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Abstract

Whereas there is no shortage of statistics that have been proposed and reported
for invasion sports, almost all of the widely reported statistics are based on actions
involving the ball. Yet, in football (soccer), it is well-known that players typically
possess the ball for less than three minutes during a 90-minute match. In this paper,
we develop automatic methods that analyze the activities of players that are “off-
the-ball” in soccer. Specifically, a metric is introduced which measures defensive
anticipation in soccer. The approach is conceptually simple: Using roughly four
million spatio-temporal instances, we use machine learning techniques to predict
the velocity (two-dimensional directional vector and speed) of a defensive player
in a given situation. A metric is then developed which compares the player’s ac-
tual velocity with the predicted velocity of a typical player in this situation. The
interpretation of the defensive anticipation metric is based on the tenet that fast
is better than slow. The analysis is facilitated through the availability of player
tracking data which records the position of players at frequent and regular intervals
throughout matches. The metric is calculated for players based on a season of soc-
cer data, where validity and reliability are demonstrated. The metric also conforms
to common sense where it is expected and observed that there is a reduction in
defensive anticipation as players tire. The proposed approach is applicable and can
be tailored to all invasion sports where player tracking data are available.

Keywords : OR in sports, big data, machine learning, model validation, player tracking
data.
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1 INTRODUCTION

In the sport of football (soccer), it has been estimated that on average, throughout a
90-minute match, individual players have possession of the ball for less than two minutes
(Link and Hoernig 2017). It is therefore clear that traditional “on-the-ball” statistics such
as goals, tackles, assists, shots and pass completion percentages examine only a snapshot
of overall player performance. Encouraged by the “moneyball” phenomena (Lewis 2013),
player evaluation via statistical analysis has become widespread across sports (Albert et
al. 2017). This paper considers a particular aspect of player evaluation in the context of
“off-the-ball” activity in soccer.

This paper introduces novel methods and a metric that evaluates a fundamental de-
fensive objective in soccer, namely defensive anticipation. When a defender anticipates
quickly, the defender denies the offensive team both time and space, and this contributes
to winning. Defensive awareness is important and is not always recognized. For example,
by moving quickly, the defensive player may prevent a valuable pass which is never real-
ized and hence, never recorded. We apply our methods to an actual dataset, where the
validity and reliability of the metric are demonstrated.

There are currently no automatic methods (i.e. computer code) that produces metrics
for defensive anticipation. For an analyst (e.g. coach) to assess the defensive anticipation
of a player, there are two overriding difficulties. First, the analyst would need to monitor
the player for the entire 90 minutes of a match, and repeat this over many matches. This
is both time consuming and expensive. Second, the analyst would need to objectively
evaluate the player’s actions, sometimes in contexts where it is not clear what the player
ought to do. The purpose of this paper is to develop automatic methods which objectively
evaluate defensive anticipation. With these methods, information on defensive anticipa-
tion could be made available for players from various leagues across the world. Therefore,
we believe that our methods may be beneficial with respect to player aquisition.

Our investigation is made possible by the availability of player tracking data. Player
tracking data in soccer consists of the Cartesian coordinates of the ball and the 22 players
on the pitch recorded at regular and frequent time intervals. With player tracking data,
we know the locations of all players at all times during a match, and this facilitates off-
the-ball evaluation. Gudmundsson and Horton (2017) provide a review paper on spatio-
temporal analyses used in invasion sports (including soccer) where player tracking data
are available. The visualization of team formations in soccer is a problem that has received
particular attention (Wu et al. 2019). The analysis of player tracking data has also been
prominent in the sport of basketball; see for example, Miller et al. (2014).

