
Moment Matching Adaptive Importance Sampling

with Skew-Student Proposals

Shijia Wang and Tim B. Swartz ∗

Abstract

This paper considers integral approximation via importance sampling where the

importance sampler is chosen from a family of skew-Student distributions. This is

an alternative class of distributions than is typically considered in importance sam-

pling applications. We describe variate generation and propose adaptive methods

for fitting a member of the skew-Student family to a particular integral. We also

demonstrate the utility of the approach in several examples.
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1 INTRODUCTION

The evaluation of integrals is a fundamental problem that presents itself in many diverse

fields such as mathematical finance, economics and physics. For statisticians, integrals are

commonplace in the Bayesian framework and arise as posterior expectations. In many

applications, particularly in high dimensions, the integrals in question are intractable.

Therefore, one must resort to methods of integral approximation. Evans and Swartz

(2000) describe the major approaches used in the approximation of integrals with a par-

ticular emphasis on integrals arising in statistics.

One of the long-standing approaches to integral approximation is importance sampling

which dates back to at least Metropolis and Ulam (1949). Importance sampling proceeds

by rewriting the integral of interest

I(f) =

∫
S

f(y) dy (1)

as

I(f) =

∫
S

(
f(y)

q(y)

)
q(y) dy

where the density function q(y), with support S, is introduced and is referred to as an

importance sampler, assuming f(y) > 0 implies q(y) > 0. In importance sampling,

independent variates y(1), . . . , y(N) are generated from the distribution corresponding to

q(y), and we obtain the importance sampling estimator

Î(f) =
1

N

N∑
i=1

f(y(i))

q(y(i))
. (2)

We note that the estimator Î(f) is unbiased and is a consistent estimator where

V ar(Î(f)) =
1

N

[∫
S

f 2(y)

q(y)
dy − I2(f)

]
(3)
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is finite if the integral in (3) is finite. We require a proposal distribution q(y) that leads

to finite variance V ar(Î(f)). From (3), we see that the variance of Î(f) is small when

f(y) ≈ kq(y) for some constant k. Therefore our goal is to choose an importance sampler

q(y) which permits convenient variate generation and whose shape mimics the shape of

f(y).

In practice, standard importance sampling may not be directly applicable to the com-

mon problem where f(y) can only be evaluated up to a normalizing constant. For example,

in a Bayesian inference context, we are interested in estimating the posterior expectation

of some test function h(y), where f(y) in Equation (1) is proportional to the product of

the test function h(y) multiplied by the unnormalized posterior density g(y). Normalized

importance sampling bypasses this problem. In normalized importance sampling, inde-

pendent variates y(1), . . . , y(N) are generated from the distribution corresponding to q(y),

and we approximate the integral of interest as

Î(f) =
N∑
i=1

h(y(i))g(y(i))

q(y(i))

/ N∑
i=1

g(y(i))

q(y(i))
. (4)

Often in Bayesian applications, there may be various test functions h(y) of interest, and

often these are simple functions. In these cases, the choice of importance sampler is often

based on mimicing the unnormalized posterior g(y) rather than h(y)g(y). We note that

the estimator Î(f) in (4) induced by normalized importance sampling is biased and that

the estimation of V ar(Î(f)) may be challenging.

As a general purpose integration technique, it appears that importance sampling has

fallen out of favour compared to some of the popular Markov chain methods such as the

Metropolis-Hastings algorithm (see Gilks, Richardson and Spiegelhalter 1996). However,

in principle there is nothing wrong with importance sampling. In fact, importance sam-

pling has several advantages over Markov chain methods. For example, error assessment
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of averages in a Markov chain is not straightforward due to the dependence structure

in the chain. Also, Markov chain methods require the determination of “convergence to

stationarity” of the chain. Furthermore, even if a practitioner wishes to use Markov chain

methods, it is comforting to have an alternative technique which provides corroborating

evidence of the accuracy of the approximations.

There is a growing body of work on importance sampling approaches in the past

decade. Indeed, a powerful feature of the importance sampling framework is the abil-

ity to estimate the normalizing constant of the target distribution. Elvira and Martino

(2021) provide a comprehensive review for importance sampling approaches. A mismatch

between proposal distribution and target may lead to a large variance in the importance

sampling (IS) estimator (Agapiou et al. 2017). One line of research involves a nonlinear

transformation for the IS weights (Ionides 2008). Vehtari et al. (2015) propose a general-

ized Pareto distribution for the distribution of importance weights, to model the heavy tail

caused by the transformation. Multiple importance sampling (MIS) algorithms (Elvira

et al. 2019) are another class of methods which decrease the variance of the IS estimator.

In MIS algorithms, the samples are simulated from multiple proposals, instead of a single

one. He et al. (2014) develop control variates in an IS framework to reduce the variance of

the MIS estimator. Sbert et al. (2018) explore the use of a linear combination of distribu-

tions as a proposal. Another line of work is based on adaptive importance sampling (AIS)

approaches. Adaptive importance sampling algorithms iteratively adapt the parameters

of the importance sampler to achieve accurate approximation of the target distribution

(Bugallo et al. 2017). Bugallo et al. (2017) provide a thorough review for AIS algorithms.

Adaptive schemes can be classified into three categories according to Bugallo et al. (2017):

resampling, moment matching and independent adaptive processes. Cornuet et al. (2012)

propose a multiple AIS scheme that adapts proposal parameters using all samples up to
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the latest iteration. Martino et al. (2017) develop an AIS algorithm with a hierarchical

procedure for generating samples. Elvira et al. (2017) propose novel PMC schemes that

can be combined with AIS algorithms.

Often, multivariate normal or the longer tailed multivariate Student families are used

as proposal distributions (Evans and Swartz 2000, Cornuet et al. 2012, Elvira et al. 2019).

