
Higher Order Envelope Random Variate GeneratorsMichael Evans and Tim SwartzUniversity of Toronto and Simon Fraser UniversityAbstractRecent developments, Gilks and Wild (1992), Hoermann (1995),Evans and Swartz (1997a), have lead to algorithms for generating fromdistributions that have black-box characteristics in the sense that theseplace minimal requirements on a distribution for implementation. Allof these developments were based on the construction of linear en-velopes for a density or a simple transformation of the density. In thispaper we generalize the approach to polynomial envelopes and showthat this leads to some distinct advantages. Also we address severaldi�cult generating problems.1 IntroductionSuppose that we have a distribution on R with density proportional to fand that we wish to generate a sample from this distribution: From a naivepoint of view this is a simple problem, for if we can evaluate the distributionfunction F (x) = R x�1 f(z) dzR1�1 f(z) dzand its inverse F�1; we can then generate p from a uniform distribution on(0; 1) and return X = F�1(p): This is called the inversion algorithm. Whileinversion works well with certain special distributions it is unsatisfactoryin general because F and F�1 are typically di�cult to evaluate and theresulting algorithm is very ine�cient. It is this ine�ciency that leads to theconsideration of alternative algorithms such as the rejection and the ratio ofuniforms algorithms; see Devroye (1986) for a description of these and otheralgorithms and for an in-depth discussion of many of the issues surroundingrandom variable generation.In Gilks and Wild (1992) an adaptive rejection algorithm was introducedfor log-concave densities; i.e. when ln f is concave on its domain. Basically1



a piecewise linear upper envelope u and a piecewise linear lower envelope lare constructed for ln f: We then have that exp(l(x)) � f(x) � exp(u(x))and it is easy to generate from the density g proportional to exp(u(x)) viainversion. This gives a rejection algorithm for f based on generatingX � g;generating p � U(0; 1) and then accepting X whenever f(X) � p exp(u(X)).If X is not accepted then we repeat this process until a value is accepted.An added e�ciency step is to �rst see if exp(l(X))� p exp(u(X)) as then wecan accept X without having to evaluate f which in some cases can be muchmore costly. This is called squeezing. This paper also introduces the notionof adaptive construction of the envelopes as new envelopes are constructed,that better approximate f , each time there is a rejection.In Hoermann (1995) this algorithm is generalized to a wider class oftransformations T and the notion of T -concavity is introduced; i.e. f isT -concave whenever T � f is concave on its domain. A still wider class oftransformations is introduced in Evans and Swartz (1997a) and it is shownthat it is not necessary for a density to be T -concave in the sense of theabove de�nition. As described in that paper the essential ingredients forsuccessful implementation of this methodology are transformations TL andTR so that the density is inevitably TL-concave (or TL-convex) in the lefttail and inevitably TR-concave (or TR-concave) in the right tail and furtherthat the inection points be available of the possibly transformed densityon the remaining part of the domain; i.e. between the points where wedetermine the tails to begin. Many of the standard distributions can behandled by these techniques in the sense that with little work highly e�cientalgorithms are produced. In each of these papers, attention is restricted tolinear envelopes for the transformed density.In Evans and Swartz (1997b) it was noted that the technique for con-structing upper and lower envelopes for f could be applied to any function;i.e. not just densities, and since the envelopes are easy to integrate exactly,this yielded approximations to integrals of f with exact error bounds. Theseintegral approximations are relatively ine�cient, however, if high accuracyis required as their rate of convergence under compounding is quadratic.It is shown in that paper, however, that it is possible to easily constructpiecewise polynomial upper and lower envelopes for f and that these leadto integral approximations with rates of convergence equal to any desiredorder. The higher order envelope rules developed there are shown to bepractically useful for approximating integrals.A natural question then is whether or not the piecewise polynomial en-velopes can be used in the random variate generation problem and, if so, arethey useful? That is the topic considered in this paper. With some quali�ca-2