The study of off-the-ball activity is a new research area of great potential. Historically,
a limiting factor for such research has been the availability of tracking data. Tracking
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data are necessary because we need to know what all players are doing at all times -
this is the basis for off-the-ball studies. There has been some off-the-ball analyses in
basketball and soccer that are based on the concept of “ghosting” (Lowe 2013, Le et al.
2016, Le et al. 2017 and Seidl et al. 2018). The rationale behind ghosting is that there
are optimal and expected paths for defensive players. In the ghosting work (which is
proprietary), a main contribution is the claim that if defensive players can replicate the
optimal ghosting paths, then outcomes would improve for the defensive team in terms of
lower expected points/goals by the offensive team. Also, coaches may be able to assess
what-if scenarios. That is, if a given play is drawn up, the expected ghost paths may
indicate how the defensive team ought to respond. In the ghosting approach, actual
match sequences are studied from a given frame where observed defensive positions are
established. Then time frames are allowed to advance where the offensive players continue
on their observed path and the ghosts react to the offensive movement. A limitation is that
in real matches, offensive players move and react according to the defense. Therefore, the
offensive movements that were observed cannot be utilized as responses to the ghosting
paths. Spearman (2018) also used tracking data to investigate off-the-ball activity through
positioning. Goal scoring probabilities were estimated at player locations using expected
goal (xG) considerations and the probabilities of making successful passes to the player
locations. This interesting line of research is instructive in identifying optimal positioning
from an offensive perspective.

There are several other papers related to our work. Yurko and Pelechrinis (2021)
used a Long short-term memory model (LSTM) to estimate the locations of “ghost”
defenders at the moment the ball was caught. This aids in the evaluation of defenders
in limiting the number of yards after the catch in the National Football League (NFL).
Also in the NFL, Cheong et al. (2021) used a deep learning model to predict trajectories
of defensive players to investigate various questions including “what-if” scenarios. Stöckl
et al. (2021) introduced a graph convolutional network to measure an aspect of defensive
performance in soccer. The approach attempts to assess how defender actions modify
offensive behavior. Llana et al. (2020) introduced the concept of off-ball advantage which
builds on top of the expected possession framework from Fernández at al. (2019). There
is also a branch of literature referred to as pitch control that is concerned with zones
that players control based on their current position and velocity (Brefeld, Lasik and Mair
2019).

A major challenge in off-the-ball research is the evaluation of actions. Our approach is
conceptually simple: Using roughly four million spatio-temporal instances, we use machine
learning techniques to predict the velocity (two-dimensional directional vector and speed)
of a defensive player in a given situation. A defensive anticipation metric is then developed
which compares the player’s actual velocity with the predicted velocity of a typical player
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in this situation. The interpretation of the defensive anticipation metric is based on the
tenet that fast is better than slow (Blank 2012). Players that excel in this trait may be
thought of as energetic and quick-thinking, and provide a particular benefit to teams.
Importantly, this type of analysis is amenable to other invasion sports for which tracking
data are available.

In Section 2, we describe the dataset. In Section 3, we develop the methods used to
evaluate defensive anticipation. The work is highly computational and we describe our
approach which is based on the use of a tree-based boosting algorithm. In Section 4,
the methods are then applied to an analysis of players from the Chinese Super League
where validity and reliability of the approach are demonstrated. We conclude with a short
discussion in Section 5.

2 DATA

Our data consists of matches from the 2019 season of the Chinese Super League (CSL).
The league involved 16 teams where each team played every opponent twice, once at home
and once on the road. From these potential 240 matches, we have three missing matches.

From these 237 matches, event data and tracking data were collected independently
where event data consists of occurrences such as tackles and passes, and these were
recorded along with auxiliary information whenever an “event” takes place. The events
were manually recorded by technicians who view film. Both event data and tracking data
have timestamps so that the two files can be compared for internal consistency. In the
CSL dataset, tracking data were obtained from video and the use of optical recognition
software. The tracking data consists of roughly one million rows per match measured on
7 variables where the data are recorded every 1/10th of a second. Each row corresponds
to a particular player at a given instant in time. Therefore, we have a big data problem
where both event data and player tracking data are available based on 237 regular season
matches. Although the inferences gained via our analyses are specific to the CSL, we
suggest that the methods are applicable to any soccer league which collects tracking data.

