Higher Order Envelope Random Variate Generators

Michael Evans and Tim Swartz
University of Toronto and Simon Fraser University

Abstract
Recent developments, Gilks and Wild (1992), Hoermann (1995),

Evans and Swartz (1997a), have lead to algorithms for generating from
distributions that have black-box characteristics in the sense that these
place minimal requirements on a distribution for implementation. All
of these developments were based on the construction of linear en-
velopes for a density or a simple transformation of the density. In this
paper we generalize the approach to polynomial envelopes and show
that this leads to some distinct advantages. Also we address several
difficult generating problems.

1 Introduction

Suppose that we have a distribution on R with density proportional to f
and that we wish to generate a sample from this distribution. From a naive
point of view this is a simple problem, for if we can evaluate the distribution
function
N z)dz
Fle) = }TX)OO ;Ez; dz
— 00
and its inverse F'~!, we can then generate p from a uniform distribution on
(0,1) and return X = F~!(p). This is called the inversion algorithm. While
inversion works well with certain special distributions it is unsatisfactory
in general because I and F~! are typically difficult to evaluate and the
resulting algorithm is very inefficient. It is this inefficiency that leads to the
consideration of alternative algorithms such as the rejection and the ratio of
uniforms algorithms; see Devroye (1986) for a description of these and other
algorithms and for an in-depth discussion of many of the issues surrounding
random variable generation.
In Gilks and Wild (1992) an adaptive rejection algorithm was introduced
for log-concave densities; i.e. when In f is concave on its domain. Basically

a piecewise linear upper envelope u and a piecewise linear lower envelope [
are constructed for In f. We then have that exp({(z)) < f(z) < exp(u(z))
and it is easy to generate from the density ¢ proportional to exp(u(z)) via
inversion. This gives a rejection algorithm for f based on generating X ~ g,
generating p ~ U(0, 1) and then accepting X whenever f(X) > pexp(u(X)).
If X is not accepted then we repeat this process until a value is accepted.
An added efficiency step is to first see if exp(I(X)) > pexp(u(X)) as then we
can accept X without having to evaluate f which in some cases can be much
more costly. This is called squeezing. This paper also introduces the notion
of adaptive construction of the envelopes as new envelopes are constructed,
that better approximate f, each time there is a rejection.

In Hoermann (1995) this algorithm is generalized to a wider class of
transformations 1" and the notion of T-concavity is introduced; i.e. f is
T-concave whenever T o f is concave on its domain. A still wider class of
transformations is introduced in Evans and Swartz (1997a) and it is shown
that it is not necessary for a density to be T-concave in the sense of the
above definition. As described in that paper the essential ingredients for
successful implementation of this methodology are transformations 7T, and
Tr so that the density is inevitably Tr-concave (or T-convex) in the left
tail and inevitably T'r-concave (or Tr-concave) in the right tail and further
that the inflection points be available of the possibly transformed density
on the remaining part of the domain; i.e. between the points where we
determine the tails to begin. Many of the standard distributions can be
handled by these techniques in the sense that with little work highly efficient
algorithms are produced. In each of these papers, attention is restricted to
linear envelopes for the transformed density.

In Evans and Swartz (1997b) it was noted that the technique for con-
structing upper and lower envelopes for f could be applied to any function;
i.e. not just densities, and since the envelopes are easy to integrate exactly,
this yielded approximations to integrals of f with exact error bounds. These
integral approximations are relatively inefficient, however, if high accuracy
is required as their rate of convergence under compounding is quadratic.
It is shown in that paper, however, that it is possible to easily construct
piecewise polynomial upper and lower envelopes for f and that these lead
to integral approximations with rates of convergence equal to any desired
order. The higher order envelope rules developed there are shown to be
practically useful for approximating integrals.

A natural question then is whether or not the piecewise polynomial en-
velopes can be used in the random variate generation problem and, if so, are
they useful? That is the topic considered in this paper. With some qualifica-

tions both of these questions are answered affirmatively. In sections 2 and 3
we provide a detailed presentation of the algorithm which includes extensions
and refinements over what has been considered previously. In particular in
section 3 we demonstrate a general method for generating useful transfor-
mations to handle tails. In section 4 we present examples demonstrating the
utility of the methodology and in section 5 we summarize.

Historical precedents for the envelope approach to generating from dis-
tributions can be found in Devroye (1986), Marsaglia and Tsang (1989) and
Zaman (1991). Also see Hoermann and Derflinger (1996) for an application
of this approach to generating from discrete distributions.