tions both of these questions are answered a�rmatively. In sections 2 and 3we provide a detailed presentation of the algorithm which includes extensionsand re�nements over what has been considered previously. In particular insection 3 we demonstrate a general method for generating useful transfor-mations to handle tails. In section 4 we present examples demonstrating theutility of the methodology and in section 5 we summarize.Historical precedents for the envelope approach to generating from dis-tributions can be found in Devroye (1986), Marsaglia and Tsang (1989) andZaman (1991). Also see Hoermann and Deringer (1996) for an applicationof this approach to generating from discrete distributions.2 The Algorithm for the CenterWe �rst consider densities with compact support (xl; xr) and subsequentlydiscuss how to generate from the left and right tails. As indicated in section1 treatment of the tails is basically a question of choosing an appropriatetransformation T : [0;1)! R so that T � f is concave or convex. Typicallywe will take xl and xr far out in the respective tails so that we don't gen-erate often from the tails. We assume throughout this section that, for anyfunctions referred to, all relevant derivatives exist.We proceed now to the construction of the polynomial envelopes for f:Suppose that the n�th derivative f (n) has no inection points in (xl; xr) ; i.e.f (n) is either concave or convex in the interval. If f (n) has inection points in(xl; xr) then we subdivide (xl; xr) into subintervals, with end-points given bythe inection points, and apply the envelope construction techniques withineach subinterval. Therefore a necessary ingredient of our methodology isthat the inection points can be relatively easily obtained. Actually, asour examples particularly demonstrate, the need to obtain inection pointscan often be entirely avoided and such situations often correspond to thesimplest and most practically useful implementations of the method.The basic idea behind the construction of the envelopes is dependent onthe following simple fact derived from the Fundamental Theorem of Calcu-lus.Lemma 1. If g0(x) � h0(x) for every x 2 (xl; xr) then g(x) � h(x)�h(xl)+g(xl) for every x 2 (xl; xr).Now suppose that f (n) is concave in (xl; xr) : We then have the followingresult which gives upper and lower polynomial envelopes for f on (xl; xr) :3



Lemma 2. If f (n) is concave on (xl; xr) then for every x 2 (xl; xr) ;l(x) = nXk=0 f (k) (xl)k! (x� xl)k + f (n)(xr)� f (n)(xl)xr � xl (x� xl)n+1(n+ 1)!� f(x) � u(x) = n+1Xk=0 f (k) (xl)k! (x� xl)k: (2.1)Proof: Because f (n) is concave on (xl; xr) we have that the chordl(n)(x) = f (n)(xl) + f (n)(xr)� f (n)(xl)xr � xl (x� xl)and the tangent u(n)(x) = f (n)(xl) + f (n+1)(xl)(x� xl)satisfy l(n)(x) � f (n)(x) � u(n)(x) on (xl; xr): Then repeatedly applyingLemma 1 to both sides of this inequality we obtain the result.If f (n) is convex on (xl; xr) then the expressions for l(x) and u(x) in (2.1)are reversed. Notice that because f is nonnegative we can improve the lowerenvelope as a bound on f by replacing l by max (0; l) : We will assume thatthis has been done whenever this is convenient.As f is nonnegative this implies that u(x) is nonnegative and is thus pro-portional to a density function on (xl; xr): Further the distribution functionis given by U(x) = R xxl u(z) dzR xrxl u(z) dzand this is a polynomial whose coe�cients are easily and exactly calculated.A direct method of generating from U is to generate p � U(0; 1) and thensolve U(X) = p for X: Note that because U is necessarily strictly increas-ing in (xl; xr) there is a unique such X and this is the unique root of thepolynomial U(x)� p of degree n + 2; lying in this interval. Therefore thisroot can be calculated exactly using polynomial root-�nding algorithms. Infact when n = 0 or n = 1 we can use the well-known formulas for the rootsof a quadratic or cubic respectively. Recall that the case n = 0 correspondsto constructing linear envelopes to the density as discussed in Evans andSwartz (1997a). Actually, as we illustrate in section 4, the polynomial root-�nding algorithms, while guaranteed to �nd all the roots of a polynomial,4



are relatively ine�cient for this purpose, because they compute all the roots.It is much better is to use a general root-�nder like the secant method.Once we have X from the distribution given by U then we apply therejection step; i.e. generate an additional, independent p � U(0; 1) andaccept X when f(X) � pu(X). Of course we can precede the comparisonwith a squeezing step; namely accepting X if l(X) � pu(X). The rejectionstep leads to an adaptive algorithm. For if f(X) < pu(X) we then put x1 =X and construct new envelopes on (xl; x1) and (x1; xr) which are combinedto give new upper and lower envelopes l and u for f on (xl; xr). We alsocompute p1 = R x1xl u(z) dz= R xrxl u(z) dz and p2 = R xrx1 u(z) dz= R xrxl u(z) dz:A new candidate X is then generated from the density proportional to uby �rst generating i 2 f1; 2g ; using the discrete distribution fp1; p2g ; andthen generating X from u conditioned to the �rst or second subinterval inthe partition ((xl; x1); (x1; xr) ) according to the value of i: We continuemodifying the envelopes; and thus further subdividing (xl; xr); until we getan acceptance. We note that the distribution with density proportional tothe upper envelope function is a discrete mixture of continuous componentswith non-overlapping supports. To determine the mixture component we usethe aliasing method, see Devroye (1986), which only requires the generationof two uniforms and a comparison. The expensive part of this step is theset-up and this must be done each time we adapt. Accordingly it makessense to stop adapting when the upper and lower envelopes are providingaccurate approximations to f: As discussed in Evans and Swartz (1997a) agood stopping rule to determine this is to stop adapting when the ratioR xrxl l(z) dzR xrxl u(z) dzis su�ciently close to 1. Notice that both integrals in this ratio can be easilyand exactly evaluated.When f (n) has k > 0 inection points, then the domain is split intok + 1 regions. The algorithm proceeds as above by constructing piecewiselinear envelopes on each region and by de�ning a mixture distribution overall regions.The above algorithm leaves open the question of what is a suitable choiceof n? A natural criterion to assess this is e�ciency of computation; namelywhich choice of n leads to the fewest rejection steps or, perhaps more im-portantly, the fastest mean computation time. However, as we will see inour discussion of the examples in section 4, the choice n = 0 frequentlyleads to a perfectly satisfactory algorithm. The real virtue of the higher5



