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Abstract

This paper evaluates quarterback performance in the National Football League.

With the availability of player tracking data, there exists the capability to assess

various options that are available to quarterbacks and the expected points gained

resulting from each option. The options available to a quarterback are based on

considering multiple frames during a play such that a current option may evolve into

new options over time. Our approach also considers the possibility of quarterback

running options. With tracking data, the location of receivers on the field and the

openness of receivers are measurable quantities which are important considerations

in the assessment of quarterback options. Machine learning techniques are then

used to estimate the probabilities of success of the passing options and the estimated

expected points gained from the options. The estimation procedure also takes into

account what may happen after a reception. The quarterback’s observed execution

is then measured against the optimal available option.
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1 INTRODUCTION

The National Football League (NFL) is the top revenue league in sport (Amoros 2016)

with an average team revenue of $453,000,000 in the 2017 season (Gough 2018). Despite

the big money nature of the NFL, football analytics trails some of the other “big” pro-

fessional sports including basketball (the National Basketball Association), soccer (major

European leagues) and baseball (Major League Baseball). For a survey of some of the

work that has been done in sports analytics, see Albert, Glickman, Swartz and Koning

(2017).

The analytics landscape in the NFL is beginning to change as Next-Gen-Stats’ player

tracking data was introduced in 2016 and was made available to all 32 NFL teams in

2018. Player tracking data is detailed spatio-temporal data where the locations of each

player on the field are recorded 10 times per second. This type of data leads to analytics

opportunities that were previously unthinkable in the era of boxscore data. Subsets of the

data have been released by the NFL in a yearly competition known as the Big Data Bowl

(https://operations.nfl.com/the-game/big-data-bowl/) which is an analytics event held in

conjunction with the NFL Scouting Combine. The availability of the player tracking data

has led to recent research in NFL analytics and includes Burke (2019), Chu et al. (2020),

Deshpande and Evans (2020), Yam and Lopez (2020) and Yurko et al. (2020).

A traditional NFL statistic is the quarterback passer rating. The passer rating (Zilavy

2018) is a complex formula which does not yield a straightforward interpretation; the

formula provides a minimum rating of 0 and a maximum rating of 158.3. It is a curious

fact that amongst the top 12 quarterbacks in 2019 (according to passer rating), all 12 of

these quarterbacks played for the 12 NFL playoff teams. An immediate reaction to this

observation is that a team must have an outstanding quarterback in order to make the

playoffs. Another explanation is that a quarterback’s rating is highly dependent on the

quality of his team. This is the motivation for our research; we attempt to introduce a

quarterback metric which is less dependent on the performance of one’s teammates. It is

possible that there are some excellent quarterbacks who play on weaker teams and their
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worth is not fully appreciated.

To investigate quarterback performance, we use the player tracking data previously

mentioned. On each passing down, we identify options that are available to the quar-

terback. This is a novel investigation as it requires the enumeration of options (both

passing and running) prior to the quarterback’s actual decision, and even options that

may have eventuated after his decision. The options available to a quarterback are based

on considering multiple frames during a play such that a current option may evolve into

new options over time. Then, each of these options are assessed an EPV (expected point

value) depending on the state of the game. Further, probabilities of the successful execu-

tion of these options are estimated. These components then allow us to formulate a metric

which compares actual outcomes versus optimal options. An advantage of this approach

is that the quarterback metric is less dependent on one’s teammates - some quarterbacks

will have better options than other quarterbacks, and the metric is formulated such that

a quarterback’s performance is only compared against his available options. Another ad-

vantage is that the metric takes running into account unlike the traditional quarterback

passing rating. The running abilities of quarterbacks such as Russell Wilson, Lamar Jack-

son, Deshaun Watson and Michael Vick have been a great benefit to their respective NFL

teams.

In terms of completing a catch, there have been various investigations (Burke 2019,

Deshpande and Evans 2020) and vendors (Next Gen Stats Team 2018) that provide prob-

abilities of pass completion. These approaches typically look at the circumstances at the

time of the catch (e.g. the location of defenders, where the ball is thrown, etc.). We

emphasize an important novelty of our approach where completion probability is assessed

at the time that the ball is thrown - this involves more uncertainty as it is unclear how the

play will develop downfield.