2 The Algorithm for the Center

We first consider densities with compact support (x;,z,) and subsequently
discuss how to generate from the left and right tails. As indicated in section
1 treatment of the tails is basically a question of choosing an appropriate
transformation 7" : [0, 00) — R so that T'o f is concave or convex. Typically
we will take z; and 2, far out in the respective tails so that we don’t gen-
erate often from the tails. We assume throughout this section that, for any
functions referred to, all relevant derivatives exist.

We proceed now to the construction of the polynomial envelopes for f.
Suppose that the n—th derivative £ has no inflection points in (z1,2,);i.e.
F(7) is either concave or convex in the interval. If f(") hasinflection points in
(z1,2,) then we subdivide (2, 2,) into subintervals, with end-points given by
the inflection points, and apply the envelope construction techniques within
each subinterval. Therefore a necessary ingredient of our methodology is
that the inflection points can be relatively easily obtained. Actually, as
our examples particularly demonstrate, the need to obtain inflection points
can often be entirely avoided and such situations often correspond to the
simplest and most practically useful implementations of the method.

The basic idea behind the construction of the envelopes is dependent on
the following simple fact derived from the Fundamental Theorem of Calcu-
lus.

Lemma 1. If ¢'(2) < B'(z) for every € (27, 2,) then g(z) < h(z) —h(z;)+
g(xp) for every x € (2, 2,).

Now suppose that f(") is concave in (z7,2,). We then have the following
result which gives upper and lower polynomial envelopes for f on (z;,2,).

Lemma 2. If (") is concave on (7, 2,) then for every z € (z,2,),

mfR) (g) (2} — £ (@) (2 — 2;)"H
l(x)227f kE l)(ac—acz)k—l-f (;3_; (l)((n_l_li):r

n+1 (k) .
< fey <oy =3 Ty (2.1

19(2) = £ 1) +
and the tangent

ul™(@) = (@) + FO (@) (@ - 2)

satisfy 10)(z) < f0)(z) < u((z) on (x1,2,). Then repeatedly applying
Lemma 1 to both sides of this inequality we obtain the result.

If £(") is convex on (z7,z,) then the expressions for [(z) and u(z) in (2.1)
are reversed. Notice that because f is nonnegative we can improve the lower
envelope as a bound on f by replacing [by max (0,/). We will assume that
this has been done whenever this is convenient.

As fis nonnegative this implies that u(z) is nonnegative and is thus pro-
portional to a density function on (&, z,). Further the distribution function
is given by

f;; u(z)dz
f;;r u(z)dz

and this is a polynomial whose coefficients are easily and exactly calculated.
A direct method of generating from U is to generate p ~ U(0,1) and then
solve U(X) = p for X. Note that because U is necessarily strictly increas-
ing in (27, z,) there is a unique such X and this is the unique root of the
polynomial U(z) — p of degree n 4 2, lying in this interval. Therefore this
root can be calculated exactly using polynomial root-finding algorithms. In
fact when n = 0 or n = 1 we can use the well-known formulas for the roots
of a quadratic or cubic respectively. Recall that the case n = 0 corresponds
to constructing linear envelopes to the density as discussed in Evans and
Swartz (1997a). Actually, as we illustrate in section 4, the polynomial root-
finding algorithms, while guaranteed to find all the roots of a polynomial,

U(z) =

are relatively inefficient for this purpose, because they compute all the roots.
It is much better is to use a general root-finder like the secant method.
Once we have X from the distribution given by U then we apply the
rejection step; i.e. generate an additional, independent p ~ U(0,1) and
accept X when f(X) > pu(X). Of course we can precede the comparison
with a squeezing step; namely accepting X if [(X) > pu(X). The rejection
step leads to an adaptive algorithm. For if f(X) < pu(X) we then put 2, =
X and construct new envelopes on (z;,21) and (21, ,) which are combined
to give new upper and lower envelopes [and u for f on (z;,2,). We also
compute p; = f;;l u(z)dz/ fflr u(z)dz and pp = ff; u(z)dz/ f;;r u(z)dz.
A new candidate X is then generated from the density proportional to u
by first generating ¢ € {1,2}, using the discrete distribution {py,p2}, and
then generating X from u conditioned to the first or second subinterval in
the partition ((z7,21),(z1,2,)) according to the value of i. We continue
modifying the envelopes; and thus further subdividing (z;, 2,), until we get
an acceptance. We note that the distribution with density proportional to
the upper envelope function is a discrete mixture of continuous components
with non-overlapping supports. To determine the mixture component we use
the aliasing method, see Devroye (1986), which only requires the generation
of two uniforms and a comparison. The expensive part of this step is the
set-up and this must be done each time we adapt. Accordingly it makes
sense to stop adapting when the upper and lower envelopes are providing
accurate approximations to f. As discussed in Evans and Swartz (1997a) a
good stopping rule to determine this is to stop adapting when the ratio

fflr [(2)d=
f;;r u(z)dz

is sufficiently close to 1. Notice that both integrals in this ratio can be easily
and exactly evaluated.