3 METHODS

3.1 Rationale of the Approach

Consider a defender at a particular instant in time during a match. Our approach begins
with the prediction of a velocity vector (ŷ1, ŷ2) for the defender. It is important to empha-
size that the two-dimensional velocity vector contains both a directional component and
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magnitude (i.e. speed). The prediction is facilitated through the availability of tracking
data associated with the 2019 season of the CSL. With this massive dataset, there ex-
ist “similar” circumstances in a spatio-temporal sense to the given situation. Therefore,
the prediction represents the velocity (i.e. speed and direction) of a typical player in the
situation of interest. Of course, the observed velocity (y1, y2) of the defender will not be
exactly the same as the predicted velocity (ŷ1, ŷ2). We posit that the defender will have
performed above average if they move quicker than predicted in the predicted direction.
The quantification of performance is formalized in Section 3.4. The desirability of moving
quickly is a tenet of many sports, including soccer, and is discussed in Chapter 1 of Blank
(2012).

3.2 Prediction of Velocities

Given a snapshot of the pitch, it is possible for subject matter experts to predict where
players ought to move. However, such assessments are subjective. Alternatively, for-
mulating a parametric predictive model is a formidable task due to the complexity of
spatio-temporal configurations.

A rationale for machine learning methods in prediction is that complex phenomena
are often difficult to model explicitly. We may have a response variable y and a high-
dimensional explanatory vector x = (x1, x2, . . . , xk) where we have little apriori knowledge
about the relationship between y and x. For example, the relationship may only involve a
subset of the variables x, the components of x may be correlated, and most importantly,
the relationship y ≈ f(x) involves an unknown and possibly complex function f . In
addition, the stochastic aspect of the relationship is typically unknown and big data sets
may introduce computational difficulties.

In our problem, we face all of the challenges mentioned above. The response variable y
is the velocity (speed and direction) that a player moves in a specific off-the-ball situation.
We emphasize that y is a two-dimensional response. The explanatory variable x is the
state of the match as described by the player tracking data. The idea is that the state of
the match x is predictive of movement y. For each observation (x, y), the covariate x and
the response y are each measured at a specific point in time t.

A restriction that we introduce is that we consider off-the-ball actions only for defen-
sive players. Whereas offensive reactions are also important, we find this to be a more
challenging prediction problem which is a future research direction. Offensive movement
is more challenging for prediction since there are often multiple potential paths which
offensive players may choose.

A first step in the data analysis is the determination of ball possession which then
defines the defensive and offensive teams. In addition to player tracking data, we are also
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provided with tagged event data that provides the timing of passes, dribbles, shots, etc. A
possession is retained if the same team maintains the control of the ball by either passing,
dribbling or attempting a shot, and the possession ends when the opponent gains control
of the ball, a penalty occurs, the ball goes out of bounds, etc.

To make the prediction problem more tractable, we introduce two data reductions.
First, we analyse match states every ε = 1 seconds. This is a tremendous data reduction
(reduction by a factor of 10) since tracking data are recorded every 1/10th of a second.
However, over a 90-minute match this still leaves us with 5,400 potential observations
per player per match. With 11 defensive players on the pitch and the 237 regular season
matches, this provides us with over 14 million records. We view ε > 0 as a tuning param-
eter which we can increase or decrease to adjust the total number of observations. The
data reduction is advantageous in the sense that player actions are essentially independent
for larger values of ε. In soccer, a player’s objectives at a given point in time are different
and independent from his objectives ε seconds later for sufficiently large ε. Our intuition
is that player options change considerably over states separated by ε ≥ 1 second.

Another data reduction decision involves the covariate vector x provided by the track-
ing data. Based on our soccer knowledge, we posit that a player’s actions are mostly
dependent on the spatio-temporal characteristics of the ball and the players within their
immediate vicinity. Of course, there are long passes in soccer, but we exclude these con-
siderations as they are the exception rather than the rule. We therefore introduce the
following covariates for a given defensive player in a particular state:

• x1 - location of the player (2-dim)

• x2 - player velocity at time t− ∆ (2-dim)

• x3 - location of the ball (2-dim)

• x4 - distance of the player to the ball (1-dim)

• x5 - distance of the player to offensive goal (1-dim)

• x6 - angle of the player to offensive goal (1-dim)

• x7 - location of the goalkeeper (2-dim)