Burke (2019) uses neural networks to predict the targeted receiver. The covariates

chosen are different from ours and consideration is only given to passing options at the

instant that the pass is made. In assessing quarterbacks, Burke (2019) uses expected

yards; we believe that EPV is a more relevant measure in football since it incorporates
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context. For example, gaining 7 yards on first down and 10 yards is a much better outcome

than gaining 7 yards on third down and 10 yards. Unlike Burke (2019), we also intro-

duce some stochasticity in our approach; this facilitates error assessment. Importantly,

our approach also takes into account non-designed quarterback runs and interceptions;

intercepted passes form a critical component of the outcome of games.

In Section 2, we begin with a broad overview of our approach. The idea is that we

identify options that are available to a quarterback, we assign value to these options,

and we then compare the actual results versus the optimal options. This results in a

quarterback rating that is less dependent on teammates. Recall that better teammates

typically generate better options and we only consider the options that are available. For

example, a receiver who is fast and able to quickly change directions will likely provide

better quarterback passing options. On the other hand, highly accomplished defensive

backs will likely reduce quarterback passing options. In Section 3, details of the procedure

are provided. We describe the player tracking data, propose covariates and then use

machine learning algorithms to determine the probabilities associated with the options

available to the quarterback. The probabilities are then validated against holdout data.

In Section 4, the methods are applied and ratings are obtained for NFL quarterbacks. The

ratings generally agree with popular opinion although they reveal some surprises; there

are some quarterbacks held in high esteem who are not rated so highly, and vice-versa.

We conclude with a short discussion in Section 5.

2 OVERVIEW OF THE APPROACH

Consider a particular quarterback and all of his passing and running options on a play

that was not a designed run. For the ith play, the quarterback executes a decision at time

ti. For the time interval t ∈ (0, ti + ε], we consider all j = 1, . . . , ni options that were

available to the quarterback. An option is defined as either a non-designed quarterback

run or a potential pass to an eligible receiver (i.e. wide receiver, running back, tight end,

halfback, fullback as coded in the dataset). The players are followed throughout the

4



time sequence where each combination of player and time increment results in an option.

No doubt, inferences become more difficult for larger values of ε since players alter their

patterns once t > ti. For example, players tend to slow down once a pass is initiated and

they realize that they will not be active in the play. In Section 4, we set a small window

ε = 0.5 seconds.

We denote pij as the probability that the jth option on the ith play is a completion

where all running plays are treated as completions. Recall that the options j = 1, . . . , ni

are identified over all frames of the tracking data. The quantity pij is an unknown pa-

rameter which we estimate by p̂ij using machine learning methods. We let Gij denote

the corresponding expected points gained from the successful execution of option j on

play i. Similarly, we define G
(U)
ij as the expected points gained from the unsuccessful

execution of option j on play i. Note that unsuccessful execution of option j implies that

G
(U)
ij < 0. Since all unsuccessful pass options result in no yards gained, we further define

G
(U)
i = G

(U)
i1 = · · · = G

(U)
ini

. Expected point values were developed by Yurko, Ventura

and Horowitz (2019) and take into account both field position and down. We have uti-

lized the nflscrapR software (Horowitz, Yurko and Ventura 2020) to evaluate EPV. For

example, suppose that your team is faced with first down and 10 yards at your own 20

yard line. The EPV is 0.40, indicating that on average a team will gain 0.4 points on

the set of possessions following this state. Your team then completes a 6 yard pass and

is faced with second down and 4 yards at your own 26 yard line. The EPV from the

updated state is 0.69, and therefore the expected points gained from the completed pass

is G = 0.69− 0.40 = 0.29.