When f(® has k& > 0 inflection points, then the domain is split into
k + 1 regions. The algorithm proceeds as above by constructing piecewise
linear envelopes on each region and by defining a mixture distribution over
all regions.

The above algorithm leaves open the question of what is a suitable choice
of n7 A natural criterion to assess this is efficiency of computation; namely
which choice of n leads to the fewest rejection steps or, perhaps more im-
portantly, the fastest mean computation time. However, as we will see in
our discussion of the examples in section 4, the choice n = 0 frequently
leads to a perfectly satisfactory algorithm. The real virtue of the higher

order polynomial approach is that there are often simpler ways to compute
the polynomial envelopes than directly applying the methods just described
to f. For example, suppose that f can be factored as f(z) = g(a)h(z)
where ¢ > 0,k > 0 and we have polynomial, perhaps of degree 1, envelopes
l, <g <wuyand I, < h < uy for these functions. We then have higher
order polynomial envelopes Il < f < wuguy for f. Application of techniques
similar to this can often allow us to entirely avoid the computation of deriva-
tives of f and also the need to calculate inflection points of such derivatives.
Several such techniques are presented in section 4.

3 The Algorithm for the Tails

We now discuss how to generate from the tails (—oo,2;) and (z,,00) and
how we go about choosing the points z; and z,. We restrict our discussion
to the right tail but note that the treatment is similar for the left tail. Also
we note that the transformation used may differ in the two tails; e.g. see
the discussion of the F' distribution in Evans and Swartz (1997a).

Suppose then that we have a transformation 7" and constants a and
satisfying
(i) T : (0,sup{f}) — R is smooth and monotone
(ii) 7" and T~ are easy to compute
(iii) the anti-derivative of T~! (a 4 () is easy to compute for z € (x,,00)
and is integrable on (z,, o)
(iv) it is easy to generate from the distribution with density proportional to
T~ (a+ pz) on (z,,00).
For example, if T'(f) = In(f) then all of these conditions are satisfied pro-
vided that § < 0. Also if we define T}, for p € (—=1,0) by T,,(f) = f? then T},
is smooth and decreasing. Further T;7'(z) = 2'/? for x > 0 and, provided
that o and 3 are chosen so that a 4+ Sz > 0 on (x,,00), then

/Tp—l(a + pa)de = %pi 1(& + pz) .

Therefore Tp_l(a + fBz) is proportional to a density on (z,,00) and since
the inverse cdf is easily obtained, it is straightforward to generate from this
distribution via inversion. We discuss the conditions (i)-(iv) further below.

Now suppose that T satisfies these conditions and that z, can be chosen
so that f is T-concave on (z,,00) when 7' is increasing or T-convex on
(z,,00) when T is decreasing. Then for z € (z,,0) we have that

T(f(2)) < T(f(we) + T'(f (@) (@)@ = 27)

when f is T-concave and

T(f(2)) = T(f(we) + T'(f () (@)@ = 27)

when f is T-convex. Then taking the T-inverse of both of these inequalities
we obtain

F@) S THT(F (@) + T (@) (2@ = 20) }
for z € (z,,00). Note that T {T(f(z,)) + T'(f(z,))f"(z,;)(x — x,)} serves

as an upper envelope for the right-tail. This in turn leads to the tail bound
o0
Ty

[f@de< [CTTHTG @) + T e -)} de ()

and by condition (iii) the right-hand side of (3.1) can be evaluated in closed
form. As noted in Evans and Swartz (1997b) when 7" = In and f is the
standard normal density then (3.1) is the Mills ratio inequality and so we
can think of (3.1) as a generalization of this and we refer to it by this name
hereafter.

Further, from condition (iv), we can easily generate from the density
proportional to T71 (o + Bz) where o = T(f(z,)) — T'(f(z,)) f' (2,)z, and
B =T'(f(z,))f'(z,). The density 7' (a + z) serves as the upper envelope
in the rejection algorithm whenever we have to generate from the tails.

The question remains concerning the choice of z,.. In general, we want
to choose values so that we spend most of our time using the more efficient
center part of the generator. It should be noted, however, that envelopes
of fixed degree in the center may not be as good if the tails are chosen too
extreme. When f is normalized then (3.1) can be used to choose z, by en-
suring that the right-hand side is suitably small. When f is not normalized,
and there are applications where this occurs, then we also need to construct
a lower envelope for the center. The right-hand side of (3.1) divided by the
integral of the lower envelope for the center gives an upper bound on the
tail probability

Joo fla) da

and can be used to select z,.

