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Abstract

The probability of winning a game in major league baseball depends on various factors relating

to team strength including the past performance of the two teams, the batting ability of the

two teams and the starting pitchers. These three factors change over time. We combine these

factors by adopting contribution parameters, and include a home field advantage variable in

forming a two-stage Bayesian model. A Markov chain Monte Carlo algorithm is used to carry

out Bayesian inference and to simulate outcomes of future games. We apply the approach to

data obtained from the 2001 regular season in major league baseball.
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1. Introduction

The probability of winning a game in major league baseball (MLB) depends on various factors

relating to team strength including the past performance of the two teams, the batting ability of

the two teams and the starting pitchers. We define the relative strength of a team over a competing

team at a given point in time by combining these three factors into a single measurement. Although

other factors relating to team strength may influence the probability of winning, we assume that

their effect is minor, and note that the three main factors mentioned above are those that are

traditionally considered in the setting of betting odds by bookmakers (McCune 1989). Bookmakers

are also aware that the home field advantage significantly influences the probability of winning,

and likewise, we include it in our calculations. In this paper, we propose a two-stage Bayesian

model based on the relative strength variable and the home field advantage variable to predict the

outcomes of games in MLB.

MLB in the United States is divided into two leagues and six divisions. The American League

(AL) has three divisions and the National League (NL) has three divisions. Each team plays 162

games in the regular season (April through early October) which does not include the pre-season

and the post-season playoffs. Summary statistics for the 2001 MLB regular season appear in Table

1. Overall win percentages are followed by the home and away win percentages, the overall team

batting average and the overall team earned run average (ERA). We observe that most teams win

more often at home than on the road, and this suggests that the home field advantage variable

may be useful. The 2001 regular season is noteworthy in that Seattle finished with an outstanding

116-46 won-loss record, tying the 1906 Chicago Cubs’ MLB record for wins in a season. Seattle

also established the AL record for road wins in a season (59) and set a major league record with

29 consecutive road series won or tied. More detailed statistical information on MLB is available

from numerous internet websites including www.sportline.com and www.sportsillustrated.com.

The relative strength of a team over a competing team at a given point in time is based on

three ratios: (1) the ratio of the winning percentages between the two teams, (2) the ratio of the

overall team batting averages and (3) the ratio of the ERAs between the two starting pitchers. We

note that on the day of a MLB game, all three ratios are typically available. Later we demonstrate

that ratio (3) is more important in determining the probability of a win than ratio (1) and ratio

(2). The importance of ratio (3) is consistent with our intuition where we believe, for example,

that in the 2001 season, the Arizona Diamondbacks have a higher probability of winning when
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either Randy Johnson or Curt Schilling is pitching. Clearly, it is unreasonable to expect that

all three ratios affect the probability of winning in the same way. For this reason, we adopt

three unknown contribution parameters that assign relative importance to each of the three ratios.

The contribution parameters are assumed constant across all teams and arise from independent

prior densities. The home field advantage parameter is assumed to be apriori independent of the

contribution parameters. Therefore our model essentially relies on four primary parameters; the

three contribution parameters and the home field advantage parameter. This parametrization is

much simpler than many other approaches. For example, the Bradley and Terry (1952) model

requires at least n − 1 parameters where a team parameter is defined for each of the n teams

and the team parameters sum to a constant. In addition, our relative strength variable is flexible

as it readily accommodates other factors, and can be easily modified for various sports such as

basketball, football, soccer and hockey.

A two-stage Bayesian model based on the relative strength variable and the home field advantage

variable is proposed to predict the outcome of games in MLB. In the first stage, we assume that the

probability that a given team wins is a random sample from a beta distribution with parameters

based on the relative strength variable and the home field advantage variable. In the second stage,

the outcome (win or loss) is a random sample from a Bernoulli distribution with this winning

probability. We contrast the two-stage model with a one-stage model where the outcome (win or

loss) is a random sample from a Bernoulli(p) distribution whose probability p is a direct function

of the relative strength variable and the home field advantage variable. Thus, the two-stage model

offers an extra level of variation to account for the difficulty that investigators have encountered

when modelling outcomes of MLB baseball games (Kaigh 1995 and McCune 1989). In addition,

the two-stage Bayesian structure permits convenient Bayesian inference.