order polynomial approach is that there are often simpler ways to computethe polynomial envelopes than directly applying the methods just describedto f . For example, suppose that f can be factored as f(x) = g(x)h(x)where g � 0; h � 0 and we have polynomial, perhaps of degree 1, envelopeslg � g � ug and lh � h � uh for these functions. We then have higherorder polynomial envelopes lglh � f � uguh for f: Application of techniquessimilar to this can often allow us to entirely avoid the computation of deriva-tives of f and also the need to calculate inection points of such derivatives.Several such techniques are presented in section 4.3 The Algorithm for the TailsWe now discuss how to generate from the tails (�1; xl) and (xr;1) andhow we go about choosing the points xl and xr: We restrict our discussionto the right tail but note that the treatment is similar for the left tail. Alsowe note that the transformation used may di�er in the two tails; e.g. seethe discussion of the F distribution in Evans and Swartz (1997a).Suppose then that we have a transformation T and constants � and �satisfying(i) T : (0; supffg)! R is smooth and monotone(ii) T 0 and T�1 are easy to compute(iii) the anti-derivative of T�1 (�+ �x) is easy to compute for x 2 (xr;1)and is integrable on (xr;1)(iv) it is easy to generate from the distribution with density proportional toT�1 (� + �x) on (xr;1).For example, if T (f) = ln(f) then all of these conditions are satis�ed pro-vided that � < 0. Also if we de�ne Tp for p 2 (�1; 0) by Tp(f) = fp then Tpis smooth and decreasing. Further T�1p (x) = x1=p for x > 0 and, providedthat � and � are chosen so that � + �x � 0 on (xr;1) ; thenZ T�1p (�+ �x) dx = 1� pp+ 1(�+ �x) p+1p :Therefore T�1p (� + �x) is proportional to a density on (xr;1) and sincethe inverse cdf is easily obtained, it is straightforward to generate from thisdistribution via inversion. We discuss the conditions (i)-(iv) further below.Now suppose that T satis�es these conditions and that xr can be chosenso that f is T -concave on (xr;1) when T is increasing or T -convex on(xr;1) when T is decreasing. Then for x 2 (xr;1) we have thatT (f(x)) � T (f(xr)) + T 0(f(xr))f 0(xr)(x� xr)6



when f is T -concave andT (f(x)) � T (f(xr)) + T 0(f(xr))f 0(xr)(x� xr)when f is T -convex. Then taking the T -inverse of both of these inequalitieswe obtain f(x) � T�1 �T (f(xr)) + T 0(f(xr))f 0(xr)(x� xr)	for x 2 (xr;1): Note that T�1 fT (f(xr)) + T 0(f(xr))f 0(xr)(x� xr)g servesas an upper envelope for the right-tail. This in turn leads to the tail boundZ 1xr f(x) dx � Z 1xr T�1 �T (f(xr)) + T 0(f(xr))f 0(xr)(x� xr)	 dx (3.1)and by condition (iii) the right-hand side of (3.1) can be evaluated in closedform. As noted in Evans and Swartz (1997b) when T = ln and f is thestandard normal density then (3.1) is the Mills ratio inequality and so wecan think of (3.1) as a generalization of this and we refer to it by this namehereafter.Further, from condition (iv), we can easily generate from the densityproportional to T�1 (� + �x) where � = T (f(xr))� T 0(f(xr))f 0(xr)xr and� = T 0(f(xr))f 0(xr): The density T�1 (�+ �x) serves as the upper envelopein the rejection algorithm whenever we have to generate from the tails.The question remains concerning the choice of xr: In general, we wantto choose values so that we spend most of our time using the more e�cientcenter part of the generator. It should be noted, however, that envelopesof �xed degree in the center may not be as good if the tails are chosen tooextreme. When f is normalized then (3.1) can be used to choose xr by en-suring that the right-hand side is suitably small. When f is not normalized,and there are applications where this occurs, then we also need to constructa lower envelope for the center. The right-hand side of (3.1) divided by theintegral of the lower envelope for the center gives an upper bound on thetail probability R1xr f(x) dxR1�1 f(x) dxand can be used to select xr:The conditions that we have placed on T are a little di�erent than thosestated in Evans and Swartz (1997a). This is because in that paper wealways took n = 0 and also considered transformations for the center of the7