• x8 - distance of the player to goalkeeper (1-dim)

• x9 - indicator for the player on offensive or defensive side of the field (1-dim)

• x10 - indicator for player belonging to the home or road team (1-dim)
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• x11 - seconds remaining in the half of the game (1-dim)

• x12 - seconds remaining in the full game (1-dim)

• for each of the player’s three nearest teammates:

– x13 - location of the teammate (2-dim)

– x14 - velocity of the teammate (2-dim)

– x15 - distance of the player to teammate (1-dim)

– x16 - distance of the ball to teammate (1-dim)

– x17 - relative angle of the teammate to the player of interest (1-dim)

• for each of the player’s three nearest opponents:

– x18 - location of the opponent (2-dim)

– x19 - velocity of the opponent (2-dim)

– x20 - distance of the player to opponent (1-dim)

– x21 - distance of the ball to opponent (1-dim)

– x22 - expected possession value EPV of opponent (1-dim)

– x23 - relative angle of the opponent to the player of interest (1-dim)

Therefore, even though we have dramatically reduced the dimensionality of the track-
ing data, we have retained a 61-dimensional covariate which we hope captures the main
drivers of how a player responds in a given situation. We note that the covariates contain
a great amount of information which is related to y in complex ways. For example, if a
player is close to goal, they may behave differently than if they are near midfield. Also,
the movements and space of nearby players naturally impact decisions.

The variable x2 and the associated tuning parameter ∆ ≥ 0 require additional discus-
sion. We cannot include x2 as a covariate with ∆ = 0 as this would render y = x2 at all
times t, and consequently, any fitting algorithm would yield the useless prediction ŷ = y.
That is, our predicted velocity would not be a typical velocity given the circumstances,
but instead, the observed velocity of the player of interest. However, the observed velocity
y of the player of interest at time t clearly depends on his movement prior to time t. For
example, if a player is moving forward at speed s, it is easier for him to quickly transition
to speed s+ δ moving forward than speed s+ δ moving backward. In summary, we ought
to know about a player’s movement before time t as this impacts movement at time t. In
Section 3.3, we investigate the selection of ∆.
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The expected possession value EPV (feature x22) was made publicly available by Shaw
(2019). Given the spatial state of a match, EPV provides a measure of the attacking
value of each location on the field. We modify the EPV covariate of a player by setting
it equal to zero if the offensive player is offside. This is an important covariate in our
analysis since defenders should be cautious of balls being played to high EPV positions.

There is some redundancy in our covariates. For example, if we know the Cartesian
coordinates of two objects, then the distance between these two objects is a function
of their positions. However, to assist the machine learning algorithm of Section 3.3, we
provide some of these derived covariates. We have limited the covariates to the three
nearest teammates and three nearest opponents. In most cases, these are the players
who most influence the movement of the player of interest. The player of interest cannot
intervene in locations that are too distant.

3.3 Computational Overview

Recall that our fundamental problem is the development of a metric for defensive antici-
pation. This metric requires the prediction of the velocity y corresponding to the features
x which describe the temporal-spatio state of the match. We constructed a design matrix
where we stepped through each ε = 1 seconds of time over all matches to determine team
possession. If the time t is part of a possession sequence, then one row of the design
matrix is generated for each defender. The columns consisted of all of the features x for
a defender as described in Section 3.2. The procedure resulted in a design matrix with
3,770,289 rows and required just under 100 hours of computation on a laptop computer.
Note that the construction of the design matrix consists of tasks that can be divided ac-
cording to matches. Therefore, this data management component is amenable to parallel
processing.

For the prediction problem, we used a fast and efficient gradient boosting model,
LightGBM, which is based on tree-based learning algorithms (Ke et al. 2017). We trained
two LightGBM models, one for predicting the horizontal velocity component and one for
predicting the vertical velocity component based on the field orientation. We partitioned
the 20-week data into training and test datasets, where the training data included all the
even weeks (eg. weeks 2, 4, . . . , 20) and the test data included all the odd weeks (eg. weeks
1, 3, . . . , 19). For model training, we used leave-one-week-out cross validation to select
the best tuning parameters which minimized the mean absolute error of the response
variables. The training procedure using LightGBM required approximately 1.5 hours of
running time on a laptop computer.