We observe that the posterior distribution arising from the two-stage Bayesian model is of

a form that is not readily interpretable. In this context, Markov chain Monte Carlo (MCMC)

algorithms sample variates according to a Markov chain whose stationary distribution is the desired

posterior distribution. The goal is to average the sampled variates to estimate posterior quantities

of interest. We consider a ”Metropolis within Gibbs” MCMC algorithm (see Gilks, Richardson

and Spiegelhalter 1996) which is useful when the full conditional densities of the Gibbs sampling

algorithm (Geman and Geman 1984) are non-standard. The Gibbs sampling algorithm is perhaps

the simplest of the MCMC algorithms. Additional reading on Gibbs sampling in related contexts

can be found in Gelfand and Smith (1990), Barry and Hartigan (1993), and Kuo and Yang (1995,
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1996, 2000). MCMC sampling is used to simulate the outcomes of future games and then predict

the eventual division winners.

Kaigh (1995) considers a simple method of prediction for major league baseball using only the

home and away records of the competing teams. Predictions are compared against results from

the 1989-1993 MLB regular seasons. It is not evident that the simple predictive model yields a

profitable betting strategy. Barry and Hartigan (1993) consider a more complex choice model for

prediction in MLB. Like our model, the Barry and Hartigan model is Bayesian, allows for changing

team strengths over time and relies on a MCMC implementation. Some distinguishing features of

their model include the assumption that team strengths are discrete, the exclusion of team batting

averages as covariates and the huge number of parameters required. Perhaps the greatest practical

difference, however, is that their model does not consider the effect of starting pitchers. Since

starting pitchers may critically affect the outcome of a game, the Barry and Hartigan (1993) model

cannot be used for accurate prediction of individual games. Their model is appropriate only for

predicting a large number of games (e.g. the remainder of a season) where the effect of individual

pitchers is averaged over the large number of games. Additional reading on baseball and prediction

can be found in Bennett (1998), James, Albert and Stern (1997), and Barry and Hartigan (1994).

Section 2 provides a complete specification of the full two-stage Bayesian model and indicates

sub-models that may be appropriate. In Section 3, we adopt a Markov chain Monte Carlo approach

for Bayesian inference. The full conditional distributions are derived and sampling is carried out

using the Metropolis within Gibbs algorithm. Section 4 looks at the problem of prediction with

specific emphasis on the prediction of results for the remainder of the season. In Section 5, simula-

tion results from the models are studied in comparison with the actual final results from the 2001

MLB regular season. Some concluding remarks are then provided in Section 6.

2. The Model

Suppose that the T games in a MLB regular season are indexed in time according to s = 1, . . . , T .

We calculate covariates (αs, βs, γs) immediately prior to time s where

• αs denotes the ratio of the winning percentages between the two teams

• βs denotes the ratio of the overall team batting averages

• γs denotes the ratio of the starting pitchers’ ERAs
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Without loss of generality, we let the numerator in the first two ratios correspond to the home

team, and we let the denominator in the third ratio correspond to the home team.

As pointed out by a referee, there is variability in the covariates and the variability is decreasing

in time s. In particular, early in the season, some pitchers may have extraordinarily high or low

ERAs. For this reason, we truncate γs according to 1/γ0 ≤ γs ≤ γ0 for prescribed γ0. For the

MLB data considered in this paper, we let γ0 = 5. From a practical point of view, we consider

only games corresponding to s ≥ t0 for some moderate value t0, to allow the covariates to stabilize.

Typically, with MLB data, one would not expect extreme variation in the covariates αs and βs for

s ≥ t0.

It is unreasonable to expect that all three ratios affect the probability of winning in the same

way. We therefore adopt unknown contribution parameters r = (r1, r2, r3) where we define the

relative strength of the home team over the visiting team at time s as

λs = αr1

s ∗ βr2

s ∗ γr3

s .

We assume that the contribution parameters are constant across all MLB teams and arise from

independent prior distributions with ri ∼ uniform(0, ai) where ai is prescribed, i = 1, 2, 3. The value

ri close to 0 implies that the corresponding ratio has little effect on the relative strength. For the

MLB data considered in this paper, we let ai = 2 for i = 1, 2, 3. We view these as subjective priors

where we use our knowledge of MLB to impose effects based on the current winning percentage,

batting and pitching. Note that in the context of the models described below, ai = 2 is a realistic

upper bound for the value of ri, i = 1, 2, 3.