distribution. Further we required T 0 to be homogeneous. In this paper wehave avoided transformations in the center since the piecewise envelopes donot lead to simple variate generation when n � 1. For example, if we take fto be the normal density with n = 1 and apply the logarithm transformationin the center, then we would not be able to integrate the upper envelopein closed form as we do with the polynomial form, and we would have tomake calls to a normal distribution function routine. Overall, we think thatthe transformation is necessary to handle the tails, but less often in thecenter, as the methods of section 2 are satisfactory there. Evans and Swartz(1997a) provide some examples where transforming the center is useful; e.g.the Student(�) distribution is T�1=(�+1)-convex throughout its entire domainand hence we have a very simple adaptive generator for n = 0:A general method for constructing transformations T , useful for handlingtails, can be provided. For example, suppose that g is a density from whichwe can easily generate variates and suppose that g0 and g�1 can be easilycomputed. Then de�ne T�1(f) = g(f):For example, letting T equal the log-arithm transformation corresponds to the Exponential(1) distribution andthe power transformation Tp corresponds to the density proportional to x1=pon (a;1) for some a > 0: Note that we must have p 2 (�1; 0) wheneverthe support of f contains an in�nite interval but other choices are usefultoo. For example, if f is the Beta(1=2; 1=2) density then f is T�2-convexand note that we de�nitely need to handle the tails of f in constructing agenerator for this distribution even though its support is compact.New transformations and generating algorithms are obtained from theseconsiderations as well. For suppose that f is bounded and we are willing togenerate from the half-normal distribution for the tails. As this is in e�ectequivalent to generating from a normal and ignoring the sign, there are excel-lent algorithms available for this. The transformation T (f) = p�2 ln(f=c)where c > sup(f); corresponds to this density. For example, the density on(0;1) proportional to exp ��x1=2� is T -concave with respect to this trans-formation with c = 1 and note that it is not log-concave. As a secondexample, we can use the half-logistic density, which can easily be generatedfrom by inversion, and this leads to the transformationT (f) = 2 cosh�1 �pc=f� = 2 ln�pc=f +pc=f � 1�where c > sup(f): Clearly there are many other densities that could be usedto generate transformations. In section 3 we only make use of the logarithmtransformation but see Evans and Swartz (1997a,b) for other meaningfulcontexts where this is not adequate. 8



4 Examples4.1 The normal distributionIn the �rst example, we generate from a possibly truncated standard normaldistribution. There exist various excellent normal generators and ours is notintended as a replacement although we remark that it does have the virtueof handling truncated normals as well. Rather we use this as a demonstra-tion of applying the methodology in a standard context. We note furtherthat many of the algorithms used to generate from the normal require spe-cialized knowledge of properties of the distribution and were developed afterconsiderable study. This is not the case with the methods that we employwhich are essentially black-box. In fact while the developments of section 2seem to require knowledge of derivatives and inection points we show thatin this example even these requirements can be avoided.We denote the standard normal density by �(x) = (2�)�1=2 exp ��x2=2� :Then �(n)(x) = (�1)nhn(x)�(x) where hn(x) is the Hermite polynomial ofdegree n associated with �: These polynomials are easy to compute as theysatisfy the recursion relation hn+1 (x) = xhn (x)�nhn�1 (x) with h0 (x) = 1;h1 (x) = x. Also the inection points of �(n)(x) are given by the roots ofhn+2 and these are readily available in many numerical analysis packages.We can then proceed as in sections 2 and 3 to construct a generator for theN(0; 1) distribution. Note that when T = ln and x > 0, (3.1) becomesZ 1x � (z) dz � 1p2� e�x22x (4.1)and this is used to determine (xl; xr) :We also consider a method for constructing envelopes for � that doesnot require the evaluation of derivatives or inection points. This is basedon constructing envelopes for the function e�x using the methods of section2 and then substituting x2=2 for x to obtain envelopes for p2�� (x) : Notethat (e�x)(n) = (�1)n e�x and so the n� th derivative is concave or convexon an interval (a; b) depending on whether n is odd or even respectively; inparticular we do not need to compute inection points. This leads to thefollowing degree n+1 polynomial envelopes for e�x on (a; b); namely upperenvelopeu(a;b)n (x) = ( e�aPn+1k=0 (�1)kk! (x� a)k n odde�aPnk=0 (�1)kk! (x� a)k + (�1)n(n+1)! e�b�e�ab�a (x� a)n+1 n even9