Taking into account the completion probability pij of the jth option on play i, the

value from making the optimal decision is therefore given by

Yi = max
[
(1− p̂i1)G(U)

i + p̂i1Ĝi1 , . . . , (1− p̂ini
)G

(U)
i + p̂ini

Ĝini

]
(1)

where each term in (1) is an estimated expected value. In (1), we emphasize that we

have used the notation Ĝ since we need to estimate the yards gained after a potential
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completion in determining EPV.

Now, corresponding to play i = 1, . . . , N for the given quarterback, we can calculate

the actual expected points gained Ai. This is obtained by taking the difference between

the EPV value before and after the play. We therefore propose the quarterback metric

Q =

(∑N
i=1Ai∑N
i=1 Yi

)
100% . (2)

Unlike the NFL passer rating, we note that Q is interpretable. Recall that the sum
∑

i Yi

denotes the maximal EPV gained by an average quarterback (in terms of execution) who

is always making the best decisions. Therefore, a score of Q represents the execution

percentage relative to this hypothetical quarterback. As a measure of quarterback per-

formance, the metric Q combines both the fundamental elements of decision making and

execution. And again, we emphasize that a feature of the metric (2) is that the basis of

comparison involves the options that are available to the quarterback. Different quarter-

backs have different options, and we might expect quarterbacks on better teams to have

better options. There is flexibility in choosing N so that it corresponds to the entire

season, a segment of the season or even particular games.

Figure 1 provides a plot of the change over time of the criterion (1− p̂ij)G(U)
i + p̂ijĜij

for five receivers during a passing play involving the New England Patriots in a match

against the Kansas City Chiefs on September 7, 2017. We see that as the play develops,

the criterion for the five players changes. Increases occur when a player becomes more

open and as a player moves further downfield. On this play, Dwayen Allen was the

intended receiver and the pass was incomplete. According to the criterion, passing to

Allen appeared to be the correct decision.
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Figure 1: Example of the change in the criterion (1− p̂ij)G(U)
i + p̂ijĜij (smoothed) for five

receivers from the New England Patriots during a passing play from September 7, 2017.

3 DETAILS OF THE APPROACH

3.1 Data

The data used in this investigation were provided by Next Gen Stats. Released in 2019,

the data cover the first six weeks of the 2017 NFL season. This subset of the season

includes five or six games per team, dependent on whether teams had been assigned a bye

week. This leads to a total of 91 games for which there are 6960 passing plays. These plays

were augmented with 252 non-designed quarterback runs and 452 sacks. After removing

problematic tracking data, the cleaned dataset consists of 6727 plays of interest.

At a more granular level, each play contains measurements on 23 unique actors on

the field: 11 offensive players, 11 defensive players and the football. Measurements for
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each actor were recorded 10 times per second. The data were collected by Next Gen

Stats and its partner organizations Zebra Technologies and Wilson Sporting Goods (see

https://operations.nfl.com/thegame/technology/nfl-next-gen-stats/). Each player mea-

surement includes detailed information about movement including velocity, direction, dis-

tance travelled since the last frame, acceleration, and position. Similar measurements are

available for the football in the same format.

The primary motivation of this investigation is the assessment of quarterbacks. How-

ever, there is a contextual aspect to the evaluation where it is well-known that teams have

dramatically different styles depending on the circumstances of the game. For example, in

“garbage time”, a team will stop throwing the ball when they lead by an insurmountable

margin. To address these less competitive situations, we use the win probability calcu-

lation in nflscrapR (Horowitz, Yurko and Ventura 2020), and we omit plays where the

win probability falls outside the range (0.1, 0.9). This further reduces the number of pass

attempts and non-designed runs in our dataset to 5276.

3.2 Covariates

A core problem in the development of our methods involves the estimation of the suc-

cess probability pij corresponding to the jth option on the ith play. Our modeling will

attempt to capture the covariates that influence the completion of a pass attempt. Since

the eventual goal concerns quarterback evaluation involving decision making, completion

probability is assessed at the time the ball is released rather than when it arrives. There-

fore, some variables that are relevant at the time when the ball arrives (e.g. receiver

separation from defenders) will be estimated at the time of release.