A drawback with these families is that they are symmetric and may not be effective when

the integrand f(y) in (1) is skewed. We hope that a richer family of importance samplers

(as we are proposing) will reduce the mismatch between the importance sampler and the

target distribution. In this paper, we propose the use of restricted skew-Student distribu-

tions for importance sampling on Rn, based on a moment matching adaptive scheme. A

comprehensive treatment of the properties and applications of skew-elliptical distributions

(with particular emphasis on skew-normal distributions) appears in the volume edited by

Genton (2004). The skew-Student family extends the range of integrals for which im-

portance sampling is successful. Azzalini and Capitanio (2014) provides a comprehensive

review for skew family distributions. In Section 2, we describe the restricted skew-normal

family of distributions and provide the relevant details for the implementation of adaptive

importance sampling. For example, we describe variate generation and propose adaptive

methods for fitting a member of the restricted skew-normal family to a particular integral.

Adaptive importance sampling is then extended to the family of restricted skew-Student

distributions in Section 3. In Section 4, we demonstrate the utility of the approach with

some examples. We conclude with a short discussion in Section 5.
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2 RESTRICTED SKEW-NORMAL DISTRIBUTIONS

2.1 Standard Skew-Normal Distributions

There are a number of variations in the definition of skew-elliptical distributions in the

literature (Genton 2004). We consider the standard multivariate skew-normal distribution

as defined by Azzalini and Dalla Valle (1996).

Definition: A random vector z = (z1, . . . , zn)′ is n-dimensional standard skew-normal,

denoted z ∼ SSNn(Ω, α) if it has probability density function

g(z) = 2φn(z,Ω)Φ(α′z)

where α = (α1, . . . , αn)′ is the skew parameter, Φ is the standard univariate normal

cumulative distribution function and φn(z,Ω) is the probability density function of the

n-dimensional normal distribution with mean vector 0 and correlation matrix Ω = (ωij).

There are many properties that can be established regarding the SSN family. For

example, we immediately note that if the skew parameter α is equal to the zero vector,

then z reduces to a normal vector with g(z) = φn(z,Ω). In addition, it can be shown

via moment generating functions that the marginal distributions zi ∼ SSN1(1, λi) where

λi = (
∑
αjωji)/[1 + α′Ωα− (

∑
αjωji)

2]1/2, i = 1, . . . , n.

2.2 Restricted Skew-Normal Distributions

Next, we simultaneously extend and restrict the SSN family. Following Dalla Valle

(2004), the standard skew-normal family SSN is extended according to y ∼ SNn(ε, S,Ω, α)

where y = ε + Sz, z ∼ SSNn(Ω, α) and S is a diagonal matrix described by the vector

s = (s1, . . . , sn)′. The diagonal entries si affect variability in the coordinates and the
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vector ε = (ε1, . . . , εn)′ is a location parameter. We next restrict the SNn family by im-

posing Ω = In where In is the n× n identity matrix. The restriction reduces the number

of parameters in the SNn family. Figure 1 displays the relationships between the SNN

family, SN family and RSN family. Later, we see that the restriction leads to an effective

fitting procedure where estimated moments are equated to theoretical moments. Even

though the restriction reduces the number of parameters, the resultant family provides

probability distributions that are flexible and can differ markedly from the multivariate

normal family.

y ⇠ SNn(✏, S,⌦,↵)
<latexit sha1_base64="mCBCe/4YnrYBc2rPJt5PeE9x1+M=">AAACEnicbVDLSgMxFM34tr6qLt0Ei2ChlBkf6FJ048oHWhU6pdxJb9vQJDMkGaEM/QY3/oobF4q4deXOvzF9LLR64HIP59xLck+UCG6s7395E5NT0zOzc/O5hcWl5ZX86tqNiVPNsMJiEeu7CAwKrrBiuRV4l2gEGQm8jTonff/2HrXhsbq23QRrElqKNzkD66R6vtgNDZf06qyeqd52iInhIlYlelWi4bnEFrgOImlDsZ4v+GV/APqXBCNSICNc1POfYSNmqURlmQBjqoGf2FoG2nImsJcLU4MJsA60sOqoAommlg1O6tEtpzRoM9aulKUD9edGBtKYrozcpATbNuNeX/zPq6a2eVjLuEpSi4oNH2qmgtqY9vOhDa6RWdF1BJjm7q+UtUEDsy7FnAshGD/5L7nZKQe75f3LvcLR8SiOObJBNsk2CcgBOSKn5IJUCCMP5Im8kFfv0Xv23rz34eiEN9pZJ7/gfXwDFVacdQ==</latexit>

z ⇠ SSNn(⌦,↵)
<latexit sha1_base64="/h7AyYk9dgFiartaf9lQgzoIu14=">AAACBnicbVBNSwMxEM36bf2qehQhWIQKUnb9QI+iF09aqbWF7lJm07QNTbJLkhXq0pMX/4oXD4p49Td489+Y1j1o9cHA470ZZuaFMWfauO6nMzE5NT0zOzefW1hcWl7Jr67d6ChRhFZJxCNVD0FTziStGmY4rceKggg5rYW9s6Ffu6VKs0hem35MAwEdydqMgLFSM79552smcKVy0UzloOhfCtqBXewDj7uw08wX3JI7Av5LvIwUUIZyM//htyKSCCoN4aB1w3NjE6SgDCOcDnJ+omkMpAcd2rBUgqA6SEdvDPC2VVq4HSlb0uCR+nMiBaF1X4S2U4Dp6nFvKP7nNRLTPg5SJuPEUEm+F7UTjk2Eh5ngFlOUGN63BIhi9lZMuqCAGJtczobgjb/8l9zslbz90uHVQeHkNItjDm2gLVREHjpCJ+gclVEVEXSPHtEzenEenCfn1Xn7bp1wspl19AvO+xfPtJgQ</latexit>