Recall that we are interested in setting the parameter ∆ ≥ 0 which provides the
velocity covariate x2 of the player of interest at time t − ∆. We want to set ∆ so that
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it assists prediction of the velocity of a typical player at time t. Again, ∆ cannot equal
zero; otherwise we simply obtain predictions that are the actual velocities of the players
of interest. In Figure 1, we plot the correlation of the predicted speed at time t and the
actual speed at time t − ∆. For ∆ = 0 seconds, the correlation is perfect (i.e. r = 1) as
expected. We wish to choose a time lag ∆ so that the model provides a good but not a
perfect predictor. From Figure 1, we choose the tuning parameter ∆ = 0.5 seconds where
the correlation r ≈ 0.9. The fitted model from LightGBM provides a mean absolute error
of 0.319 m/sec in the x-coordinate velocity and 0.398 m/sec in the y-coordinate velocity.
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Figure 1: Correlation of predicted speed at time t and actual speed at time t− ∆ where
time is measured in seconds. The blue dashed line corresponds to the selected value
∆ = 0.5 seconds.

3.4 Derivation of a Metric for Defensive Anticipation

We return to the motivation for off-the-ball player evaluation. Recall that the core idea
from Chapter 1 of Blank (2012) is that doing things quickly in soccer is better. For
example, one could imagine a defender moving towards a forward who is about to receive
a pass. In this case, getting there early increases the chance of intercepting the pass or
preventing the forward from creating a goal scoring opportunity. Now, there are many
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instances during a match where moving quickly makes no sense (e.g. the ball is at the
opposite end of the field). In cases where the predicted response is to move slowly, we
will not use these cases for the purpose of player evaluation.

Consider time t where the match state x is recorded and the predicted velocity for
a defensive player is (ŷ1, ŷ2). Recall that velocity is two-dimensional as it involves both
speed and direction in the plane. Again, we only consider observations where the predicted
speed exceeds a specified threshold speed. The predicted velocity (ŷ1, ŷ2) is obtained by
the machine learning prediction methods of Section 3.2. We let (yobs1, yobs2) denote the
corresponding observed velocity of the player under evaluation. Then, we define the
player’s off-the-ball performance at time t by

p =


(√

v21 + v22 −
√
ŷ21 + ŷ22

)
/
√
ŷ21 + ŷ22 v1ŷ1 ≥ 0(

−
√
v21 + v22 −

√
ŷ21 + ŷ22

)
/
√
ŷ21 + ŷ22 v1ŷ1 < 0

. (1)

A geometric interpretation of p is provided in Figure 2. The statistic p in (1) is based
on the projection (v1, v2) of the observed performance (yobs1, yobs2) onto the velocity line
defined by the predicted velocity (ŷ1, ŷ2). The line k(ŷ1, ŷ2) for k > 0 emanates from
the origin and is given by y2 = (ŷ2/ŷ1)y1 and the projection is calculated by (v1, v2) =
((ŷ21yobs1 + ŷ1ŷ2yobs2)/(ŷ

2
1 + ŷ22), (ŷ21 ŷ2yobs1 + ŷ1ŷ

2
2yobs2)/(ŷ

3
1 + ŷ1ŷ

2
2)). Therefore, “good”

performance according to (1) takes into account moving quicker in the predicted direction.
Longer projections on the velocity line are preferable and lead to larger values of the
performance p. Values of p > 0 are interpreted as above average performance and values
of p < 0 are interpreted as below average performance.