The conditions that we have placed on 1" are a little different than those
stated in Evans and Swartz (1997a). This is because in that paper we
always took n = 0 and also considered transformations for the center of the

distribution. Further we required 7’ to be homogeneous. In this paper we
have avoided transformations in the center since the piecewise envelopes do
not lead to simple variate generation when n > 1. For example, if we take f
to be the normal density with n = 1 and apply the logarithm transformation
in the center, then we would not be able to integrate the upper envelope
in closed form as we do with the polynomial form, and we would have to
make calls to a normal distribution function routine. Overall, we think that
the transformation is necessary to handle the tails, but less often in the
center, as the methods of section 2 are satisfactory there. Evans and Swartz
(1997a) provide some examples where transforming the center is useful; e.g.
the Student(\) distribution is T_1/(x41)-convex throughout its entire domain
and hence we have a very simple adaptive generator for n = 0.

A general method for constructing transformations T', useful for handling
tails, can be provided. For example, suppose that ¢ is a density from which
we can easily generate variates and suppose that ¢’ and ¢g~! can be easily
computed. Then define T=(f) = g(f). For example, letting T equal the log-
arithm transformation corresponds to the Exponential(1) distribution and
the power transformation 7}, corresponds to the density proportional to z1/p
on (a,00) for some a > 0. Note that we must have p € (—1,0) whenever
the support of f contains an infinite interval but other choices are useful
too. For example, if f is the Beta(1/2,1/2) density then f is T_s-convex
and note that we definitely need to handle the tails of f in constructing a
generator for this distribution even though its support is compact.

New transformations and generating algorithms are obtained from these
considerations as well. For suppose that f is bounded and we are willing to
generate from the half-normal distribution for the tails. As this is in effect
equivalent to generating from a normal and ignoring the sign, there are excel-
lent algorithms available for this. The transformation T'(f) = \/—21In(f/c¢)
where ¢ > sup(f), corresponds to this density. For example, the density on
(0, 00) proportional to exp (—xl/z) is T-concave with respect to this trans-
formation with ¢ = 1 and note that it is not log-concave. As a second
example, we can use the half-logistic density, which can easily be generated
from by inversion, and this leads to the transformation

T(f)=2cosh™! (\/c/—f) =2In (\/c/—f—l— \/c/fi—l)

where ¢ > sup(f). Clearly there are many other densities that could be used
to generate transformations. In section 3 we only make use of the logarithm
transformation but see Evans and Swartz (1997a,b) for other meaningful
contexts where this is not adequate.

4 Examples

4.1 The normal distribution

In the first example, we generate from a possibly truncated standard normal
distribution. There exist various excellent normal generators and ours is not
intended as a replacement although we remark that it does have the virtue
of handling truncated normals as well. Rather we use this as a demonstra-
tion of applying the methodology in a standard context. We note further
that many of the algorithms used to generate from the normal require spe-
cialized knowledge of properties of the distribution and were developed after
considerable study. This is not the case with the methods that we employ
which are essentially black-box. In fact while the developments of section 2
seem to require knowledge of derivatives and inflection points we show that
in this example even these requirements can be avoided.

We denote the standard normal density by ¢(z) = (2%)_1/2 exp (—2?/2) .
Then ¢ (z) = (=1)"h,(x)d(z) where h,(z) is the Hermite polynomial of
degree n associated with ¢. These polynomials are easy to compute as they
satisfy the recursion relation h,y1 () = xh, () —nh,—1 (z) with hg () = 1,
hi(z) = x. Also the inflection points of ¢(")(z) are given by the roots of
hn4o and these are readily available in many numerical analysis packages.
We can then proceed as in sections 2 and 3 to construct a generator for the
N(0,1) distribution. Note that when 7" = In and & > 0, (3.1) becomes

22

/ ¢ (= \/—_ < (4.1)

and this is used to determine (z;,z,).

We also consider a method for constructing envelopes for ¢ that does
not require the evaluation of derivatives or inflection points. This is based
on constructing envelopes for the function e~ using the methods of section
2 and then substituting z%/2 for = to obtain envelopes for v/276 (z). Note
that (e_x)(n) = (—1)"e™* and so the n — th derivative is concave or convex
on an interval (a,b) depending on whether n is odd or even respectively; in
particular we do not need to compute inflection points. This leads to the
following degree n + 1 polynomial envelopes for e™* on (a, b); namely upper
envelope

T S - ot
€Y ko (_kl!)k (z —a)k + (_1)". e_b:e_a (z —a)"tt noeven

and lower envelope

—axn (DR (=D)" emboema i
l;“’b)(x)—{ €7 Y o (2 —a) ‘|‘—(n+1); ——(z —a) n odd

- k
e Zié (klz) (z—a)t n even.