Previous work (Next Gen Stats Team 2018) has explored the modeling of comple-

tion probability. Their work highlights the relationship between factors such as pass air

distance, air yards, receiver separation, pass rush separation, and the speed of the quarter-

back at release. There are other covariates included in their modeling but these have not

been publicly disclosed. Unfortunately, many of the modeling details remain proprietary
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and cannot be reviewed.

Deshpande and Evans (2020) also model completion probability. They leverage a

collection of factors including receiver separation from the nearest defender and from the

ball, receiver movement vectors, and cumulative distance covered by the receiver during

the game. These covariates are essentially doubled up, being measured both at the time

of release and at the time of pass arrival. Their model which is based on Bayesian

additive regression trees generates 90% prediction accuracy with respect to completions.

For a completion (incompletion), the prediction is defined as accurate if the completion

probability is greater (less) than 0.5.

We use similar covariates to the aforementioned work with a few additions. However,

we emphasize that we only make use of covariates that were measurable at the time of

the throw since we wish to focus on quarterback decision making. We now introduce the

covariates such that for every play i and option j, there is a specified potential receiver.

For the time being, we omit running options.

For convenience, in Table 1, we summarize the covariates that are subsequently intro-

duced in subsections 3.2.1, 3.2.2 and 3.2.3.

Football Receiver Quarterback
air distance* receiver separation rush separation
yards downfield* sideline separation time from snap

field ownership* quarterback speed
pocket indicator variable

Table 1: Covariates used in the analyses corresponding to subsections 3.2.1, 3.2.2 and
3.2.3. An asterisk indicates that the covariate is determined at the time of ball arrival as
opposed to the time corresponding to the current frame.

3.2.1 Football covariates

The two football covariates that we consider are similar to those used in previous comple-

tion probability models. The first football covariate is air distance. Given the intended
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receiver, we calculate the Euclidean distance that the football needs to travel. This is a

measurement between final ball location and quarterback location at the time of the pass.

Intuitively, longer passes have lower probabilities of completion. The final ball location

is estimated using the receiver velocity and the ball velocity. We use a fixed value of 20

yards per second for all ball velocity calculations.

The second covariate is yards downfield. This is similar to air distance but only

considers yardline distance. The covariate adds football context as the number of yards

gained is relevant to scoring. Also, the probability of a pass completion may depend on the

angle that the ball is thrown. For example, a pass 10 yards to the side of the quarterback

typically has a higher pass completion probability than a 10 yard pass directly downfield.

3.2.2 Receiver covariates

Generally, the more open the receiver, the higher the completion probability. We attempt

to characterize openness with three covariates. The first two are similar to those in other

completion probability models whereas the remaining covariate is novel.

The first covariate is receiver separation from the nearest defender. This is obtained

by calculating the minimum Euclidean distance between the receiver and all players on

defence at the time that the pass is initiated.

A second covariate is the sideline separation distance at the time of release. A pass is

complete only if the receiver establishes control of the ball inbounds and the sideline is

used to mark the edge of the inbounds surface. If there is little space along the sideline,

this reduces the completion probability.

Although receiver separation provides information on openness, we also introduce a

field ownership metric which utilizes the positions and velocities of receivers and defenders.

The resultant covariate extends the notion of receiver separation beyond the consideration

of a single defender. The field ownership metric is adapted using ideas from Fernandez and

Bornn (2018) which were developed for soccer. We begin by estimating the probability

densities of the location of players at the time of ball arrival. The densities are based on

kinesiological ideas such as the recognition that it is more difficult for players to change
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directions at higher speeds. A team’s ownership at a given location is then the sum of

the individual densities for that team’s players at that location. Influence at a given

location is then calibrated on the interval [0, 1] where a value of 0.5 is interpreted as

equal location ownership by both teams. An owned cell by the offensive team is one for

which influence > 0.5. We then define the field ownership covariate as the total influence

of offensive owned cells within five yards of estimated ball arrival. We note that the

threshold of five yards may be regarded as an assumption where it may make more sense

to have larger thresholds for passes that are further downfield.

