 71 matches where India batted in the first innings and we
obtained the number of wickets lost and the runs scored in each match. We also simulated 71,000 first
innings runs using India’s 2003 World Cup final batting order as given in Table 1. In Fig. 1, we present a

1946 T.B. Swartz et al. / Computers & Operations Research 33 (2006) 1939–1950

0 1 2 3 4 5 6 7 8 9 10
0.0

0.05

0.10

0.15

0.20

0.25

number of wickets

fr
eq

ue
nc

y

Fig. 2. Frequency plot corresponding to the actual wickets lost in 71 first innings ODI matches for India dating from December
1998 through the completion of the World Cup in March 2003 (dark shading) and simulated wickets lost based on India’s batting
lineup in the 2003 World Cup final (light shading).

Q–Q plot corresponding to the actual runs scored versus the simulated runs. We do not expect an exact
fit as there is sampling variation in the number of runs scored and India’s batting order was not the same
over all 71 matches. Still, the fit was fairly good except for the unexpected sequence of 122, 122, 123,
125 and 125 actual runs which is clearly a sampling abnormality. In Fig. 2, we present a bar plot of the
actual wickets lost and the simulated wickets lost. We observe that the general shapes agree except for
the spike of 6 actual wickets lost; this also appears to be a sampling abnormality. Although the multiple
modes suggested by Fig. 2 is somewhat unusual, it does correspond to our intuition.

4. Optimal batting orders

Consider the problem of finding the optimal batting order in one-day cricket for the national team of
India. Based on a study of recent matches, it appears that two of the four bowlers H Singh, A Nehra,
A Kumble and A Agarkar are typically chosen for a match, and the balance of the side consists of the

remaining 9 cricketers listed in Table 1. With this constraint, there are
(

4
2

)
11! ≈ 240 million feasible

batting orders.
Mathematically, using the coding in Table 1, the problem consists of maximizing the expected number

of first innings runs

f (i)= Ei(R), (4)

over the set of
(

4
2

)
11! permutations i = (i1, . . . , i13) where ij denotes that batsman ij bats in the jth

position in the batting order, and cricketers i12 and i13 are left off the team.
One of the non-standard aspects of the problem is that the function f in (4) is not readily available and

is estimated via simulation. An implication is that repeated simulations of the number of first innings
runs under the same batting order i typically yield different estimates of f (i). Consequently, we simulate
the number of first innings runs n times and average the values to produce an estimate of f with less
variability. The immediate question arises as to the choice of n. Since we are interested in optimizing

T.B. Swartz et al. / Computers & Operations Research 33 (2006) 1939–1950 1947

the average number of runs scored, it seems sensible that n should be chosen, that with confidence, the
estimate is within one run of the true average. We choose n= 10, 000 as this produces a standard error of
roughly 0.5 for most permutations. Unfortunately, such a choice rules out the possibility of an exhaustive
search for the optimal batting order. On a Sun workstation, a simulation of n= 10, 000 requires roughly

37 s of computation, and multiplied over the
(

4
2

)
11! batting orders, this requires more than 280 years of

computation!
To address the computational hurdles, we implement the simulated annealing algorithm [11] to obtain

optimal or nearly optimal batting orders. Simulated annealing is a probabilistic search algorithm that
proceeds (in our context) by generating a candidate permutation j in a neighbourhood of the current
permutation i. If f̂ (j) > f̂ (i), then the permutation j is accepted as the current state. If f̂ (j)� f̂ (i),
it is also possible to proceed to state j, and this occurs if a randomly generated uniform(0,1) variate
u < exp{(f̂ (j)− f̂ (i))/t} where t > 0 is a parameter often referred to as the temperature. The algorithm
iterates according to a sequence of non-increasing temperatures tk → 0. Beginning with an initial state
i0, the states i0, i1, . . . form a Markov chain. The algorithm terminates after a fixed number of iterations
or when state changes occur infrequently. Under a ‘suitable’ neighbourhood structure, asymptotic results
suggest that the final state will be nearly optimal.

Success of the simulated annealing algorithm depends greatly on fine tuning of the algorithm. In
particular, the user must specify the cooling schedule (i.e. tk) and also the neighbourhood structure for
generating successive states from a given state. Aarts and Korst [13] provide discussion on the issues of
fine tuning the algorithm.