Now suppose that we want polynomial envelopes to ¢ on the interval (¢, d)
where ¢ > 0 or d < 0. Then it is immediate that [,(z) = l%a’b)(acQ/Q) and
up () = u%a’b)(wz/Q) give polynomial envelopes of degree 2n + 2 for v/27¢(z)
on (c,d) where (a,b) = (c?/2,d?/2) when ¢ > 0 and (a,b) = (d*/2,c?/2)
when d < 0. The integrals of these envelopes are also polynomials. There-
fore taking linear envelopes for the exponential function results in quadratic
envelopes for ¢ and piecewise cubic distribution functions. Although the
function (e¢=*)(") has no change in concavity, we break the real line into
(—00,0) and [0, 00) to conveniently handle the cases ¢ > 0 and d < 0.

We implemented both of these algorithms with various choices for the
degree of the polynomial envelopes. To assess the efficiency of the algorithms
we computed the CPU time to return 10° values. We refer to the algorithms
based on computing a derivative of ¢ and its inflection points collectively as
the Derivative algorithm and that based on using the envelopes to e as the
Exponential algorithm. The value n refers to the degree of the derivative
used for the center, m refers to the initial number of equal length subin-
tervals within each concavity region and the acceptance rate refers to the
proportion of generated values from the upper envelope that are accepted.
This acceptance rate increases with better approximating upper envelopes.
Also we considered two different scenarios. In the first one we asked for
105 values from the generator in a single call, so that the adaptive steps
continued as we generated, and in the second one we called the generator
10° times. For all of the algorithms we took (z,,) = (=5,5).

We observe from Table 1 that there is considerable overhead in the setup
time of our generator as it takes significantly longer in multiple calls than
in a single call. The best algorithm is the Derivative algorithm based on
n = 0 but the Exponential algorithm based on n» = 0 compares favorably
and note that it uses quadratic envelopes for ¢. A virtue of the Exponential
algorithm is that it is easier to implement. Typically, as we increase n or m
the envelopes better approximate ¢, as is reflected by the acceptance rates,
but this is offset by an increase in computation time.

The fastest IMSL algorithm for the standard normal; namely drnnoq,
took about 1.3 second to generate 10° standard normal variates based on a
single call. Therefore it would appear that none of the algorithms we have
considered are competitive with IMSL. Still we remark that our algorithms

10

Algorithm n | m | Acceptance Rate | CPU (secs)
Derivative (single call) 01]0.999 10
Derivative (multiple calls) 0|1 |0.556 50
Derivative (multiple calls) 111]0.556 68
Derivative (multiple calls) 21]0.759 75
Derivative (multiple calls) 013 |0.902 57
Exponential (single call) 01]0.999 14
Exponential (multiple calls) | 0 | 1 | 0.464 60

Table 1: Results from generating 10° standard normal variates where n is
the degree of the derivative and m is the number of equi-spaced points within
each concavity interval.

have been implemented with no attempt to optimize in contrast to drnnoa
and the computation times are not prohibitive. In Evans and Swartz (1997a)
we constructed a normal generator using these methods with n = 0, applying
the log transformation to the entire density, subdividing (z;,2,) = (—4,4)
into 60 subintervals and turning off the adaptation. In that case the IMSL
algorithm was only twice as fast. The major savings in this minimal design
is that exact inversion of an exponential function is faster than inversion of
a quadratic using a modified secant method. Therefore it is clear that the
proposed methods can yield useful algorithms even for well-studied problem
such as the normal distribution.

4.2 Rational-normal and rational-beta distributions

We consider distributions on D C R with densities of the form

_ s (@A) @ =) (e —p
- H?fl(gv—éi)(x—éj)(b(o) (4.2)

where ¢ denotes the standard normal density function, p € R,o € (0, 0),
AlevoyAmy €C01,... 0, € C\D, with C' denoting the complex numbers,

11

A* denoting the complex conjugate of A, and

el = /D r(2)o (w - “) dz.

Notice that ¢ is never 0 so that ¢! is finite. Recall that we do not need
to calculate ¢ to construct the generator and it does not matter whether or
not D is a subinterval or all of R. In Evans and Swartz (1997a) generators
for polynomial-normal distributions were constructed using linear envelopes;

i.e. mo =0 and n = 0.