3.2.3 Quarterback covariates

The success of a passing play depends on more than just the receiver and his ability to get

open. In addition, there is a reliance on the offensive line to provide ample time for the

quarterback while also minimizing required quarterback movement. We aim to capture

these notions via the four following quarterback covariates which are similar to existing

covariates in the literature. Calculation of the covariates is done on a frame by frame

basis to assess hypothetical passes.

We define the covariate rush separation as the Euclidean distance between the quar-

terback and the nearest defensive opponent. This accounts solely for physical closeness

and does not consider the estimated time it takes the defender to reach the quarterback.

We also measure the time to throw covariate which is the time from the snap to the

current observed frame. Generally, a quarterback is under more duress as time progresses.

The covariate quarterback speed is estimated from his change in position between the

current frame and the frame observed 0.5 seconds prior. It is generally more difficult for

a quarterback to complete a pass when he is moving faster.

Finally, the distance from the pocket covariate uses the positioning of the quarterback

relative to a 7 yard by 7 yard square bordering the line of scrimmage. The covariate is

set to 0 if the quarterback is within the pocket; otherwise it is the minimum distance for

the quarterback to re-enter the pocket. The intuition is that it is easier to make a pass

from the pocket.
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3.3 Modeling and Estimation

3.3.1 Estimation of the pij’s

The estimation of the completion probabilities pij requires a statistical learning approach

that is flexible (e.g. non-linear) to accommodate the non-linearity and multicollinearity

of the covariates. We utilize a Stacking algorithm built on an ensemble of base learners

including random forests, gradient boosting, general linear models, logistic regression,

neural networks and naive Bayes. At the super learner level we incorporate a gradient

boosting model. This treats the cross-validated predictions generated by the base learners

as covariates (van der Laan, Polley and Hubbard 2007). Although there are many choices

at the super learner level, we found that gradient boosting offers the best predictive

performance for our problem (Naimi and Balzer 2017). Note that the prediction exercise

is more challenging in our context where covariates were obtained at the time of the throw

rather than at the time of arrival of the pass.

3.3.2 Estimation of yards gained after the catch

To model the yards gained after the catch, we restrict the dataset to the 3933 instances

where the pass was completed. In addition to original covariates used in the completion

probability model (Section 3.3.1), we introduce two new covariates that describe the

presence of tacklers “downfield” where downfield encompasses all defenders beyond the

receiver. The first covariate estimates the distance of the nearest downfield defender

to the intended receiver at the time of ball arrival. This is based on the velocities of

the two players and the average speed of a pass. The second covariate is the estimated

number of defenders downfield at the time of ball arrival. With more separation from

the nearest downfield defender and fewer tacklers downfield, there is an expectation of a

greater number of yards after the catch.

We use the same class of base learners as in the completion probability model (Section

3.3.1) with slight modifications for a regression task rather than a classification task. We

use a non-negative generalized linear model (GLM) as the super learner which combines
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the base learners. For the test dataset, the root mean squared error corresponding to the

fitted yards after the catch compared to the actual yards after the catch is 2.96 yards.

3.3.3 Estimation of yards gained from non-designed runs

Non-designed quarterback runs make up a small proportion of our observed plays (only

252 plays). Therefore, building a training and testing set to assess model fit would likely

lead to overfitting. Instead, we treat the yards gained from non-designed quarterback runs

as similar to yards gained after the catch, and we derive our estimates from the respective

model. The root mean squared error corresponding to these plays is 3.99 yards.

3.3.4 Handling interceptions

Modeling thus far has considered a pass outcome as binary - either a completion or

an incompletion. This was formulated with interceptions treated as incomplete passes.

Although this is sensible from the perspective of estimating completion probability, it is

inadequate to equate incompletions with interceptions in terms of EPV. Generally, an

interception is far more damaging to the offensive team than an incompletion.