The player’s season long performance is then given by the defensive anticipation metric

P =

(
1

N

N∑
i=1

pi

)
100% (2)

where the summation is taken over all instances where the predicted velocity exceeds the
threshold speed and the index i = 1, . . . , N corresponds to the cases involving the player
during the season. We can think of (2) as metric which measures defensive anticipation.
The multiplicative factor 100% in (2) permits a nice interpretation; a P -score of +x
describes a player whose defensive anticipation is x% above the average player whereas
a P -score of −x describes a player whose defensive anticipation is x% below the average
player.
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Figure 2: Geometric diagram which illustrates the components of the statistic p in equa-
tion (1). Imagine a player who is located at the origin (0, 0). The observed velocity of the
player is shown by the blue vector pointing towards (2, 4). The predicted velocity of an
average player is shown by the yellow vector pointing towards (8, 4). The perpendicular
line indicates the projection of the observed velocity vector on the predicted velocity vec-
tor. Using equation (1), the defensive anticipation value, p, is equal to −0.6, which can
be interpreted as a 60% reduction compared to the average player.

4 RESULTS AND ASSESSMENT

Of course, with new metrics such as defensive anticipation, there is no truth against which
results can be compared. For example, we simply don’t know which players are best at
defensive anticipation. In this section, we look at the defensive anticipation metric from
various angles with an attempt to establish validity and reliability.

First, to get a sense of the prediction results, Figure 3 provides a plot of the predicted
velocities and the observed velocities for all 20 players on the field (not including the
keepers) at a given instant in time. In most cases, the predicted and observed velocity
vectors tend to point in roughly the same direction. For illustration, consider defensive
player #16. His movement is directly towards the ball. However, the model predicts that
he ought to move a little bit more towards his own goal at roughly the same speed. The
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predicted movement may be viewed as cautious and preferable since offensive player #35
(who is in possession) is moving downfield and may pose a risk. We observe that for
some players, the velocity vectors are short, and this suggests that little is happening in
their immediate surroundings. For example, defensive player #7 is barely moving, and
this appears sensible as there are no threatening offensive players in the vicinity. For the
evaluation of the defensive anticipation metric (2), we removed observations for which the
predicted speed

√
ŷ21 + ŷ22 is less than the threshold speed of 0.20 m/sec which corresponds

to 0.72 km/hour. In the test dataset, 1.8% of the observations were removed due to the
threshold constraint.

Figure 3: Plot of predicted velocities (purple arrows) and observed velocities (black ar-
rows) at a given instant in time. The blue team is in possession, the yellow team is
defending and the red dot corresponds to the ball.

Based on the examination of many frames such as given in Figure 3, we did not find
predicted velocities that contradicted our soccer intuition. This provides an indication
that in a given situation, the predicted velocity of a typical player is sensible. This may
be expected because the predicted velocity is based on the fitting of a massive dataset,
where on average, professional atheletes make good decisions. We note that the model
was assisted by the inclusion of covariate x22 (previously discussed). The recognition of
players in offside positions improved prediction.
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4.1 Reliability

With respect to a metric, reliability refers to the consistency of the measure. In other
words, reliability addresses reproducibility. For example, it would be undesirable if our
defensive antipation metric (2) identified a player as having great defensive anticipation
for half of the matches and terrible defensive anticipation in the other matches. Since we
expect some consistency in professional athletes, this would suggest that there is little
value in the metric.

To investigate this, we divided the 2019 CSL season into even and odd weeks. The
premise is that the metric (2) measures an aspect of playing style, and that style should
not differ greatly between the two sets of weeks. In Table 1, we provide results for the
10 players on Shandong Luneng for whom the number of instances N > 10, 000 in (2)
for both sets of weeks. Shandong Luneng is an interesting CSL team as two of the
international players (Fellaini and Pelle) are well known to those who follow the English
Premier League. We observe that there is consistency in the player metrics across the two
sets of weeks. In fact, the ranks of the 10 players are identical across the two weeks. This
suggests that the defensive anticipation metric (2) is reliable and is capturing an aspect
of playing style.