Here we consider two approaches to constructing algorithms for the
rational-normals. The first approach, which is a direct implementation of
the algorithm discussed in the paper, requires the evaluation of the deriva-
tives of r(2)¢(z). This is rather cumbersome but we illustrate that this can
be done. From Leibniz’s formula we have that

(T(W (w ; u))w _ z; (f)r“)(w)giﬂﬁ(’“‘“ (x ; u)

K3

() = Z (;)pu)(x) (q(lx)))

=0

Putting #(z) = 1/z, we have, from Faa di Bruno’s formula (see Knuth

(1973)), that

-

—J

= 1Vg(2)) >

=0 tly iy =lly 42l (i=) Limy=i—j
(i=)! «

[t D[(=)'

(g (@)™ - (g1 ()"

Of course t)(z) = (=1)1!/2"*" and the derivatives of p and ¢ are easily
evaluated in closed form, particularly when they are written out in powers
of . Therefore the derivatives of the unnormalized f can be easily evalu-
ated using a symbolic calculation package such as Maple or via a numerical

o~

12

routine. Further

¢ (%)

S

is a polynomial with the same real roots in D as (r(ac)qb (l’;—“))(k) and so
these roots can be easily evaluated using a symbolic calculation package or
numerical routine.

To handle the tails of f we need an appropriate transformation 7. In
the case when we have polynomial-normal distributions then we can take
T = In;i.e. these distributions are log-concave in the tails , as demonstrated
in Evans and Swartz (1997a). This fact generalizes to the rational-normals.

Lemma 3. The density f given by (4.2) is log-concave in the tails.
Proof: We have that

I (f2)]® = = -3

2 1 1
EjL@—&f+Kw—wf]

=1

and note that the sums in this expression go to 0 as ¢ — 00 or z — —oc.

We also consider a simpler method for constructing a generator which
does not involve having to compute complicated derivatives. As with the
normal in example 1 we construct upper and lower envelopes for e~ on the
interval (a,b) and then note that r(z) times these envelopes provides en-
velopes for f(z). Further these envelopes take the form of rational functions
and as such they can be integrated in closed form. The density proportional
to the upper envelope can be generated using inversion via a root search.
We used Maple to obtain exact expressions for the integrals of the upper
and lower envelopes but this step could also be automated.

We illustrate the discussion here via an example with D = R,u = 0,0 =
1,my =2,mg =1, Ay = 2.0+ .14, A2 = =2 4 .12 and é; = ¢. Suppose then
that we want to base our generator on, at most, the second derivative of f;
i.e. n = 2. For this we need to compute all the derivatives of f up to order
5 to determine the concavity structure of f2) and for the construction of
the envelopes. We used Maple to compute the concavity structure of the
derivatives but otherwise used numerical routines to evaluate the derivatives
and envelopes via the formulas given above. We must also handle the tails
via a transformation. Observe that f is log-concave in the tails by Lemma

13

Algorithm n | m | Acceptance Rate | CPU (secs)
Derivative (multiple calls) 0|1 |0.610 21
Derivative (multiple calls) 111]0.614 36
Derivative (multiple calls) 211]0.738 119
Exponential (multiple calls) | 0 | 1 | 0.637 9

Table 2: Results from generating 10* rational-normal variates where n is the
degree of the derivative and m is the number of equi-spaced points within
each concavity interval.

3. So we must determine z;,z, so that ¢ = In f is concave in (—o0,zy)
and (zg,00). Notice that g(?) is a rational function so that its roots can be
determined exactly. Using Maple we obtained z; = —2.67 and z, = 2.67
although we chose more extreme values (z;,z,) = (=5, 5) for the implemen-
tation.

In Table 2 we record the results of a simulation based on generating 10*
values from this distribution. The terminology is the same as that used in
Table 1. As many statistical simulations involve generating variates from
families of distributions with continuously changing parameters (e.g. Gibbs
sampling), we consider multiple calls to our subroutines. As in the normal
example, we observe that increasing the value of n improves the envelopes
but at the expense of computation time. Reductions in computation time
can be made to the Derivative algorithms by writing code for specific values
of n that avoid the generality of the Faa di Bruno formula. Although not
shown, tinkering with m can also lead to marginal improvements in the
generators. However, a main point to be recorded from this example is that
black-box generators can been easily constructed for the non-trivial class of
rational-normal distributions. It is also worth noting that the best approach
is based on the Exponential algorithm. This is truly a higher order algorithm
as the envelopes for n = 0 involve the product of a rational function and a
quadratic.

The same methodology will also work for other distributions where a
basic density has been modified by multiplying it by a nonnegative rational
function; i.e. density functions of the form

[T (2= X) (= Af
oy = Mt 2200220,)
ILZ (z = 60)(z = 67)
where ¢ is a nonnegative function appropriately differentiable. For example,
ARMA processes have spectral densities of the form, see Brockwell and

14

Davis (1991),

o Jo(e ™)’

27 |w(e=h))?

where b and w are polynomials and A € [—7,7]. Making the transforma-
tion A — 2 = cos A gives a density of the form a ratio of two nonnegative
polynomials in # times 1/4v/1 — 22 which is proportional to a rational-Beta
(1/2, 1/2) density. It is readily seen that generators for this class of den-
sities can be constructed using the same methods as detailed above for the
rational-normal densities. In fact this observation applies to any rational-
beta density. It is worth noting here, however, that these densities will not
always be log-concave in the tails and we will need to employ the power
transformations to handle the tails. It is clear however that there is always
such a power transformation to ensure 7),—concavity or T, —convexity.