The introduction of interceptions complicates the simple formulation (1) involving the

optimal expected points gained on the ith play. Denote q̂ij as the estimated probability of

an interception corresponding to passing option j on play i. Then equation (1) is modified

by replacing the jth term p̂ijĜij in (1) by

p̂ijĜ
(comp)
ij + q̂ijĜ

(int)
ij

where Ĝ
(comp)
ij is new notation for the expected points gained from a completion and

Ĝ
(int)
ij is the expected points gained from an interception. Note that the expected points

corresponding to an incompletion is constant across all options on a given play.

With our restricted dataset involving only 158 interceptions, it is challenging to es-

timate the probabilities qij of an interception with a comprehensive categorical model

that includes completions, incompletions and interceptions. For this reason, we analyze
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interceptions separately using the same approach and covariates as in the completion

probability model of Section 3.3.1.

Due to the lack of data, it is also difficult to reliably estimate yards gained after an

interception. Therefore, we assign no yards gained following an interception. Although

this is an unrealistic assumption, we note that interceptions are rare events where the

probabilities qij are small and do not affect Yi in (1) greatly. With more data, yards

gained after an interception could be better estimated with a larger dataset using the

ideas from Section 3.3.2.

The same principles can be applied for the analysis of quarterback fumbles for non-

designed runs in Section 3.3.3. Fumbles on non-designed quarterback runs are even more

rare in our dataset with only a single occurrence resulting from 252 runs. For the time

being, we omit the consideration of this possibility.

3.4 Validation

For the completion probability model (Section 3.3.1), we randomly split the data into

a training set (85%) and a validation set (15%) where base learners and weights were

determined using 10-fold cross-validation on the training data. Recall that a gradient

boosting super learner was utilized. Model performance was then tested on the held-out

validation data which generated an accuracy rate of 75.4% using p = 0.5 as the cutoff for

classification. In addition, Figure 2 provides a plot of observed completion probability

versus expected completion probability (ECP) where ECP is divided into 10 cells with

roughly the same number of observations. The proximity of the points to the line y = x

suggests that the model is performing well.

For the yards after the catch model (Section 3.3.2), we again randomly split the data

into a training set (85%) and a validation set (15%) where base learners and weights

were determined using 10-fold cross-validation on the training data. Recall that a non-

negative GLM super learner was utilized. Model performance was then tested on the

held-out validation data which generated a root mean squared error of 3.64 yards. We
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Figure 2: Scatterplot of observed completion probability versus expected completion prob-
ability based on binning the expected completion probabilities into 10 cells. The line y = x
is superimposed.

also report that 83% of the observations fell within five yards of the yards after the catch

prediction.

4 RESULTS

Using the proposed models, we predict the completion probability and the yards gained

after the catch for each option on all passing plays. Then using the EPV tables, this

permits the calculation of the quarterback execution metric Q given by (2).

To provide some additional insight, we calculate Q under two conditions to highlight

the impact of mobile quarterbacks through non-designed quarterback runs:

• Q1: non-designed runs removed from the dataset

• Q2: all potential passing plays (i.e. pass plays and non-designed runs)
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It is important to emphasize the distinction between the metrics Q1 and Q2. First,

we note that all designed quarterback runs have been removed from the dataset. The

rationale is that these are planned running plays (and although potentially valuable),

there is no decision making involved and the quarterback is taking the role of a running

back. However, in Q2, we do include non-designed quarterback runs (e.g. scrambles) as

these are options that are available to the quarterback. All quarterback runs (i.e. designed

and non-designed) are removed in the calculation of Q1, and consequently, Q1 is a measure

that only considers the passing component available to quarterbacks.

In Table 2, we report the statistics Q1 and Q2 for the 29 quarterbacks who had at least

100 potential passing plays in the first six weeks of the 2017 NFL season. The statistic Q1

corresponds to only passing options whereas the statistic Q2 incorporates both passing

and running. One of our first observations from Table 2 is that there is some disagreement

between Q1 and the NFL Passer Rating. If we look at the six teams who had quarterbacks

with passer ratings exceeding 100, we observe that these teams had fast starts in 2017.