and lower envelopel(a;b)n (x) = ( e�aPnk=0 (�1)kk! (x� a)k + (�1)n(n+1)! e�b�e�ab�a (x� a)n+1 n odde�aPn+1k=0 (�1)kk! (x� a)k n even:Now suppose that we want polynomial envelopes to � on the interval (c; d)where c � 0 or d � 0: Then it is immediate that ln(x) = l(a;b)n (x2=2) andun(x) = u(a;b)n (x2=2) give polynomial envelopes of degree 2n+2 for p2��(x)on (c; d) where (a; b) = �c2=2; d2=2� when c � 0 and (a; b) = �d2=2; c2=2�when d � 0: The integrals of these envelopes are also polynomials. There-fore taking linear envelopes for the exponential function results in quadraticenvelopes for � and piecewise cubic distribution functions. Although thefunction (e�x)(n) has no change in concavity, we break the real line into(�1; 0) and [0;1) to conveniently handle the cases c � 0 and d � 0.We implemented both of these algorithms with various choices for thedegree of the polynomial envelopes. To assess the e�ciency of the algorithmswe computed the CPU time to return 105 values. We refer to the algorithmsbased on computing a derivative of � and its inection points collectively asthe Derivative algorithm and that based on using the envelopes to e�x as theExponential algorithm. The value n refers to the degree of the derivativeused for the center, m refers to the initial number of equal length subin-tervals within each concavity region and the acceptance rate refers to theproportion of generated values from the upper envelope that are accepted.This acceptance rate increases with better approximating upper envelopes.Also we considered two di�erent scenarios. In the �rst one we asked for105 values from the generator in a single call, so that the adaptive stepscontinued as we generated, and in the second one we called the generator105 times. For all of the algorithms we took (xl; xr) = (�5; 5) :We observe from Table 1 that there is considerable overhead in the setuptime of our generator as it takes signi�cantly longer in multiple calls thanin a single call. The best algorithm is the Derivative algorithm based onn = 0 but the Exponential algorithm based on n = 0 compares favorablyand note that it uses quadratic envelopes for �: A virtue of the Exponentialalgorithm is that it is easier to implement. Typically, as we increase n or mthe envelopes better approximate �; as is reected by the acceptance rates,but this is o�set by an increase in computation time.The fastest IMSL algorithm for the standard normal; namely drnnoa,took about 1.3 second to generate 105 standard normal variates based on asingle call. Therefore it would appear that none of the algorithms we haveconsidered are competitive with IMSL. Still we remark that our algorithms10



Algorithm n m Acceptance Rate CPU (secs)Derivative (single call) 0 1 0.999 10Derivative (multiple calls) 0 1 0.556 50Derivative (multiple calls) 1 1 0.556 68Derivative (multiple calls) 2 1 0.759 75Derivative (multiple calls) 0 3 0.902 57Exponential (single call) 0 1 0.999 14Exponential (multiple calls) 0 1 0.464 60Table 1: Results from generating 105 standard normal variates where n isthe degree of the derivative andm is the number of equi-spaced points withineach concavity interval.have been implemented with no attempt to optimize in contrast to drnnoaand the computation times are not prohibitive. In Evans and Swartz (1997a)we constructed a normal generator using these methods with n = 0, applyingthe log transformation to the entire density, subdividing (xl; xr) = (�4; 4)into 60 subintervals and turning o� the adaptation. In that case the IMSLalgorithm was only twice as fast. The major savings in this minimal designis that exact inversion of an exponential function is faster than inversion ofa quadratic using a modi�ed secant method. Therefore it is clear that theproposed methods can yield useful algorithms even for well-studied problemsuch as the normal distribution.4.2 Rational-normal and rational-beta distributionsWe consider distributions on D � R with densities of the formf(x) = cr(x)��x� �� �= cp(x)q(x)��x� �� �= cQm1i=1 (x� �i) (x� ��i )Qm2i=1 (x� �i) (x� ��i ) ��x� �� � (4.2)where � denotes the standard normal density function, � 2 R; � 2 (0;1);�1 : : : ; �m1 2 C; �1; : : : ; �m2 2 CnD; with C denoting the complex numbers,11



�� denoting the complex conjugate of �, andc�1 = ZD r(x)��x� �� � dx:Notice that q is never 0 so that c�1 is �nite. Recall that we do not needto calculate c to construct the generator and it does not matter whether ornot D is a subinterval or all of R. In Evans and Swartz (1997a) generatorsfor polynomial-normal distributions were constructed using linear envelopes;i.e. m2 = 0 and n = 0:Here we consider two approaches to constructing algorithms for therational-normals. The �rst approach, which is a direct implementation ofthe algorithm discussed in the paper, requires the evaluation of the deriva-tives of r(x)�(x): This is rather cumbersome but we illustrate that this canbe done. From Leibniz's formula we have that�r(x)��x� �� ��(k) = kXi=0 �ki�r(i)(x) 1�k�i�(k�i) �x� �� �r(i)(x) = iXj=0 �ij�p(j)(x)� 1q(x)�(i�j) :Putting t(x) = 1=x; we have, from Fa�a di Bruno's formula (see Knuth(1973)), that� 1q(x)�(i�j) = (t(q(x)))(i�j)= i�jXl=0 t(l)(q(x)) Xl1+l2���+li�j=l;l1+2l2���+(i�j)li�j=i�j8<: (i�j)![l1!���li�j !]h(1!)l1 ���((i�j)!)li�ji��q(1)(x)�l1 � � ��q(i�j)(x)�li�j 9=; :Of course t(l)(x) = (�1)ll!=xl+1 and the derivatives of p and q are easilyevaluated in closed form, particularly when they are written out in powersof x. Therefore the derivatives of the unnormalized f can be easily evalu-ated using a symbolic calculation package such as Maple or via a numerical12