4.3 Bivariate normal distributions truncated to rectangles

Applications are quite common where a random vector X is felt to be bivari-
ate normally distributed; i.e. X ~ Ny(u,Y), but conditions impose linear
constraints on X. Here we consider the problem when these constraints take
the form of a rectangle Hle (a;,b;);i.e. X is known to be in this set. A very
naive approach to this problem would be to simply generate from the bivari-
ate normal and reject all values that lie outside this rectangle. This will be
hopelessly inefficient, however, whenever the rectangle has small probability
content. The only other method that we know of is to use Gibbs sampling;
i.e. specify z11 € (a1,b1) to start, then generate Xy = z31 given X7 = 214
and that Xy € (az,bs), then generate Xy = 1 given that Xy = 24 and
X1 € (a1,b1), ete. It can then be shown that as the number of iterations in-
creases, (X1, X2) converges in distribution to the correct distribution. Each
generation of an X is relatively straightforward for the envelope methods
as we are just generating from a truncated univariate normal. This algo-
rithm has some disadvantages, however, as it is not exact and it is difficult
to tell in a given context how many iterations are necessary until the pro-
cess has “converged”. Moreover when X7 and X, are highly correlated the
convergence can be very slow. We construct an exact generator here.

Since we can always translate (X7, X2) with no change in the difficulty of
generation, we assume hereafter that y = 0. Also we can always rescale along
one of the axes so we assume for convenience that 17 = 1. The following
steps describe a general method for generating from this distribution:

15

(i) generate Xy = 21 given that Xy € (ay,by)

(ii) generate Xy = a2 given that X7 = 21 and X3 € (ag, b2).

Therefore we need to be able to carry out both of these steps.
The joint density of X constrained to the rectangle is

g1, 72) o 6 (1) & (L())

o (1)

where ¢ denotes the N(0,1) density function, u(z1) = 01271 and % (z1) =
022 — 01y. Note that ¢% (21) does not depend on zy. The conditional density
of X3 constrained on (ag, by) satisfies

mwmm«¢(ﬂ:ﬁ@ﬁ)

o (1)

This is simply a truncated normal distribution and we can easily apply the
envelope methods to this. The essential difficulty in the problem arises with
the marginal density of X7 as this is given by

mwn«¢wn/%¢(@:ﬁﬁﬁ)d@

as o (1)

o (85250 o (552
= ¢ (x1) h(21; 022,012, a2, b2)

where the density is constrained on (aq,b;) and where ¢ denotes the stan-
dard normal cdf.

It is clearly difficult to find the zeros for gYL) and thus construct envelopes
for g1. Notice, however, that it will be easier to do this for ¢(21) and
h(z1; 022,012, az, by) separately and that the product of piecewise polynomial
envelopes for these functions gives piecewise polynomial envelopes for ¢;.
Piecewise polynomial envelopes for ¢ (x1) are constructed as in Example 1.

Now for n > 1,
h(n)(ﬂﬁﬁ 022,012, 42, bz)
—«n”(7éi%%n o G (o)
rn=ch) | e (255 0 (25551)
When as = —o0 or by = oo then the zeros of this function are easily obtained
from the roots of Hermite polynomials which are well-known. The problem

16

is more difficult when neither of these situations holds but note that when
we have upper and lower envelopes for functions r and s; namely [, < r < u,
and [, < s < wu,thenl, —u, <r—s < wu,—I,. Furtherif r > sthen u,—1, > 0
which is necessary if the upper envelope is to be used in the formation of
a density function for the rejection step. Observe that this condition holds

when we put r(z1) = ¢ (%)and s(z1) =@ (%@,(jl)) and the roots
of derivatives of these functions are again translated and rescaled roots of
Hermite polynomials.

If @y and by are finite then the above algorithm constructs a generator
for the distribution. Still we might like to obtain upper bounds on the
probability contents of tails of g1 and it is readily seen that crude bounds
can be obtained from those for ¢. In general, however, it would appear that
we have to develop an algorithm to generate from the tails of densities that
take the form

o) [® (¢ — dr) — B (b — do)]

where b < ¢. We note, however, that when a; = —oc and by = oo the problem
is avoided because we can instead first generate X, from a truncated normal
and then generate X7 from its conditional distribution given X5 and this is
a full normal. If a1 = —o0 and by < oo then we can first generate Xy from
a distribution with density proportional to

() = o) (c — dr)

and then generate X7 from its conditional given X5 and this is a truncated
normal. If a; < —oo and by = oo then we can first generate X, from a
distribution with density proportional to

r(@) = ¢(z) [l — @ (c - du)]

and then generate X7 from its conditional given X5 and this is a truncated
normal.