The relative strength of the visiting team over the home team at time s is therefore given by the

reciprocal 1/λs = (1/αs)
r1 (1/βs)

r2 (1/γs)
r3 . When a team’s relative strength is larger (smaller)

than 1, this implies that it is the stronger (weaker) team at time s. We note that the relative

strength variable λs is flexible as it readily accommodates other factors, and can be easily modified

for various sports.

We also consider a home field advantage variable δ which is assumed constant across all MLB

teams and is assumed independent of the contribution parameters. The visiting field effect is then

defined as 1/δ where we interpret δ > 1 as a home field advantage. We assign a uniform(δ0, δ1)

prior distribution for δ where δ0 and δ1 are prescribed. For the MLB data considered in this paper,

we let δ0 = 0 and δ1 = 2. The apriori belief E(δ) = 1 therefore implies that the home field has no

effect.
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Having defined the relative strength λs and the home field advantage δ, we now propose three

predictive models in increasing levels of complexity. Let the random variable Xs equal 1 (0) if the

home team wins (loses) in the sth game. We are interested in the probability distribution of Xs.

For convenience, we define ps = Prob(Xs = 1).

Model 1: Prob(Xs) = pXs

s (1 − ps)
1−Xs and ps =

λsδ

1 + λsδ

Model 1 is a simple one-stage model where Xs is a Bernoulli random variable with expected value

ps. One of the features of the parametrization is that the probability of the visiting team winning

is given by
(

1
λsδ

)

/
(

1 + 1
λsδ

)

= 1
1+λsδ = 1 − ps.

Model 2: Prob(Xs) = pXs

s (1 − ps)
1−Xs and ps ∼ beta(λsδ, 1)

Model 2 is a two-stage model where the first stage uses the same Bernoulli distribution as in Model

1 and the second stage imposes a beta prior distribution. Note that conditional on ps, the expected

value of Xs is again ps. Model 2 offers an additional level of variation beyond Model 1 to account

for the difficulty that investigators have encountered when modelling the outcomes of MLB games.

Model 3: Prob(Xs) = pXs

s (1 − ps)
1−Xs and ps ∼ beta(mλsδ,m)

Model 3 generalizes Model 2 by introducing the parameter m > 0. When m is equal to 1, then

Model 3 reduces to Model 2. When m → ∞, then Model 3 reduces to Model 1. Thus Model 1 and

Model 2 can be viewed as sub-models, and we can assess their suitability according to the posterior

distribution of m in Model 3. Note that Model 3 implies E(ps | m) = λsδ/(1 + λsδ) as in Model 1

and in Model 2, and Var(ps | m) = λsδ/(λsδ + 1)2(mλsδ + m + 1). Therefore we can maintain the

same mean structure, yet the probability distribution can be made more or less diffuse according

to the value of m. We choose an exponential prior distribution with mean m0 for m. In this paper,

we let m0 = 10.

3. Bayesian Inference

Consider inference for the primary parameters r, δ, m and the ps in the full two-stage Bayesian

model (Model 3). We refer to the fixed parameters a1, a2, a3, δ0, δ1 and m0 as hyperparameters of

the model.

In the 2001 MLB regular season, each of the 30 teams is scheduled to play 162 games leading

to a total of T = 15(162) = 2430 games. Again, the games are indexed in time according to
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s = 1, . . . , t, . . . , T where t is the current time. We denote the covariate triple

Ds = (αs, βs, γs) for s = t0, . . . , t − 1

where the components of Ds are the three ratios defined in Section 2. Considering games from only

time t0 onwards, the posterior density of pt0 , . . . , pt−1, m, δ and r is therefore proportional to the

likelihood times prior and is given by

π(· | ·) = π(pt0 , . . . , pt−1,m, δ, r | xt0 , . . . , xt−1,Dt0 , . . . ,Dt−1)

∝
(

∏t−1
s=t0 B(mλsδ,m) pxs+mλsδ−1

s (1 − ps)
m−xs

)

e−m/m0

(1)

where B(a, b) = Γ(a + b)/(Γ(a)Γ(b)) is the norming constant of the beta(a, b) distribution, m > 0,

δ0 ≤ δ ≤ δ1, ai ≤ ri ≤ bi for i = 1, 2, 3 and 0 < ps < 1 for s = t0, . . . , t − 1.