routine. Further (q(x))k+1 �r(x)� �x��� ��(k)� �x��� �is a polynomial with the same real roots in D as �r(x)� �x��� ��(k) and sothese roots can be easily evaluated using a symbolic calculation package ornumerical routine.To handle the tails of f we need an appropriate transformation T: Inthe case when we have polynomial-normal distributions then we can takeT = ln; i.e. these distributions are log-concave in the tails , as demonstratedin Evans and Swartz (1997a). This fact generalizes to the rational-normals.Lemma 3. The density f given by (4.2) is log-concave in the tails.Proof: We have that[ln (f(x))](2) = �1�2 � m1Xi=1 " 1(x� �i)2 + 1(x� ��i )2#+m2Xi=1 " 1(x� �i)2 + 1(x� ��i )2#and note that the sums in this expression go to 0 as x!1 or x! �1:We also consider a simpler method for constructing a generator whichdoes not involve having to compute complicated derivatives. As with thenormal in example 1 we construct upper and lower envelopes for e�x on theinterval (a; b) and then note that r(x) times these envelopes provides en-velopes for f(x). Further these envelopes take the form of rational functionsand as such they can be integrated in closed form. The density proportionalto the upper envelope can be generated using inversion via a root search.We used Maple to obtain exact expressions for the integrals of the upperand lower envelopes but this step could also be automated.We illustrate the discussion here via an example with D = R; � = 0; � =1; m1 = 2; m2 = 1; �1 = 2:0 + :1i; �2 = �2 + :1i and �1 = i: Suppose thenthat we want to base our generator on, at most, the second derivative of f ;i.e. n = 2: For this we need to compute all the derivatives of f up to order5 to determine the concavity structure of f (2) and for the construction ofthe envelopes. We used Maple to compute the concavity structure of thederivatives but otherwise used numerical routines to evaluate the derivativesand envelopes via the formulas given above. We must also handle the tailsvia a transformation. Observe that f is log-concave in the tails by Lemma13



Algorithm n m Acceptance Rate CPU (secs)Derivative (multiple calls) 0 1 0.610 21Derivative (multiple calls) 1 1 0.614 36Derivative (multiple calls) 2 1 0.738 119Exponential (multiple calls) 0 1 0.637 9Table 2: Results from generating 104 rational-normal variates where n is thedegree of the derivative and m is the number of equi-spaced points withineach concavity interval.3. So we must determine xl; xr so that g = ln f is concave in (�1; xL)and (xR;1) : Notice that g(2) is a rational function so that its roots can bedetermined exactly. Using Maple we obtained xl = �2: 67 and xr = 2: 67although we chose more extreme values (xl; xr) = (�5; 5) for the implemen-tation.In Table 2 we record the results of a simulation based on generating 104values from this distribution. The terminology is the same as that used inTable 1. As many statistical simulations involve generating variates fromfamilies of distributions with continuously changing parameters (e.g. Gibbssampling), we consider multiple calls to our subroutines. As in the normalexample, we observe that increasing the value of n improves the envelopesbut at the expense of computation time. Reductions in computation timecan be made to the Derivative algorithms by writing code for speci�c valuesof n that avoid the generality of the Fa�a di Bruno formula. Although notshown, tinkering with m can also lead to marginal improvements in thegenerators. However, a main point to be recorded from this example is thatblack-box generators can been easily constructed for the non-trivial class ofrational-normal distributions. It is also worth noting that the best approachis based on the Exponential algorithm. This is truly a higher order algorithmas the envelopes for n = 0 involve the product of a rational function and aquadratic.The same methodology will also work for other distributions where abasic density has been modi�ed by multiplying it by a nonnegative rationalfunction; i.e. density functions of the formf(x) = cQm1i=1 (x� �i) (x� ��i )Qm2i=1 (x� �i) (x� ��i ) g(x)where g is a nonnegative function appropriately di�erentiable. For example,ARMA processes have spectral densities of the form, see Brockwell and14