y ⇠ RSNn(✏, s,↵)
<latexit sha1_base64="uZctGyPlQ7okweQxaaoMoWIZHlA=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4tQoZTEB7osunEl9dFaaEKYTCft0MkkzEyEELp346+4caGIW3/AnX/jtM1CWw9cOJxzL/fe48eMSmVZ30ZhYXFpeaW4Wlpb39jcMrd32jJKBCYtHLFIdHwkCaOctBRVjHRiQVDoM3LvDy/G/v0DEZJG/E6lMXFD1Oc0oBgpLXlmOXUkDeHN7ZWX8VHVIbGkLOI1KGvQQSweoAPPrFh1awI4T+ycVECOpmd+Ob0IJyHhCjMkZde2YuVmSCiKGRmVnESSGOEh6pOuphyFRLrZ5JcR3NdKDwaR0MUVnKi/JzIUSpmGvu4MkRrIWW8s/ud1ExWcuRnlcaIIx9NFQcKgiuA4GNijgmDFUk0QFlTfCvEACYSVjq+kQ7BnX54n7cO6fVQ/uT6uNM7zOIpgD5RBFdjgFDTAJWiCFsDgETyDV/BmPBkvxrvxMW0tGPnMLvgD4/MHgHGaEA==</latexit>

y
=
✏+

Sz

<latexit sha1_base64="RfqYVgU83XX/LlD781H55/FLtDc=">AAAB+nicbVDLSsNAFJ3UV62vVJduBosgCCXxgW6EohuXFe0D2lAm05t26GQSZiZKjf0UNy4UceuXuPNvnLZZaOuBC4dz7uXee/yYM6Ud59vKLSwuLa/kVwtr6xubW3Zxu66iRFKo0YhHsukTBZwJqGmmOTRjCST0OTT8wdXYb9yDVCwSd3oYgxeSnmABo0QbqWMXh/gCtyFWjEcCH+Lbx45dcsrOBHieuBkpoQzVjv3V7kY0CUFoyolSLdeJtZcSqRnlMCq0EwUxoQPSg5ahgoSgvHRy+gjvG6WLg0iaEhpP1N8TKQmVGoa+6QyJ7qtZbyz+57USHZx7KRNxokHQ6aIg4VhHeJwD7jIJVPOhIYRKZm7FtE8kodqkVTAhuLMvz5P6Udk9Lp/enJQql1kcebSL9tABctEZqqBrVEU1RNEDekav6M16sl6sd+tj2pqzspkd9AfW5w+CfZLg</latexit>

⌦
=

I
<latexit sha1_base64="g8T9MGzFrZpBqqK8kUuU3npyOhU=">AAAB8XicbVDJSgNBEK2JW4xb1KOXxiB4CjMu6EUIetGTEcyCyRB6OjVJk56eobtHCEP+wosHRbz6N978GzvLQaMPCh7vVVFVL0gE18Z1v5zcwuLS8kp+tbC2vrG5Vdzeqes4VQxrLBaxagZUo+ASa4Ybgc1EIY0CgY1gcDX2G4+oNI/lvRkm6Ee0J3nIGTVWemjfRtij5ILcdIolt+xOQP4Sb0ZKMEO1U/xsd2OWRigNE1Trlucmxs+oMpwJHBXaqcaEsgHtYctSSSPUfja5eEQOrNIlYaxsSUMm6s+JjEZaD6PAdkbU9PW8Nxb/81qpCc/9jMskNSjZdFGYCmJiMn6fdLlCZsTQEsoUt7cS1qeKMmNDKtgQvPmX/5L6Udk7Lp/enZQql7M48rAH+3AIHpxBBa6hCjVgIOEJXuDV0c6z8+a8T1tzzmxmF37B+fgGK32P8A==</latexit>

⌦ = I
<latexit sha1_base64="g8T9MGzFrZpBqqK8kUuU3npyOhU=">AAAB8XicbVDJSgNBEK2JW4xb1KOXxiB4CjMu6EUIetGTEcyCyRB6OjVJk56eobtHCEP+wosHRbz6N978GzvLQaMPCh7vVVFVL0gE18Z1v5zcwuLS8kp+tbC2vrG5Vdzeqes4VQxrLBaxagZUo+ASa4Ybgc1EIY0CgY1gcDX2G4+oNI/lvRkm6Ee0J3nIGTVWemjfRtij5ILcdIolt+xOQP4Sb0ZKMEO1U/xsd2OWRigNE1Trlucmxs+oMpwJHBXaqcaEsgHtYctSSSPUfja5eEQOrNIlYaxsSUMm6s+JjEZaD6PAdkbU9PW8Nxb/81qpCc/9jMskNSjZdFGYCmJiMn6fdLlCZsTQEsoUt7cS1qeKMmNDKtgQvPmX/5L6Udk7Lp/enZQql7M48rAH+3AIHpxBBa6hCjVgIOEJXuDV0c6z8+a8T1tzzmxmF37B+fgGK32P8A==</latexit>

y = ✏ + Sz
<latexit sha1_base64="pwSiXBsalwu9LYYOJMsP8nMQ4CU=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0UQhJL4QDdC0Y3LivYBbSiT6U07dDIJMxMhDf0SNy4UceunuPNvnLZZaOuBC4dz7uXee/yYM6Ud59taWl5ZXVsvbBQ3t7Z3SvbuXkNFiaRQpxGPZMsnCjgTUNdMc2jFEkjoc2j6w9uJ33wCqVgkHnUagxeSvmABo0QbqWuXUnyNOxArxiNx8jDq2mWn4kyBF4mbkzLKUevaX51eRJMQhKacKNV2nVh7GZGaUQ7jYidREBM6JH1oGypICMrLpoeP8ZFRejiIpCmh8VT9PZGRUKk09E1nSPRAzXsT8T+vnejgysuYiBMNgs4WBQnHOsKTFHCPSaCap4YQKpm5FdMBkYRqk1XRhODOv7xIGqcV96xycX9ert7kcRTQATpEx8hFl6iK7lAN1RFFCXpGr+jNGlkv1rv1MWtdsvKZffQH1ucPzauSjA==</latexit>

Figure 1: Relationships between the SSNn, SNn and RSNn families.