Player Neven Nodd Peven (rank) Podd (rank)
Marouane Fellaini 17,146 17,340 2.8 (1) 2.4 (1)
Zhang Chi 16,647 17,235 2.4 (2) 2.0 (2)
Liu Yang 19,556 19,845 1.6 (3) 1.8 (3)
Wang Tong 13,955 20,034 0.4 (4) 0.2 (4)
Hao Junmin 16,050 16,696 -0.3 (5) -1.4 (5)
Zheng Zheng 14,582 10,849 -1.6 (6) -2.6 (6)
Dai Lin 14,030 18,423 -2.1 (7) -3.1 (7)
Graziano Pelle 19,337 18,302 -3.7 (8) -4.1 (8)
Gil 10,159 13,306 -4.1 (9) -5.1 (9)
Roger Guedes 14,067 16,737 -5.5 (10) -5.7 (10)

Table 1: The defensive anticipation metric P calculated during even and odd weeks for
players on Shandong Luneng during the 2019 season.
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4.2 Validity

With respect to a metric, validity refers to the accuracy of measure. In our investigation,
we are interested whether the metric P in (2) really measures defensive anticipation.

To investigate validity, we first consider the defensive anticipation metric (2) for all
438 outfield players in the CSL dataset. The players are categorized according to the five
broad playing positions as follows: wide midfielder (n = 79) wide defender (n = 77), and
forward (n = 86), central midfielder (n = 110) and central defender (n = 86). Density
plots of (2) corresponding to each of the playing positions are shown in Figure 4. We
observe that there is little difference in (2) across the playing positions. We note that
central midfielders have slightly larger values of (2) than other players on average (as
might be expected). This may be related to the defensive aggressiveness required at that
position. We also observe that there is more variability in (2) amongst the forwards than
the other playing positions.

Central defender

Central midfielder

Forward

Wide defender

Wide midfielder

−10 0 10 20
P

P
os

iti
on

Position

Wide midfielder
Wide defender
Forward
Central midfielder
Central defender

Figure 4: Density plots of (2) based on playing position. For each player, the defensive
anticipation metric (2) was calculated for all matches in the 2019 CSL season. We observe
that central midfielders have slightly larger defensive anticipation values than other players
on average, and there is more variability amongst the forwards than the other playing
positions.

Recall that a difficulty in assessing the validity of the proposed metric (2) is that there
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is no gold standard for the truth. We do not know with certainty which players play
with more and less defensive anticipation (combination of energy and quick-thinking).
Therefore, we took the same players from Shandong Luneng as in Table 1, and ranked
these players according to their P -scores (2) from the entire 2019 season. The results
are provided in Table 2. In Table 2, we made comparisons with various measures of
aggression. We provide season long data on fouls, successful tackles and interceptions.
We excluded card accumulation as cards are relatively rare events. We observe that the
aggressiveness inherent in fouls, successful tackles and interceptions correlates with our
defensive anticipation metric. For example, the correlation coefficients between P and
these three statistics are 0.60, 0.65 and 0.49, respectively.

Player P (rank) Fouls (rank) Tackles (rank) Interceptions (rank)
Marouane Fellaini 2.64 (1) 46 (1) 21 (5.5) 23 (4)
Zhang Chi 2.20 (2) 32 (2.5) 21 (5.5) 29 (2)
Liu Yang 1.71 (3) 26 (4.5) 33 (1) 6 (8)
Wang Tong 0.26 (4) 15 (9) 19 (7) 27 (3)
Hao Junmin -0.85 (5) 25 (6) 23 (4) 22 (5)
Zheng Zheng -1.99 (6) 17 (8) 29 (2) 12 (7)
Dai Lin -2.67 (7) 32 (2.5) 24 (3) 33 (1)
Graziano Pelle -3.91 (8) 26 (4.5) 6 (10) 2 (9.5)
Gil -4.65 (9) 6 (10) 13 (8) 13 (6)
Roger Guedes -5.63 (10) 21 (7) 7 (9) 2 (9.5)

Table 2: The defensive anticipation metric P given by (2) for 10 players on Shandong
Luneng who received the most playing time during the 2019 CSL season. We also provide
comparison metrics involving aggression during the 2019 season, namely the total number
of fouls committed, tackles made and the number of interceptions.

In Table 2, we explored the relationship between P with player interceptions and
tackles in the context of Shandong Luneng. We expanded this investigation by considering
all players in the CSL who had played at least 500 minutes during the 2019 season. Figure
5 provides scatterplots relating P to interceptions and tackles. We observe that these
measures of aggression (i.e. interceptions and tackles) correlate with P leaguewise.
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Figure 5: Scatterplots of the defensive anticipation metric (2) plotted against player
interceptions and tackles made during the 2019 CSL season.