Davis (1991), �22� �� (e�i�)��2j!(e�i�)j2where  and ! are polynomials and � 2 [��; �] : Making the transforma-tion � ! x = cos� gives a density of the form a ratio of two nonnegativepolynomials in x times 1=p1� x2 which is proportional to a rational-Beta(1/2, 1/2) density. It is readily seen that generators for this class of den-sities can be constructed using the same methods as detailed above for therational-normal densities. In fact this observation applies to any rational-beta density. It is worth noting here, however, that these densities will notalways be log-concave in the tails and we will need to employ the powertransformations to handle the tails. It is clear however that there is alwayssuch a power transformation to ensure Tp�concavity or Tp�convexity.4.3 Bivariate normal distributions truncated to rectanglesApplications are quite common where a random vectorX is felt to be bivari-ate normally distributed; i.e. X � N2(�;�); but conditions impose linearconstraints on X: Here we consider the problem when these constraints takethe form of a rectangleQ2i=1 (ai; bi) ; i.e. X is known to be in this set. A verynaive approach to this problem would be to simply generate from the bivari-ate normal and reject all values that lie outside this rectangle. This will behopelessly ine�cient, however, whenever the rectangle has small probabilitycontent. The only other method that we know of is to use Gibbs sampling;i.e. specify x11 2 (a1; b1) to start, then generate X2 = x21 given X1 = x11and that X2 2 (a2; b2) ; then generate X1 = x12 given that X2 = x21 andX1 2 (a1; b1) ; etc. It can then be shown that as the number of iterations in-creases, (X1; X2) converges in distribution to the correct distribution. Eachgeneration of an Xi is relatively straightforward for the envelope methodsas we are just generating from a truncated univariate normal. This algo-rithm has some disadvantages, however, as it is not exact and it is di�cultto tell in a given context how many iterations are necessary until the pro-cess has \converged". Moreover when X1 and X2 are highly correlated theconvergence can be very slow. We construct an exact generator here.Since we can always translate (X1; X2) with no change in the di�culty ofgeneration, we assume hereafter that � = 0: Also we can always rescale alongone of the axes so we assume for convenience that �11 = 1: The followingsteps describe a general method for generating from this distribution:15



(i) generate X1 = x1 given that X1 2 (a1; b1)(ii) generate X2 = x2 given that X1 = x1 and X2 2 (a2; b2) :Therefore we need to be able to carry out both of these steps.The joint density of X constrained to the rectangle isg(x1; x2) / � (x1)��x2 � � (x1)� (x1) �where � denotes the N(0; 1) density function, � (x1) = �12x1 and �2 (x1) =�22��212: Note that �2 (x1) does not depend on x1: The conditional densityof X2 constrained on (a2; b2) satis�esg2(x2jx1) / ��x2 � � (x1)� (x1) � :This is simply a truncated normal distribution and we can easily apply theenvelope methods to this. The essential di�culty in the problem arises withthe marginal density of X1 as this is given byg1(x1) / � (x1) Z b2a2 ��x2 � � (x1)� (x1) � dx2/ � (x1) ���b2 � � (x1)� (x1) � � ��a2 � � (x1)� (x1) ��= � (x1) h(x1; �22; �12; a2; b2)where the density is constrained on (a1; b1) and where � denotes the stan-dard normal cdf.It is clearly di�cult to �nd the zeros for g(n)1 and thus construct envelopesfor g1. Notice, however, that it will be easier to do this for � (x1) andh(x1; �22; �12; a2; b2) separately and that the product of piecewise polynomialenvelopes for these functions gives piecewise polynomial envelopes for g1:Piecewise polynomial envelopes for � (x1) are constructed as in Example 1.Now for n � 1,h(n)(x1; �22; �12; a2; b2)= (�1)n �12p�22 � �212!n 24 hn�1 � b2��(x1)�(x1) ��� b2��(x1)�(x1) ��hn�1 �a2��(x1)�(x1) ���a2��(x1)�(x1) � 35 :When a2 = �1 or b2 =1 then the zeros of this function are easily obtainedfrom the roots of Hermite polynomials which are well-known. The problem16