In Figure 2, we provide some contour plots of bivariate densities of the restricted SN

family which we denote RSNn(ε, s, α). We observe that this stretching (skewing) provides

different shapes than the elliptical contours of multivariate normal distributions. Note

that we cannot determine the skew according to a single component of α (Azzalini and

Capitanio, 2014). Whereas the multivariate normal family is characterized by n(n+ 3)/2

parameters, the RSNn family consists of 3n parameters (i.e. ε, s and α) and is more

parsimonious when n ≥ 4.

By the change of variables formula, the probability density function for y ∼ RSN(ε, s, α)
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Figure 2: Contour plots of (a) RSN2(0, 0, (0, 0)′) (i.e. the bivariate standard normal), (b)

RSN2(0, 0, (1, 0)′), (c) RSN2(0, 0, (−2, 0)′) and (d) RSN2(0, 0, (1, 1)′).

is given by

q(y) =
2

(2π)n/2 | S | exp

{
−1

2
(y − ε)′S−2(y − ε)

}
Φ
(
α′S−1(y − ε)

)
=

2

(2π)n/2
∏n

i=1 si
exp

{
−1

2

n∑
i=1

(
yi − εi
si

)2
}

Φ

(
n∑
i=1

αi(yi − εi)/si
)

. (5)

An important consideration for the implementation of importance sampling is that

q(y) in (5) is easily evaluated at any point y. This is not the case for all of the various

skew-elliptical distributions which have been proposed in the literature.

2.3 Generating restricted skew-normal random numbers

The next relevant issue for importance sampling is the generation of random variates

y having the pdf (5) given the parameters ε, s and α. To generate, we use the char-

acterization in Proposition 6 of Azzalini and Dalla Valle (1996) and follow the steps:

• set δ = (1 + α′α)−1/2 α
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• obtain the Cholesky factor A of Σ =

 1 δ′

δ In

 (i.e. obtain the unique lower

triangular matrix A with positive diagonal entries such that AA′ = Σ)

• generate a sample t1, . . . , tn+1 of Normal(0, 1) variates

• set

 u

v

 = A



t1

.

.

.

tn+1


where u is a scalar

• set y =

 ε+ Sv if u > 0

ε− Sv if u < 0

2.4 An adaptive importance sampling with restricted skew-normal

proposals

The final and most challenging issue relevant to the implementation of restricted skew-

normal importance sampling is the determination of a member of the restricted skew-

normal family corresponding to a particular integral. Again, we seek a restricted skew-

normal density q(y) which mimics the integrand f(y) in (1). We consider an adaptive

procedure where we fit the parameters ε, s and α in stages. We begin by assuming

that f(y) in (1) is non-negative as in Bayesian applications where f(y) is proportional

to the product of h(y) and g(y). We set α(0) = 0 which reduces the restricted skew-

normal importance sampler to a multivariate normal importance sampler with mean ε

and covariance matrix S2. A standard approach (Evans and Swartz 2000) is to set ε = ε(0)
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and S = S(0), and using a Laplacian (normal) approximation of f(y) (where f is assumed

twice differentiable), we let

• ε(0) be the solution of
[
∂ log f(y)

∂y

]
= 0 (i.e. ε(0) maximizes f(y))

• S(0) be the diagonal matrix whose diagonal entries are the same as the diagonal

entries of the Cholesky factor of the matrix
(
−∂2 log f(y)
∂yi∂yj

)−1

y=ε(0)

At this point, we have defined a skew-normal importance sampler q(0)(y) based on ε(0),

S(0) and α(0). However, the shape of q(0)(y) may not mimic the shape of the integrand

f(y) very well. To improve the fit, we consider an adaptive sampling approach where we

first sample y(1), . . . , y(N) from q(0)(y) and calculate the ratio

R̂(m) =
Î(mf)

Î(f)
=

1
N

∑N
i=1m(y(i))f(y(i))/q(0)(y(i))

1
N

∑N
i=1 f(y(i))/q(0)(y(i))

(6)

for various functions m(y). The 3n functions m(y) are chosen so that R̂(m) corresponds

to estimates of the mean, the second central moments and the third central moments

of the distribution with density proportional to f(y). In other words, we obtain the

n-dimensional vector µ̂ = (µ̂1, . . . , µ̂n)′ where µ̂j is calculated according to (6) by set-

ting m(y) = yj. We also obtain the n-dimensional vector γ̂ = (γ̂1, . . . , γ̂n)′ where γ̂j

is calculated by setting m(y) = (yj − µ̂j)
2. We also obtain the n-dimensional vector

τ̂ = (τ̂1, . . . , τ̂n)′ where τ̂j is calculated by setting m(y) = (yj − µ̂j)3.

In the first stage of adaptation, we update ε, s and α by referring to the expected

values for skew-normal distributions as derived in Azzalini and Dalla Valle (1996) and in

Genton, He and Liu (2001). We match sample moments with theoretical moments

µ̂i = εi + si

(
2

π

)1/2

δi (7)

γ̂i = s2
i

(
1− 2

π
δ2
i

)
(8)
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and

τ̂i =

√
2(4− π)

π3/2
s3
i δ

3
i (9)

where δi = (1 + α′α)−1/2 αi and i = 1, . . . , n. The right-hand sides of (7)-(9) represent

the mean value, the variance, and the third central moment of the restricted skew-normal

proposals. Using (7), we substitute δi = (π/2)1/2(µ̂i − εi)/si into (9) which yields

ε
(1)
i = µ̂i −

(
2τ̂i

4− π

)1/3

(10)

for i = 1, . . . , n. Therefore, (10) is used to provide the updated parameter ε(1) for adaptive

importance sampling.