For inference we use the empirical measure of the samples generated by the Gibbs sampler. From

(1), the Gibbs sampler requires iterative variate generation from the following four full conditional

densities:

[ps | ·] ∼ beta (xs + mλsδ, m − xs + 1) s = t0, . . . , t − 1

[m | ·] ∝ e−m/m0
∏t−1

s=t0 B(mλsδ,m) pmλsδ
s (1 − ps)

m

[δ | ·] ∝
∏t−1

s=t0
Γ(mλsδ+m)

Γ(mλsδ) pmλsδ
s

[ri | ·] ∝
∏t−1

s=t0
Γ(mλsδ+m)

Γ(mλsδ) pmλsδ
s i = 1, 2, 3

The generation of the ps variates is straightforward as almost every statistical package has a

built-in beta generator. The generation of m, δ, r1, r2 and r3 from their respective full conditional

densities is less obvious as their densities have non-standard forms. For these variates, we use a

Metropolis within Gibbs step (Gilks, Richardson and Spiegelhalter 1996) where in each case we

use the corresponding prior distribution as the proposal distribution. Note that this is a practical

advantage in avoiding improper priors.

We now estimate the probability that the home team wins at time t. Denote the data at time

t as

data = (xt0 , . . . , xt−1,Dt0 , . . . ,Dt−1).

Then the predictive density at time t is given by

P (xt | data) ∝

∫

pxt

t (1 − pt)
1−xtB(mλtδ, m) pmλtδ−1

t (1 − pt)
m−1π(m, δ, r | data) dpt dm dδ dr (2)

where π(m, δ, r | data) is the marginal posterior density obtained from (1). It is not practical

to integrate according to (2). Instead, the integration is carried out using the MCMC algorithm
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for Model 3. Retaining the values (m, δ, r) obtained in an iteration of the MCMC algorithm,

generate pt ∼ beta(mλtδ,m) and then generate Xt from a Bernoulli(pt) distribution. The Xt are

now a sample from the predictive density in (2) and can be averaged to estimate the predictive

probability that the home team wins. Noting that E(Xt|data) = E(Pt|data), a simpler and more

efficient estimate of the predictive probability that the home team wins can be obtained by averaging

the λtδ/(λtδ + 1) values. This technique is sometimes referred to as Rao-Blackwellization.

4. Prediction

Besides making inferences on the unknown parameters, we are also interested in predicting the

outcome of games for the remainder of the season. We remark that the MLB schedule is determined

well in advance of the season, and therefore we always know who plays whom at a given point in

time.

Recall that t is the current time in the season. The predictive density of Xt, . . . ,XT can be

obtained via

P (Xt, . . . ,XT | Xt0 , . . . ,Xt−1,Dt0 , . . . ,Dt−1)

=
∏T

s=t P (Xs | Xt0 , . . . ,Xs−1,Dt0 , . . . ,Ds−1)
(3)

where the terms within the product are given in (2).

Our Markov chain algorithm can also be used for estimating results for the remainder of the

season. After the chain has stabilized, we retain the values (m, δ, r) from a given iteration. We

generate pt ∼ beta(mλtδ,m) and then generate Xt ∼ Bernoulli(pt). Next we generate pt+1 ∼

beta(mλt+1δ,m) followed by Xt+1 ∼ Bernoulli(pt+1). We continue the process obtaining a single

sequence Xt, . . . ,XT . For each team, we combine the number of wins at the current time in

the season with the number of wins during the simulated season t, . . . , T to obtain the number

of wins over the full season. The entire process is repeated over multiple simulated seasons to

derive estimates for the total number of wins. A practical difficulty concerns the updating of

Ds = (αs, βs, γs) used in the construction of λs during the simulated part of the season s = t, . . . , T .

The win ratios αs change for a team as they win and lose games in the simulated part of the

season. Although αs is readily changed according to Xt0 , . . . ,Xs−1, the ratios for team batting βs

and starting pitchers’ ERAs γs are unavailable for games well off into the future. As a compromise,

we fix βs = βt and set γs equal to the team average at time t, s = t, . . . , T .
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5. Analysis of 2001 MLB Data

Collecting relevant information on the entire 2001 MLB regular season is a formidable task.