is more di�cult when neither of these situations holds but note that whenwe have upper and lower envelopes for functions r and s; namely lr � r � urand ls � s � us then lr�us � r�s � ur�ls. Further if r � s then ur�ls � 0which is necessary if the upper envelope is to be used in the formation ofa density function for the rejection step. Observe that this condition holdswhen we put r(x1) = ��b2��(x1)�(x1) �and s(x1) = ��a2��(x1)�(x1) � and the rootsof derivatives of these functions are again translated and rescaled roots ofHermite polynomials:If a1 and b1 are �nite then the above algorithm constructs a generatorfor the distribution. Still we might like to obtain upper bounds on theprobability contents of tails of g1 and it is readily seen that crude boundscan be obtained from those for �: In general, however, it would appear thatwe have to develop an algorithm to generate from the tails of densities thattake the form �(x) [� (c� dx)� � (b� dx)]where b � c:We note, however, that when a1 = �1 and b1 =1 the problemis avoided because we can instead �rst generate X2 from a truncated normaland then generate X1 from its conditional distribution given X2 and this isa full normal. If a1 = �1 and b1 < 1 then we can �rst generate X2 froma distribution with density proportional tol(x) = �(x)� (c� dx)and then generate X1 from its conditional given X2 and this is a truncatednormal. If a1 < �1 and b1 = 1 then we can �rst generate X2 from adistribution with density proportional tor(x) = �(x) [1� � (c� dx)]and then generate X1 from its conditional given X2 and this is a truncatednormal.So we must provide an algorithm for generating from the left tail of adensity proportional to l(x) and from the right tail of a density proportionalto r(x): To accomplish this we have the following result.Lemma 4. The functions l(x) and r(x) are log-concave.Proof: Put y = c� dx and m(y) = �(y)=�(y): Then[ln(l(x))](2) = �1 � d2m(y) [y +m(y)] :17



The log-concavity for all y � 0 follows immediately. The Mill's ratio inequal-ity (4.1), adapted for the left-tail, gives y +m(y) � 0 for y < 0 and thus wehave log-concavity everywhere. Also, putting M(y) = �(y)=(1� �(y)) wehave that [ln(r(x))](2) = �1� d2M(y) [�y +M(y)] :The log-concavity for all y � 0 follows immediately. The Mill's ratio in-equality (4.1) gives M(y) � y for all positive y and therefore we also havelog-concavity for all y > 0:To implement our algorithm we need to actually �nd values xl and xrsuch that l and r are log-concave in (xl; xr)c . By Lemma 4 we see that wecan take these to be any values. A sensible approach is to determine thesevalues based on the Mill's ratio inequality for �:These considerations lead immediately to an adaptive rejection genera-tor. We illustrate the algorithm in a particular problem; namely �11 = 1,�22 = 4, �12 = �1, Q2i=1 (ai; bi) = (2; 3)� (2; 3) and we take n = 0. Here,the generation of 1000 variates using the naive approach based on the IMSLroutine drnnor took 119 seconds of CPU time whereas our approach tookonly 1 second! Of course, the comparison will be less (more) extreme as therectangle is closer to (further from) the bulk of the probability mass of thebivariate normal. We note that the methods discussed in the earlier papersreferenced in the introduction could not successfully handle this generatingproblem and so this problem clearly demonstrates the value of the methodswe have discussed here.This approach can be generalized to deal with higher dimensional mul-tivariate normals truncated to rectangles and in fact to convex polytopes.Given the additional complexity entailed, however, we defer discussion ofthis to another paper.5 ConclusionsWe have developed a class of techniques for constructing adaptive rejectionsamplers for a broad class of distributions. At a maximum these \black-box" algorithms require an appropriate transformation to handle the tailsand require expressions for the derivatives, together with the roots of some ofthe derivatives. Quite often, however, the implementation can be simpli�edby using various techniques to directly compute the polynomial envelopeswithout evaluating derivatives. This latter aspect is probably where thehigher order algorithms will �nd their greatest practical value. While the18



case n = 0 usually provides a perfectly satisfactory algorithm, implementa-tion of higher order polynomial envelopes can often be simpler as shown inExamples 4.1 and 4.2. As shown in Example 4.3 the polynomial approachreally is required to handle some generating problems. We have also ex-panded considerably on the development of appropriate transformations tohandle the tails of distributions.ReferencesBrockwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods.Second Edition. Springer-Verlag, New York.Devroye, L. (1986). Non-Uniform Random Variable Generation. Springer-Verlag, New York.Evans, M. and Swartz, T. (1997a). Random variable generation usingconcavity properties of transformed densities. To appear in J. Comp.Graph. Stat.Evans, M. and Swartz, T. (1997b). An algorithm for the approximation ofintegrals with exact error bounds. Submitted.Gilks, W. and Wild, (1992). Adaptive rejection sampling for Gibbs sam-pling. Applied Statistics, 41, 337-348.Hoermann, W. (1995). A rejection technique for sampling from T -concavedistributions. ACM Trans. Math. Softw., 21, No. 2, 182-193.Hoermann, W. and Deringer, G. (1996). Rejection-inversion to gener-ate variates from monotone discrete distributions. ACM Trans. OnModeling and Computer Simulation, Vol. 6, No. 3, 169-184.Knuth, D.E. (1973). The Art of Computer Programming. Volume 1, Fun-damental Algorithms. Addison-Wesley, Reading, MA.Marsaglia, G. and Tsang, W.W. (1984). A fast easily implemented methodfor sampling from decreasing or symmetric unimodal density functions.SIAM J. Sci. Stat. Comp., Vol.5, No. 2, 349-359.Zaman, A. (1991). Generating random numbers from a unimodal densityby cutting corners. Unpublished manuscript.19