Specifically, after the first six weeks of the season, Kansas City was 5-0, Philadelphia was

5-1, New England was 4-2, New Orleans was 3-2 and the LA Rams were 4-2. This is

again suggestive that the NFL Passer Rating is largely a function of team success. On the

other hand, our statistic Q1 incorporates performance with decision making. We see that

the top quarterback according to the passing statistic Q1 is Dak Prescott with Q1 = 44.5

and at the bottom of the list is DeShone Kizer with Q1 = 24.5. With Dak Prescott, the

interpretation of the statistic Q1 is that over the first six weeks of the 2017 NFL season,

when only considering passing plays, his EPV contribution was 44.5% of the hypothetical

quarterback who made optimal decisions on every play. We also observe that Q1 does not

correlate strongly with the NFL Passer Rating (r = 0.51).

When we look at the overall quaterback rating Q2 in Table 2 which includes non-

designed runs, we observe that Russell Wilson had the greatest increase in Q2 over Q1.

This corresponds to the widespread opinion that Russell Wilson has great value as a

scrambling quarterback. It is probably surprising to many football fans to see that Eli

Manning’s Q2 statistic also suggests that he makes valuable runs. We bear in mind that
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we have a limited dataset, and in the first six weeks of the 2017 season, Eli Manning ran

only three times with a total gain of 21 yards. Generally, the differences between Q1 and

Q2 are not great, and this demonstrates that passing (decision making and execution)

remains the fundamental contribution of quarterbacks.

The calculations obtained in Table 2 were based on the allowance of an additional

ε = 0.5 seconds from the time of the release of the pass or until the quarterback had

passed the line of scrimmage in a non-designed run (see Section 2). Although this is a

feature of the methods, we need to be sensitive to the reality that prediction of potential

player actions beyond ε = 0 seconds becomes increasingly difficult for larger ε. We

therefore repeated the analyses in Table 2 using ε = 0 seconds and found that the sample

correlation using the two timeframes was r = 0.99 for Q1 and r = 0.99 for Q2.

We have previously mentioned that although our statistics attempt to investigate

quarterback performance, the statistics do not completely eliminate contributions from

teammates and the effect of the opposing team. To investigate this, we are interested in

the opportunities available to the 29 quarterbacks in our dataset. We measure opportunity

for a quarterback by Ȳ which is an average of Yi in (1) taken over the plays available to

the quarterback. In our dataset, Philip Rivers had the greatest opportunity Ȳ = 0.473

whereas Case Keenum had the least opportunity Ȳ = 0.344. More generally, opportunity

appears to be a topic worthy of greater investigation in sports analytics. The blog post

by Lopez (2020) considers opportunity in the context of NFL running backs.

5 DISCUSSION

In the NFL, the quarterback is generally regarded as the most important player on a

team. The quarterback touches the ball on every offensive possession and his decision

making is critical to team success. Yet, the way that quarterbacks are evaluated in the

media is not nuanced. Generally, their assessment is determined by box score statistics.

This paper attempts to use the rich potential of spatio-temporal data to evaluate quar-

terbacks at a deeper level. The player tracking data used in this analysis considers the
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locations and velocities of all players on the field in increments of 0.1 seconds. With this

wealth of information, we develop interpretable statistics that are based on what a quar-

terback actually did compared to what they might have done. The statistics use machine

learning techniques for the primary purpose of predicting what might have happened had

the quarterback chosen a different option. We are not suggesting that our statistics ought

to become the standard for quarterback evaluation. Rather, we suggest that they pro-

vide a nuanced view involving decision making where quarterbacks on weaker teams are

provided a more balanced appraisal.

Although we believe that Table 2 is interesting, we recognize that it is based on only

six weeks of available data during the 2017 regular season of the NFL. The main purpose

of the paper is to explore the possibilities involving quarterback evaluation. Accordingly,

there are both limitations and potential future research directions associated with our

work.