Similarly, we use (7) and substitute δi = (π/2)1/2(µ̂i − ε
(1)
i )/si into (8) where the

updated parameter ε
(1)
i is used. This yields

s
(1)
i =

(
γ̂i + (µ̂i − ε(1)

i )2
)1/2

(11)

for i = 1, . . . n which provides the updated parameter s(1) for adaptive importance sam-

pling.

Lastly, we update the skew parameter α using the estimated moments µ̂, γ̂ and τ̂ ,

and the previously updated parameters ε(1) and s(1). First, using δi = (1 + α′α)−1/2αi,

it is easy to establish that αi = (1 − δ′δ)−1/2δi. Then, we again use (7) and obtain

δ
(1)
i = (π/2)1/2(µ̂i − ε(1)

i )/s
(1)
i which is substituted into the expression for αi which yields

α
(1)
i = (1− δ(1)′δ(1))−1/2δ

(1)
i (12)

for i = 1, . . . , n. We note that the method of moments estimation does not always respect

constraints δ(1)′δ(1) < 1. We do not update the importance sampling parameters (and

continue sampling) if the constraint δ(1)′δ(1) < 1 is not satisfied.
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Therefore, (10), (11) and (12) provide the steps for obtaining updated parameters

ε(1), s(1) and α(1). These parameters define an updated importance sampler q(1)(y) which

hopefully better mimics the integrand f(y).

In the second stage of adaptation, we sample y(1), . . . , y(N) according to the importance

sampler q(1)(y) and repeat the above fitting process. This leads to a new importance

sampler q(2)(y).

Obviously, adaptation can continue by repeated sampling and fitting. However, in the

applications which we have considered, only a few (e.g. less than six) rounds of adaptation

are required since subsequent iterations typically result in marginal changes to the current

importance sampler. We terminate adaptation by checking the relative difference in the

standard error estimator of normalizing constant estimator Ẑ = 1
N

∑N
i=1 g(y(i))/q(y(i)).

The termination criterion we use is |SE(t+1)(Ẑ) − SE(t)(Ẑ)|/SE(t)(Ẑ) < η, where the

superscript index t denotes t-th iteration, SE(Ẑ) denotes the standard error estimator of

Ẑ and can be computed by

SE(Ẑ) =
1

N

√√√√[ 1

N

N∑
i=1

g2(y(i))

q2(y(i))
−
(

1

N

N∑
i=1

g(y(i))

q(y(i))

)2
]
.

Also, there may be various strategies in combining the moment estimates from each round

of sampling. For example, one might take weighted averages where the weights correspond

to the inverse of the standard errors of the estimates. Alternatively, one might simply

ignore all of the estimates obtained from the early rounds of adaptation, and instead,

approximate integrals based on only the results from a long run using the final importance

sampler. The computational complexity of the adaptive importance sampler is a linear

function of number of importance samples N , and total number of iterations T . Hence,

the total cost is O(NT ).

As a by-product of estimating integrals, we note that the proposed algorithm attempts
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to find a good importance sampler, i.e. an importance sampler that mimics the posterior

density in Bayesian calculations. In the Metropolis-Hastings algorithm, a popular strategy

is to seek a candidate generating density that mimics the posterior. The resultant MCMC

(Markov chain Monte Carlo) algorithm is often referred to as independence sampling.

Therefore, our algorithm may also be seen as a pre-conditioner to MCMC. By determining

an importance sampler, we obtain a candidate generating density for Metropolis-Hastings

independence sampling. The adaptive importance sampling falls within the standard

importance sampling framework. Hence, the consistency property holds for the adaptive

importance sampling with a restricted skew-normal distribution. When the number of

samples goes to infinity (N → ∞), the approximated integral (e.g. Equation (4)) is

arbitrarily close to the true value. Algorithm 1 provides the pseudo-code of the adaptive

importance sampling with a restricted skew normal proposal.

3 RESTRICTED SKEW-STUDENT DISTRIBUTIONS

Although the multivariate normal distribution has been used extensively in importance

sampling applications, the multivariate Student can be implemented with no real addi-

tional difficulties (see Evans and Swartz 2000). An advantage of the Student over the

normal is longer “tails”. In some applications, the shorter tails of the normal may lead

to importance sampling estimators with infinite variance.

We therefore consider an extension of the proposed adaptive importance sampling

algorithm where restricted skew-normal distributions are replaced by restricted skew-

Student distributions. With some change of notation, we follow the development of skew-

Student distributions as given by Azzalini and Capitanio (2003).
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Algorithm 1 Adaptive importance sampling with a restricted skew-normal

proposal
1: Inputs: (a) Observations y; (b) Target integrand f ; (c) Termination threshold η; (d) Number of

importance samples N .

2: Outputs: (a) A skew normal proposal proposal with parameters ε(T ), s(T ), α(T ); (b) Integral of

interest Î(f).

3: Initialize skew normal parameters: ε(0), s(0) and α(0).

4: Initialize relative difference in the standard error estimator of Ẑ, η̃ =∞.

5: Initialize iteration index t = 1.

6: while η̃ < η do

7: if t = 1 then

8: α(1) = α(0), ε(1) = ε(0) and s(1) = s(0).

9: else

10: Update α(t), µ(t) and s(t) according to Eq (10-12).

11: for i ∈ {1, . . . , N} do
12: Propose samples according to yi ∼ RSNn(ε(t), s(t), α(t)).

13: Compute η̃ = |SE(t+1)(Ẑ)− SE(t)(Ẑ)|/SE(t)(Ẑ).

14: Update iteration index t = t+ 1.

15: Set T = t, ε(T ) = ε(t), s(T ) = s(t), α(T ) = α(t) and compute integral of interest using Eq (4).
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Letting z ∼ SSNn(Ω, α), we define

y = ε+ Sz
√
v/W (13)

= (ε+ Sz)
√
v/W + ε

(
1−

√
v/W

)
where W ∼ χ2

v is distributed independently of z, and v > 3 so that the third moment

E(y3) is finite. This is the analogue of the traditional scale mixing with respect to the chi-

squared when transforming variables from multivariate normal to multivariate Student.