As such, we considered only games played on each of twelve dates, beginning April 15 and spread

nearly evenly across the season. In these games, we observe 106 home team wins out of a total of

179 games giving a home field winning proportion of 0.59. This sample proportion is a little larger

than historical values for MLB (Berry 2001). Table 2 lists the sample means and standard errors

for α, β, γ and the home field winning variable X. We observe that the sample means of α, β and

γ are what we expect, e.g. nearly centered about 1. Note that β does not vary greatly about 1.0;

this is an early suggestion that the batting variable may not have a significant role in prediction.

We first consider practical convergence of the Markov chain using the CODA software (Best,

Cowles and Vines 1995). CODA is a set of S-Plus functions that gives graphical summaries and

diagnostics of convergence from MCMC output. The results from CODA suggest that practical

convergence is achieved after 1,000 iterations. The following results are based on 1000 iterations

and 100 replications after 1000 burn-in iterations.

Table 3 provides posterior means and posterior standard deviations of the primary parameters r,

δ and m. The posterior distributions of the r variables are somewhat flat confirming the difficulty in

determining the exact contribution of the winning percentage, batting and pitching to the prediction

problem. It also points to the need for larger data sets in future analyses. To interpret the

magnitude of the home field advantage, consider two teams with equal relative strength λs = 1. In

this case, the posterior mean of δ given by 1.58 implies that the home team wins with expected

probability 0.61, which is close to the sample mean of X given by 0.59. The posterior mean

m = 5.23 is less than the prior mean 10.0 and is in the direction of Model 2 where the value of m

is 1. This provides some support for Model 2 although we rely on a model choice criterion based

on prediction.

We now turn to the prediction problem where the remainder of the 2001 MLB season is simulated

from different points in time. We note that there are very few MLB games that are rained out and

not rescheduled. Therefore almost all of the 30 teams completed the full 162 games. We compare

the predictive ability of the three models given in Section 2. The criterion used is the sum of

squared differences between the expected predictive win probabilities and the final season winning

percentages over all 30 MLB teams. The chosen current time points are May 30, June 30, July

30 and August 30 in the regular season. The results are shown in Table 4 where the last column
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indicates the squared difference criterion between the current winning percentages and the final

season winning percentages. The last column therefore corresponds to simple extrapolation of a

team’s current performance to the end of the season. Naturally, we expect final season predictions

to improve as the season progresses and this is the case in Table 4. We observe that the predictive

ability of all three models is superior to simple extrapolation. Given the aforementioned difficulty

of prediction in MLB, we stress that this is a promising result and is indicative of model adequacy.

Amongst the three models, it seems that Model 3 may be overfitting although all three models are

comparable in their predictive performance. We prefer Model 2 as it is slightly better than Model

3 in prediction and allows more variation than Model 1 without requiring additional parameters.

The results from Table 3 also suggest that we might prefer Model 2 over Model 1.

In Table 5, we provide the prediction results for each of the 30 MLB teams from two points in

time (May 30, July 30) based on Model 2. We note that 22 of the 30 predictions from July 30 are

closer to the final winning percentages than the current winning percentages recorded on July 30.

We also note that the model tends to exhibit a regression towards the mean effect. For example,

using results to three decimal places, all six division leaders on July 30 have a predicted winning

percentage that is less than their actual winning proportion on July 30.

It is also interesting to compare the predictive impact of covariates αs, βs and γs. The seven

types of covariate combinations under Model 2 are given by

S1 : λs = αr1

s , S2 : λs = βr2

s , S3 : λs = γr3

s , S4 : λs = αr1

s βr2

s , (4)

S5 : λs = αr1

s γr3

s , S6 : λs = βr2

s γr3

s , S7 : λs = αr1

s βr2

s γr3

s .

The relative strengths of S1, S2 and S3 consist of only one effect. The relative strengths of S4,

S5 and S6 consist of two effects and the relative strength of S7 consists of all three effects. Table

6 provides the sum of squared differences between the expected predictive win probabilities and

the final season winning percentages over all 30 MLB teams based on S1 to S7. For comparison

purposes, the criterion is also reported for the simple extrapolation model. The results are not

definitive but are in accord with prevailing wisdom that suggests that starting pitching is a key

determinant in prediction.