So we must provide an algorithm for generating from the left tail of a
density proportional to I(2) and from the right tail of a density proportional
to 7(z). To accomplish this we have the following result.

Lemma 4. The functions [(2) and r(z) are log-concave.

Proof: Put y = ¢ — da and m(y) = ¢(y)/P(y). Then

(n(l(2))]? = =1 — d*m(y) [y + m(y)].

17

The log-concavity for all y > 0 follows immediately. The Mill’s ratio inequal-
ity (4.1), adapted for the left-tail, gives y + m(y) > 0 for y < 0 and thus we
have log-concavity everywhere. Also, putting M(y) = ¢(y)/(1 — ®(y)) we
have that

(n(r(2)]® = —1 - @M (y) [~y + M(y)].

The log-concavity for all y < 0 follows immediately. The Mill’s ratio in-
equality (4.1) gives M(y) > y for all positive y and therefore we also have
log-concavity for all y > 0.

To implement our algorithm we need to actually find values z; and x,
such that [and r are log-concave in (2;,2,)° . By Lemma 4 we see that we
can take these to be any values. A sensible approach is to determine these
values based on the Mill’s ratio inequality for ¢.

These considerations lead immediately to an adaptive rejection genera-
tor. We illustrate the algorithm in a particular problem; namely o7 = 1,
Tag = 4, 019 = —1, T[], (as,b;) = (2,3) x (2,3) and we take n = 0. Here,
the generation of 1000 variates using the naive approach based on the IMSL
routine drnnor took 119 seconds of CPU time whereas our approach took
only 1 second! Of course, the comparison will be less (more) extreme as the
rectangle is closer to (further from) the bulk of the probability mass of the
bivariate normal. We note that the methods discussed in the earlier papers
referenced in the introduction could not successfully handle this generating
problem and so this problem clearly demonstrates the value of the methods
we have discussed here.

This approach can be generalized to deal with higher dimensional mul-
tivariate normals truncated to rectangles and in fact to convex polytopes.
Given the additional complexity entailed, however, we defer discussion of
this to another paper.

5 Conclusions

We have developed a class of techniques for constructing adaptive rejection
samplers for a broad class of distributions. At a maximum these “black-
box” algorithms require an appropriate transformation to handle the tails
and require expressions for the derivatives, together with the roots of some of
the derivatives. Quite often, however, the implementation can be simplified
by using various techniques to directly compute the polynomial envelopes
without evaluating derivatives. This latter aspect is probably where the
higher order algorithms will find their greatest practical value. While the

18

case n = 0 usually provides a perfectly satisfactory algorithm, implementa-
tion of higher order polynomial envelopes can often be simpler as shown in
Examples 4.1 and 4.2. As shown in Example 4.3 the polynomial approach
really is required to handle some generating problems. We have also ex-
panded considerably on the development of appropriate transformations to
handle the tails of distributions.

References

Brockwell, P.J. and Davis, R.A. (1991). Time Series: Theory and Methods.
Second Edition. Springer-Verlag, New York.

Devroye, L. (1986). Non-Uniform Random Variable Generation. Springer-
Verlag, New York.

Evans, M. and Swartz, T. (1997a). Random variable generation using
concavity properties of transformed densities. To appear in J. Comp.
Graph. Stat.

Evans, M. and Swartz, T. (1997b). An algorithm for the approximation of
integrals with exact error bounds. Submitted.

Gilks, W. and Wild, (1992). Adaptive rejection sampling for Gibbs sam-
pling. Applied Statistics, 41, 337-348.

Hoermann, W. (1995). A rejection technique for sampling from 7-concave
distributions. ACM Trans. Math. Softw., 21, No. 2, 182-193.

Hoermann, W. and Derflinger, G. (1996). Rejection-inversion to gener-
ate variates from monotone discrete distributions. ACM Trans. On
Modeling and Computer Simulation, Vol. 6, No. 3, 169-184.

Knuth, D.E. (1973). The Art of Computer Programming. Volume 1, Fun-
damental Algorithms. Addison-Wesley, Reading, MA.

Marsaglia, G. and Tsang, W.W. (1984). A fast easily implemented method
for sampling from decreasing or symmetric unimodal density functions.
STAM J. Sci. Stat. Comp., Vol.5, No. 2, 349-359.

Zaman, A. (1991). Generating random numbers from a unimodal density
by cutting corners. Unpublished manuscript.

19