The random variable y in (13) has a skew-Studentn(v, ε, S,Ω, α) where v is referred to

as the degrees of freedom. We note that as v → ∞, the distribution of y converges

to the SNn(ε, S,Ω, α) distribution, and therefore the skew-Student family can be seen

as a generalization of the skew-normal family. Although the notation differs, the skew-

Studentn(v, ε, S,Ω, α) distributions coincide with the distributions in Branco and Dey

(2001).

In the restricted skew-Student setting, we require Ω = I. For adaptive restricted skew-

Student importance sampling, restricted skew-Student variates y are generated following

the construction in (13). Specifically, we generate (ε+ Sz) ∼ RSNn(ε, s, α) as previously

discussed in Section 2 and then generate W ∼ χ2
v. Then using the second expression in

(13) with appropriate algebra yields the restricted skew-Student variate y.

Restricted skew-Student importance sampling also requires the evaluation of the den-

sity of the importance sampler and this is given by

q(y) =
2Γ(n+v

2
)(v/2)v/2

(2π)n/2Γ(v
2
)
∏n

i=1 si
(p(y)/2)−(n+v)/2Prob

(
T ≤

√
(n+ v)/p(y)

n∑
i=1

αi(yi − εi)/si
)

where p(y) = v +
∑n

i=1(yi − εi)2/s2
i and T ∼ Studentn+v. Therefore we also require the

evaluation of the distribution function of the univariate Student distribution and this is

available in many statistical software packages such as the R programming language.
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The final step relevant to the implementation of adaptive restricted skew-Student im-

portance sampling is the determination of a member of the restricted skew-Student family

in each round of adaptation. Consider then the first round of adaptation where the same

steps are taken in subsequent rounds. We follow the approach previously developed for

adaptive restricted skew-normal importance sampling by matching moments. The initial

parameters can be obtained via the approach outlined in Section 2. As in expressions (7),

(8) and (9), we use coordinate-wise formulae for the first moment from the origin

µ̂i = εi + siδi

(
ν

π

)1/2 Γ(1
2
ν − 1

2
)

Γ(1
2
ν)

(14)

the second moment from the origin

γ̂i = s2
i

[
ν

ν − 2
−
{
δi

(
ν

π

)1/2 Γ(1
2
ν − 1

2
)

Γ(1
2
ν)

}2]
(15)

and the third moment from the origin

τ̂i =
3vs2

i

(v − 3)(v − 2)
(µ̂i − εi)−

πΓ2(v
2
)

(v − 3)Γ2(1
2
v − 1

2
)
(µ̂i − εi)3 + 2(µ̂i − εi)3. (16)

We note that a difference between (7)-(9) and (14)-(16) is that the latter equations also

depend on v. As before, we solve these equations numerically (e.g. using the Newton-

Raphson method) to give updated skew-Student importance sampling parameters. Pa-

rameter εi does not have a closed form solution. Therefore, we numerically solve

τ̂i =
3

(v − 3)
[γ̂i + (µ̂i − ε̂i)2](µ̂i − εi)−

[
πΓ2(v/2)

(v − 3)Γ2((v − 1)/2)
− 2

]
(µ̂i − εi)3 (17)

to obtain the method of moments estimates. The method of moments estimates si and δi

are given by

si =

[
ν − 2

ν
(γ̂i + (µ̂i − ε̂i)2)

]1/2

(18)
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and

δi =
µ̂i − εi

si(
ν
π
)1/2 Γ( 1

2
(ν−1))

Γ( 1
2
ν)

. (19)

Therefore equations (17), (18) and (19) provide the parameter updates for successive

iterations of adaptive skew-Student importance sampling. Note that in adaptive skew-

Student importance sampling, we do not currently have a good method for fitting the

degrees of freedom parameter v > 3. Instead, we take the approach of setting v in

advance where smaller degrees of freedom lead to longer tailed distributions. Our view

is that longer tails (e.g. v = 5) are better in terms of insuring estimators with finite

variances. Alternatively, one can run the algorithm several times with different choices of

v, and select the value which gives an estimator with the smallest variance.

4 EXAMPLES

4.1 Example 1

We first consider a 12-dimensional integral where the integrand f(x) is the density of the

RSN12(ε, s, α) distribution where

ε = (1 2 3 4 5 6 7 8 9 10 11 12)′

s = (1 1 1 1 2 2 2 2 3 3 3 3)′

α = (1 1 1 1 1 1 2 2 2 2 2 2)′

This is a good test case as the dimensionality is sufficiently high to be problematic for

most asymptotic approximations and quadrature methods (Evans and Swartz 2000), and

ideally, we would like to see the restricted skew-normal importance sampler approach the

distribution given by the integrand.
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In this problem, since f(x) is a density, the inverse normalizing constant I(f) = 1.0

and we use the estimates Î(f) to assess the performance of the adaptive importance

sampling algorithm. We chose N = 30, 000, 000 iterations in each adaptive step. Each

round of sampling and adaptation required approximately five minutes of computation

on a laptop computer. The integrand is in the family of proposals used for adaptation.