Our implementation of simulated annealing begins with the recognition that our problem shares some
similarities with the well-studied travelling salesman problem. For example, like our problem, the state
space in the travelling salesman problem consists of permutations, permutations of cities that are visited
by the salesman. Also, in the same way that an interchange in the order of two adjacent cities in a
permutation should not greatly affect the total travelling distance for the salesman, an interchange in
the order of two adjacent batsmen in a permutation should not greatly affect the expected number of
first innings runs. Accordingly, our implementation of simulated annealing uses an exponential cooling
schedule defined by a sequence of temperature plateaux; this approach has been successively used in the
travelling salesman problem [13]. Specifically, we iterate the Markov chain 100 times at temperatures t=
0.5(0.9)0, 0.5(0.9)1, . . . , 0.5(0.9)14, escaping any temperature prematurely if there are more than 10 state
changes at the temperature. Tied to the cooling schedule, we also increment the number of simulations n at
each temperature level according to 200, 900, 1600, . . . , 10, 000. To address the infeasible batting orders,
we introduce a penalty and reduce f̂ by 5 runs whenever more than two of H Singh, A Nehra, A Kumble
and A Agarkar are included in the line-up. It is important that the penalty not be too extreme; otherwise
the simulated annealing algorithm may experience difficulties in moving across neighbourhoods. The
specification of the algorithm is complete by specifying the generating mechanism which determines
the neighbourhood structure. For this, consider the current state i= (i1, . . . , i13) and generate a discrete
uniform variable k on (1, . . . , 13 − m + 1) where the parameter m is user-specified. We then randomly
permute (ik, ik+1, . . . , ik+m−1) yielding (jk, jk+1, . . . , jk+m−1). The candidate state in the algorithm
is then given by (i1, . . . , ik−1, jk, . . . , jk+m−1, ik+m, . . . , i13). We found m = 4 to be a good choice;
sufficiently small that local minima can be found, and sufficiently large that it is not too difficult to
move across neighbourhoods. A typical run of simulated annealing using this implementation requires
approximately 7.5 h of computation on a Sun workstation.

1948 T.B. Swartz et al. / Computers & Operations Research 33 (2006) 1939–1950

Table 2
Two potentially productive batting orders for India identified via simulated annealing. An estimate of the expected number of
first innings runs f̂ for each batting order is provided

Order (1) (2)

1 Dravid Tendulkar
2 Tendulkar Ganguly
3 Ganguly Dravid
4 Sehwag Sehwag
5 Mongia Mongia
6 Singh (Y) Singh (Y)
7 Khan Kaif
8 Kaif Singh (H)
9 Singh (H) Khan

10 Agarkar Agarkar
11 Srinath Srinath

f̂ 256.4 256.0

In Table 2, we present two promising batting orders that were identified using our implementation of
simulated annealing. To put the results into perspective, we note that the batting order used by India in
the 2003 World Cup final (see Table 1) produces an average of 250.1 first innings runs. Therefore the
proposed batting orders offer the potential of improved ODI performance for India by approximately 6
runs. To appreciate the impact of a poor batting order, we reverse the batting order used by India in the
2003 World Cup final, and obtain an average of 201.2 first innings runs. Several observations are worthy
of note:

• In 10 out of the 11 2003 World Cup matches in which India participated, the opening batsmen,
without regard to order, were (Tendulkar & Sehwag). Our approach identifies (Dravid & Tendulkar)
and (Tendulkar & Ganguly) as the most promising opening batsmen. Generally speaking, India places
Dravid too far down in the batting order.As might be expected, interchanging the number 1 and number
2 batsmen has a negligible effect on the expected number of first innings runs.
• In India’s 11 World Cup 2003 matches, Kaif batted in the fourth position 6 times. This is strikingly

different from the two promising batting orders from Table 2 where Kaif bats in the eighth and seventh
positions.
• Our methods suggest that Sehwag, Mongia and Y Singh ought to bat in the fourth, fifth and sixth

positions respectively; Mongia’s recommended position is typically a little earlier in the batting order
than is currently the practice.
• As might be expected, the simulations suggest that permutations in the latter part of nearly optimal

batting orders (positions 7–11) have a lesser effect on the expected number of first innings runs. There
is little impact when the batsmen in these positions are interchanged. These batsmen tend to be bowlers
and their inclusion is far more related to bowling than to batting.