We investigated the validity of our metric further by calculating the average P -score for
all CSL players where we divided matches into 10-minute intervals. The plot is provided
in Figure 6. We observe that P decreases as the match progresses. Since players tire
as the game proceeds (both physically and mentally), it makes sense that our metric (2)
decreases. There appears to be a big drop after the 70-th minute of the match.

It is interesting that amongst CSL players with regular minutes, the two players with
the highest P -scores are Chang Feiya of Wuhan Zall (P = 5.71) and Yang Shiyuan
of Shanghai SIPG (P = 5.33). Feiya is primarily a midfielder and does not have re-
markable statistics; he scored only one goal in the 2019 season. Interestingly, the web-
site https://www.allfamousbirthday.com/chang-feiya/ describes Feiya as one of the most
popular Chinese football players. Shiyuan is a midfielder who also does not have re-
markable statistics; he did not score during the 2019 season. Interestingly, the website
https://www.whoscored.com/Players/143864/Show/Yang-Shiyuan describes Shiyuan as
a player who likes to tackle and commits fouls often.

5 DISCUSSION

We have introduced an important and seminal area of research where automatic and
objective methods have been developed to assess a particular defensive characteristic of off-
the-ball behaviour. We have referred to the proposed metric (2) as defensive anticipation.
The methods can be adapted to any invasion sport where tracking data are available.
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Figure 6: Plot of the defensive anticipation metric (2) averaged over all CSL players
during 10-minute intervals.

The evaluation of off-the-ball performance is viewed in a narrow context where fast is
considered better than slow. Even if speed is not the ultimate metric in off-the-ball eval-
uation, the metric (2) developed here may uncover insights into aspects of play. Perhaps
players with high evaluations may be thought of as “high motor” players whose skills are
useful to teams. An important aspect of the research is that our metric measures aspects
of industry, laziness, anticipation and quick-thinking; these are characteristics that have
not been previously quantified.

Some other notable aspects of our work include the following: the proposed metric is
seen as reliable in the sense that it truly captures intrinsic player tendencies (Table 1),
the metric adheres to expected results such as the positive correlation between the metric
and other statistics related to aggression (Figure 5), and decreasing defensive anticipation
as players tire (Figure 6).

5.1 Connections to Existing Literature

Whereas there does not seem to be any previous work on defensive anticipation in soc-
cer, there are various recent papers that attempt to assess off-the-ball performance. Of
course, this is a relatively new research topic since tracking data has only recently become
available. We discuss two substantive contributions.
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Dick and Brefeld (2019) use a reinforcement learning approach to evaluate player po-
sitioning. Unlike our investigation that has a defensive focus, Dick and Brefeld (2019) are
interested in offensive configurations that are more likely to lead to goals. The approach
takes into account current positioning and movement vectors that enable the considera-
tion of future formations. A scoring function is learned from past data that maps game
states to values that assess the benefit to the attacking team. Also, in contrast to our
work, the proposed measures correspond to the team level rather than the performance
of individual players.

In his PhD thesis, Fernández (2022) develops a framework for the investigation of
various problems in soccer. The comprehensive approach is predicated on the development
of an expected possession value model that decomposes the sport into components. For
example, the action space is composed of passes, drives and shots where each component
has its own set of estimation procedures. Applications in the thesis which are related to
our work concern off-the-ball performance. For example, in Chapter 7, Fernández (2022)
provides insights as to how teams can defend against buildup play, and how to calculate
a player’s optimal offensive positioning.

5.2 Future Research

There are at least two avenues for future research. First, there are many alternative pre-
dictive models that could be investigated. Given that we are predicting average player
movement, the determination of which model provides better predictions is not straight-
forward. Second, the approach only considers off-the-ball actions for players when the
opponent has possession. Naturally, player movement for players on the team in posses-
sion is also important. This is a more difficult prediction problem since there appears to
be more viable options for offensive players.
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