In Table 1, we give some summary results of the algorithm based on four stages of

adaptation. In particular we provide Î(f) and its standard error. We also provide the

parameters s(1), . . . , s(4) updated after each round of sampling. We observe that common

approach of multivariate normal importance sampling (i.e. stage (1)) is unreliable as the

estimate Î(f) is nearly eight standard errors from its true value. This is a typical prob-

lem with importance sampling (Evans and Swartz 2000) when the importance sampler

does not adequately mimic the integrand. However, we do see that the adaptive algo-

rithm quickly delivers a good fitting importance sampler, where after four iterations, the

s vector in the importance sampler matches the s vector of the integrand. We note that

after four rounds of adaptation, the standard error of Î(f) reduced to 0.000002. There-

fore, ignoring the fact that the standard error in the first round underestimates the true

standard error, the adaptative algorithm provides an increase in efficiency by a factor

of (0.008619/0.000002)2 ≈ 1.9 × 107. In other words, at least 1.9 × 107 times as much

multivariate normal importance sampling is required to obtain the equivalent precision

as restricted skew-normal importance sampling based on (ε(4), s(4), α(4)). Finally, we re-

mark that in a similar fashion to s, the importance sampling parameters ε also converged

quickly to the parameter values corresponding to the integrand. However, the α vector

does not converge quickly. After six rounds of adaptation,

α(6) = (0.97 0.90 0.96 0.80 0.86 0.92 1.93 1.89 1.90 1.90 1.88 1.91)′.

We observe a lack of speedy convergence for the skew parameter α. The slow convergence

18



of the estimate of α is not such an important issue, since the observed numerical differences

from the true values do not translate into appreciable differences of the likelihood. Recall

we are trying to find an importance sampler that mimics the integrand, and any skew-

normal that fits reasonably well accomplishes our goal whether or not it is optimal.

Restricted Skew-normal Restricted Skew-Student10

Stage of Adaptation Stage of Adaptation
(1) (2) (3) (4) (1) (2) (3) (4)

Î(f) 0.93021 0.99954 1.00000 1.00002 1.00182 1.00000 0.99999 0.99993

SE(Î(f)) 0.008619 0.000032 0.000003 0.000002 0.003404 0.000159 0.000159 0.000159
s1 0.96 1.03 1.00 1.00 1.04 0.88 0.89 0.89
s2 0.99 1.04 1.00 1.00 0.46 0.89 0.89 0.89
s3 1.30 1.04 1.00 1.00 1.05 0.89 0.89 0.76
s4 0.95 1.03 1.00 1.00 0.66 0.88 0.89 0.89
s5 0.71 1.93 2.00 2.00 2.00 1.77 1.77 1.77
s6 2.30 2.03 2.00 1.99 2.71 1.77 1.77 1.77
s7 1.55 2.07 2.00 2.00 1.70 1.71 1.71 1.71
s8 2.47 2.13 2.00 2.00 1.94 1.71 1.71 1.71
s9 3.68 3.14 3.00 3.00 3.28 2.57 2.57 2.57
s10 2.01 3.10 3.00 3.01 3.18 2.57 2.57 2.57
s11 3.15 3.05 2.99 3.01 2.96 2.57 2.57 2.57
s12 2.97 2.95 3.01 3.00 2.24 2.57 2.57 2.57

Table 1: Some summary results corresponding to Example 1.

In Table 1, we also provide some summary results corresponding to four rounds

of adaptive restricted skew-Student10 importance sampling. Since the integrand is re-

stricted skew-normal, we do not expect the algorithm to perform quite as well as adaptive

restricted skew-normal importance sampling, and this is the case. However, the stan-

dard error of Î(f) in restricted skew-Student10 importance sampling quickly (i.e. two

rounds) reduced to 0.000159 and this represents an increase in efficiency by a factor of

(0.003404/0.000159)2 ≈ 458 over standard multivariate normal importance sampling. Ad-

ditional simulations (not reported) indicate that the algorithm performs less well as the

19



degrees of freedom of the importance sampler decrease and we move away from normal-

ity. In the Appendix, we further investigate tradeoffs on the number of adaptations and

samples on a lower dimensional version of this problem.

4.2 Example 2

Our second example is taken from the second test case in Evans and Swartz (1995).

This is a 9-dimensional integral based on the Bayesian analysis of a contingency table

with parameter vector θ = (θ1, . . . , θ9)′. The data involves the cross-classification of

132 long-term schizophrenic patients into three row categories describing the frequency of

hospital visits and three column categories describing the length of stay. Evans and Swartz

(1995) applied various integration techniques to the calculation of posterior means in this

test case. In the example, they concluded that subregion adaptive integration (Genz

1991) proved excessively time consuming, and a MCMC approach based on a Metropolis

independence chain suffered from high correlations.

We applied the proposed adaptive importance sampling approach based on the re-

stricted skew-Student distribution to this non-trivial problem. We chose N = 10, 000, 000

iterations in each adaptive step for direct comparison with Student5 importance sampling

reported in Evans and Swartz (1995). We consider the estimation of the posterior mean

of θ1 as this is the most problematic integral considered in Evans and Swartz (1995). In

Table 2, we provide the exact value (based on 41 hours of Student importance sampling)

and the adaptive skew-Student estimates after the fourth round of adaptation. We also

provide the Normal (non-adaptive) importance sampling results. We observe that adap-

tive restricted skew-normal importance sampling provides an improvement over Normal

importance sampling as the standard errors are reduced. We suspect that the improve-

ments are not as great as in Example 1 as the posterior is not as heavily skewed. We
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observe a slight benefit in adaptive restricted skew-Student importance sampling over

adaptive restricted skew-normal importance sampling. This supports the assertion that

little is lost by choosing the longer tailed skew-Student over the skew-normal.

We also compare the aforementioned importance sampling approaches in terms of

computing time using a 2.3 GHz Intel Core 19 processor. With N = 10, 000, normal

(non-adaptive) importance sampling required 0.31 seconds of computation, each round

of adaption for adaptive importance sampling with the restricted skew-normal proposal

required 0.86 seconds, and each round of adaption for adaptive importance sampling with

the restricted skew-Student10 proposal required 0.62 seconds.

After Four Rounds of Adaptation
Exact Normal Skew-normal Skew-Student10

Estimates 0.4215 0.4323 0.4298 0.4269
Std Error (0.054) (0.0486) (0.04301)

Table 2: Estimates of the posterior mean of θ1 and standard errors corresponding to
Example 2.

21



4.3 Example 3

In the groundbreaking book “Basketball on Paper”, by Oliver (2004), novel statistics

for player evaluation in the National Basketball Association (NBA) were developed.