One limitation that we do not know how to resolve is that quarterbacks are sometimes

limited in their freedom to make decisions. Therefore, it is not genuine that all options

evaluated by our statistic Q in (2) are realistic options. It may be the case that coaches

provide experienced quarterbacks more leeway in decision making than inexperienced

quarterbacks. Therefore, it might be argued that the statistics developed in this paper

are also a function of coaching. We also note that we have not provided standard errors

associated with the statistics. With larger datasets, this may be remedied by some sort

of bootstrapping procedure.

Another limitation of our approach is that we have not completely separated the

performance of a quarterback from the performance of his teammates. For example, in

the calculation of Q1 and Q2, really good receivers who catch a ball that others would

not catch helps to inflate Q1 and Q2. Perhaps the metrics might better be interpreted as

measures of a team’s performance in the passing game. We also ought to keep in mind

that maximizing EPV gained is not always a quarterback’s objective. Particularly in late

game situations, we believe that maximizing win probability is a more realistic criterion.

One could also imagine situations where maximizing first down probability is the most
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important criteria.

For future research, we see various potential enhancements and extensions. First, a

greater exploration of ε outlined in Section 2 could be investigated. Recall that ε is the

amount of time that we consider after a pass attempt to assess alternative quarterback

options.

We also see the possibility of the consideration of additional statistics. For example,

instead of the observed statistics Ai in (2), we could replace it with its expected value

E(Ai) which is explored in Reyers (2020). The idea is that whereas Ai represents the

actual EPV gained on the ith play, E(Ai) is the expected value taken over the population

of quarterback throws given the passing decision. In this case, Q provides a greater

reflection of decision making rather than a combination of decision making and execution.

For illustration, in Table 2, Prescott, Cousins and Winston were ranked the top three

quarterbacks, respectively according to Q1. Using E(Ai), Reyers (2020) reports that

the top three quarterbacks are Cousins, Rivers and Newton, respectively. Alternatively,

execution-based metrics could be obtained by considering the differences Ai−E(Ai) which

describe the excess of observed performance over expected performance. Another avenue

for future work is the consideration of player specific traits. Currently, for example,

the completion probability model is based on the concept of an average receiver. A

quarterback’s decision making may change depending on the quality of a potential receiver.
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QB Team # Plays Q1 Q2 NFL QB Rating
D Prescott Dallas 140 44.5 43.9 86.6
K Cousins Washington 154 42.8 43.4 93.8
J Winston Tampa Bay 118 40.4 40.4 92.2
A Smith Kansas City 196 39.9 39.3 104.7
M Ryan Atlanta 164 39.5 39.7 91.4
D Carr Oakland 117 39.4 39.3 86.4
C Wentz Philadelphia 205 38.6 38.1 101.9
T Brady New England 180 38.5 38.0 102.8
J McCown NY Jets 179 37.8 38.0 94.5
P Rivers San Diego 214 37.3 37.3 96.0
A Dalton Cincinnati 135 37.1 36.2 86.6
D Brees New Orleans 114 36.4 36.4 103.9
B Roethlisberger Pittsburgh 193 35.7 35.1 93.4
C Keenum Minnesota 136 35.0 36.0 98.3
E Manning NY Giants 201 34.5 35.3 80.4
C Newton Carolina 184 34.0 34.0 80.7
J Goff LA Rams 170 33.4 33.3 100.5
T Siemian Denver 162 32.0 31.5 73.3
A Rodgers Green Bay 164 31.7 31.5 97.2
M Mariota Tennessee 128 31.6 31.0 79.3
M Stafford Detroit 182 31.2 31.3 99.3
J Brissett Indianapolis 166 30.9 31.8 81.7
R Wilson Seattle 179 28.9 31.0 95.4
T Taylor Buffalo 163 28.8 28.3 89.2
C Palmer Arizona 190 28.6 28.5 84.5
B Bortles Jacksonville 129 28.1 28.8 84.7
J Flacco Baltimore 146 26.0 26.0 80.4
J Cutler Miami 126 25.6 26.4 80.8
D Kizer Cleveland 128 24.5 24.8 60.5

Table 2: NFL Passer Ratings and rankings based on the Q metrics for the first six weeks
of the 2017 NFL season.
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