T.B. Swartz et al. / Computers & Operations Research 33 (2006) 1939–1950 1949

5. Discussion

In this paper, we have presented a methodology for identifying promising batting orders in one-day
cricket. In particular, we have suggested some batting orders that have never been tried by the Indian
team and contradict prevailing wisdom.

As mentioned previously, we chose to study first innings data so that the results of all batsmen could
be compared on the same footing. However, having identified promising first innings batting orders, it
seems reasonable that these batting orders would also be promising batting orders for the second innings.

As a by-product of our investigation, we have developed a simulation procedure for generating first
innings runs against an average opponent. Since one-day cricket data are sparse (i.e. an ICC side may
schedule fewer than 20 matches per year), realistic simulation techniques may have value in investigating
a wide range of questions. Accordingly, it would be useful to have a general simulation procedure that
also took into account the strength of the opposition and second innings batting. This is a topic of future
research.

We also note that the simulation procedure was based on estimates from a Bayesian log-linear model.
Although our natural inclination is Bayesian, there is no reason why maximum likelihood estimates
could not have been used as inputs to the simulation procedure. For the national team of India, we had a
substantial data set and chose diffuse prior distributions. With less substantial data sets, an advantage of
the Bayesian approach is that subjective prior information can be incorporated to overcome deficiencies
in the data.

Finally, our methods were developed with the intention of finding optimal or nearly optimal batting
orders at the start of a team’s innings. In practice, a team has the prerogative to modify the initial batting
order as the match is in progress, and this is frequently done in rain-delayed matches. Given the status
of the match (i.e. the number of overs, the number of wickets and the batsmen dismissed), computations
could be run in real time to obtain an optimal or nearly optimal batting order for the remaining batsmen.
The computations would be less demanding since the number of permutations decrease as batters are
dismissed. The simulations would also be less demanding for less than full matches. Clearly, our software
could be a valuable asset to teams that are serious about performing to the best of their ability.

References

[1] Hankinson JT. Cricket for schools. London: George Allen and Unwin Limited; 1946.
[2] India Express Bureau. Ganguly plans new strategy, reshuffle of batting order. Website article at

www.indiaexpress.com/news/sports/cricket/20020215-0.html, February 15.
[3] Beaudoin D, Swartz TB. The best batsmen and bowlers in one-day cricket. South African Statistical Journal 2003;37:

203–22.
[4] Clarke SR. Dynamic programming in one-day cricket—optimal scoring rates. Journal of the Operational Research Society

1988;39(4):331–7.
[5] Preston I, Thomas J. Batting strategy in limited overs cricket. The Statistician 2000;49(1):95–106.
[6] Elderton WE. Cricket scores and some skew correlation distributions. Journal of the Royal Statistical Society, Series A

1945;108:1–11.
[7] Wood GH. Cricket scores and geometrical progression. Journal of the Royal Statistical Society, Series A 1945;108:12–22.
[8] Kimber AC, Hansford AR. A statistical analysis of batting in cricket. Journal of the Royal Statistical Society, Series A

1993;156:443–55.
[9] Dyte D. Constructing a plausible test cricket simulation using available real world data. In: de Mestre N, Kumar K, editors.

Mathematics and Computers in Sport. Queensland, Australia: Bond University; 1998. p. 153–9.

http://www.indiaexpress.com/news/sports/cricket/20020215-0.html

1950 T.B. Swartz et al. / Computers & Operations Research 33 (2006) 1939–1950

[10] Spiegelhalter D, Thomas A, Best N. WinBUGS Version 1.3 User Manual. Cambridge: Medical Research Council
Biostatistics Unit; 2000.

[11] Kirkpatrick S, Gelatt Jr CD, Vecchi MP. Optimization by simulated annealing. Science 1983;220:671–80.
[12] Duckworth FC, Lewis AJ. A fair method for resetting targets in one-day cricket matches. Journal of the Operational

Research Society 1998;49:220–7.
[13] Aarts E, Korst J. Simulated annealing and Boltzmann machines. New York: Wiley; 1989.

	Optimal batting orders in one-day cricket62626262
	Introduction
	The basics of one-day cricket
	Simulation of runs
	Estimation of batting characteristics

	Optimal batting orders
	Discussion
	References