These statistics have given rise to various aggregate offensive statistics (provided by

www.basketball-reference.com) such as

• X1 ≡ offensive rating,

• X2 ≡ offensive win shares,

and defensive aggregate statistics such as

• X3 ≡ defensive rating,

• X4 ≡ defensive win shares.

It would be informative to investigate these new measures as they relate to player

salaries (s). In particular, we model

ln(s) = (β1x1 + β2x2)(β3x3 + β4x4) + ε, (20)

where ε ∼ N(0, σ2). Therefore, salaries are modelled as log-normal distributions, where

there is a long history of using lognormal distributions to successfully model incomes (see

chapter 11 of Aitchison and Brown, 1966). In (20), we have expressed mean player salary

as a product of offensive and defensive attributes. In this formulation, a 1% increase in

either offensive or defensive attributes provides a 1% increase in the player’s mean log

salary.

Using data from the 2018-2019 NBA season involving i = 1, . . . , n = 358 players who

have played at least 500 minutes during the season, this leads to the likelihood

L(θ) =
n∏
i=1

1

σ
exp

{
− 1

2σ2

(
ln(si)− (β1xi1 + β2xi2)(β3xi3 + β4xi4)

)2
}
,
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involving unknown parameters θ = (β1, β2, β3, β4, σ). Salary data is available from the

website www.kaggle.com.

One may be interested in providing probability assessments on the parameters and also

wish to introduce prior knowledge regarding the parameters via π(θ). This is suggestive

of a Bayesian analysis and leads to integrals of the form

I(m) =

∫
m(θ)L(θ)π(θ)dθ (21)

where m(θ) is some function of interest regarding the parameters.

The 5-dimensional integral I(m) in (21) is not analytically available and requires some

sort of approximation technique. Note also that the dimensionality of the problem in-

creases as we add more covariates X. For simplicity, we set m(θ) = π(θ) = 1 and compare

importance sampling approaches. The computation of (21) may be a challenging task for

a Gibbs sampling algorithm as the determination of full conditional distributions is not

straightforward. In Table 3, we provide the exact value of I(m) (based on 3 × 109 it-

erations of normal importance sampling), the adaptive skew normal estimates and the

adaptive skew-Student estimates after four rounds of adaptation. Note that alternative

and perhaps “smarter” importance samplers might have been chosen especially as the

parameter σ differs in structure from the β parameters. However, in this demonstra-

tion, we are interested in choosing a rough and ready importance sampling technique.

We chose N = 3, 000, 000 iterations in each adaptive step. We also provide the Normal

(non-adaptive) importance sampling results (N = 3, 000, 000). We observe that adap-

tive restricted skew-normal importance sampling provides an improvement over Normal

importance sampling as the standard errors are reduced.

From Table 3, we observe a slight benefit in adaptive restricted skew-Student impor-

tance sampling over adaptive restricted skew-normal importance sampling. This supports

the assertion that little is lost by choosing the longer tailed skew-Student over the skew-
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After Four Rounds of Adaptation
Exact Normal Skew-normal Skew-Student10

Estimates -608.66 -617.55 -610.75 -609.86
Std Error (-617.89) (-612.84) (-611.22)

Table 3: Estimates of the normalizing constant and standard errors corresponding to
Example 3.

normal. It also suggests that if you are going to use an importance sampling algorithm,

the adaptive algorithms presented here may help some, but don’t appear as they will be

detrimental.

We also compare the importance sampling approaches in terms of computing time

using a 2.3 GHz Intel Core 19 processor. With N = 10, 000, the normal (non-adaptive)

importance sampling required 0.26 seconds of computation, each round of adaption for

adaptive importance sampling with skew-normal proposal required 0.45 seconds and each

round of adaption for adaptive importance sampling with the skew-Student10 proposal

required 0.43 seconds.

5 DISCUSSION

This paper introduces new importance sampling algorithms for integrals defined on Rn.

The approach is adaptive and relies on the restricted skew-normal and restricted skew-

Student families of distributions. Although there is no “universal” approach to multivari-

ate integration, the proposed algorithms generalize the widely used approach based on

multivariate normal importance sampling.

Like all integration techniques, our approach suffers from the curse of dimensionality

where sampling and fitting become more complex as the dimension of the integral rises.

Nevertheless, we have demonstrated the utility of the approach in several challenging
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examples.

No doubt, there are many variations of our algorithm that may be considered in

future research. One potentially fruitful direction is the extension of our approach to more

general skew-elliptical distributions. A second research direction involves the combination

of skew family proposals with other adaptive schemes proposed in the recent literature

(e.g. Cornuet et al. 2012, Elvira et al. 2019). Lastly, we plan to explore the theoretical

efficiency of our approach.
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7 Appendix

We are interested in the tradeoffs between the number of adaptations and the number

of samples in adaptive importance sampling (AIS). We consider a simpler version of

Example 1 where the integral is 8-dimensional. The integrand f(x) is the density of the

RSN8(ε, s, α) distribution where

ε = (1 2 3 4 5 6 7 8)′

s = (1 1 1 2 2 2 3 3)′

α = (1 1 1 1 2 2 2 2)′.

We select two levels of iterations N = 106 and N = 3 · 106 in each adaptive step, and

investigate the performance of AIS as a function of N . We set the maximum number of

adaptive stages to 10. For each level of N, we repeat AIS 10 times. Figure 3 displays the

normalizing constant estimates Î(f) and the standard deviation estimates as a function

of N . The normalizing constant with a higher value of iterations admits lower bias and

standard deviation. The AIS improves as stage of adaption increases; they tend to be

stable after stage of adaption reaches 4. A larger value of iterations can improve the

performance of AIS more significantly than an increase in iterations.
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Figure 3: Normalizing constant estimates Î(f) and the standard deviation estimates as a

function of adaptive steps for two levels of iterations N = 106 and N = 3 · 106.
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