6. Concluding Remarks

We have seen that the proposed two-stage Bayesian model is effective in predicting division

winners in MLB given results partway through the season. The model is simple, easily incorporates
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other factors, can be extended to other sports and is amenable to a MCMC implementation.

What we have not done in this paper is compare the predictive probabilities of winning with

those obtained from the odds posted by bookmakers. Bookmakers use statistical information and

intuition in determining their odds. When our predictive probabilities differ from those of the

bookmaker by a prescribed margin, this triggers a wagering situation. The natural question then is

whether this betting strategy yields income sufficient to overcome the bookmaker’s vigorish. This

is a topic of future research. More information on aspects of sports gambling can be found in Insley,

Mok and Swartz (2002).
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Table 1: Summary statistics for the 2001 MLB regular season.

Division Team Overall Home Away Team Team

Win % Win% Win % Batting Avg ERA

AL East NY Yankees 0.59 0.65 0.54 0.267 4.04

Boston 0.51 0.51 0.51 0.267 4.18

Toronto 0.49 0.49 0.50 0.263 4.29

Baltimore 0.39 0.38 0.41 0.248 4.71

Tampa Bay 0.38 0.46 0.31 0.258 4.96

AL Central Cleveland 0.56 0.55 0.57 0.278 4.65

Minnesota 0.53 0.58 0.47 0.272 4.51

Chicago White Sox 0.51 0.57 0.46 0.268 4.55

Detroit 0.41 0.46 0.36 0.260 5.01

Kansas City 0.40 0.43 0.37 0.266 4.87

AL West Seattle 0.72 0.70 0.73 0.288 3.54

Oakland 0.63 0.65 0.60 0.264 3.59

Anaheim 0.46 0.48 0.44 0.261 4.20

Texas 0.45 0.50 0.40 0.275 5.71

NL East Atlanta 0.54 0.49 0.59 0.260 3.59

Philadelphia 0.53 0.58 0.48 0.260 4.17

NY Mets 0.51 0.54 0.47 0.249 4.08

Florida 0.47 0.58 0.37 0.264 4.32

Montreal 0.42 0.42 0.42 0.253 4.68

NL Central Houston 0.57 0.54 0.60 0.272 4.39

St. Louis 0.57 0.66 0.49 0.270 3.96

Chicago Cubs 0.54 0.59 0.49 0.261 4.03

Milwaukee 0.42 0.44 0.40 0.251 4.65

Cincinnati 0.41 0.33 0.48 0.262 4.78

Pittsburgh 0.38 0.47 0.30 0.247 5.05

NL West Arizona 0.57 0.59 0.54 0.267 3.88

San Francisco 0.56 0.60 0.51 0.266 4.19

Los Angeles 0.53 0.54 0.52 0.255 4.25

San Diego 0.49 0.43 0.54 0.252 4.52

Colorado 0.45 0.51 0.40 0.292 5.29



Table 2: Sample means and standard errors of α, β, γ and X.

α β γ X

Mean 1.07 0.99 1.15 0.59

Standard Error 0.03 0.01 0.06 0.04

Table 3: Priors, posterior means and posterior standard deviations of the primary parameters.

Parameter Prior Posterior Mean Posterior S.D.

r1 uniform(0, 2) 1.23 0.89

r2 uniform(0, 2) 0.73 0.88

r3 uniform(0, 2) 1.17 0.91

δ uniform(0, 2) 1.58 0.21

m exponential(10) 5.23 3.19

Table 4: Squared error difference criterion for comparing the three models of Section 2 and the

simple extrapolation model.

Predictive Date Model 1 Model 2 Model 3 Extrapolation

May 30 0.089 0.089 0.097 0.154

June 30 0.075 0.075 0.083 0.089

July 30 0.037 0.037 0.039 0.041

August 30 0.011 0.011 0.011 0.012



Table 5: Predicted probabilities from different points in time using Model 2.

Team Final Win May 30 July 30

Percentage (Actual , Predicted) (Actual , Predicted)

NY Yankees 0.59 0.58 , 0.59 0.61 , 0.60

Boston 0.50 0.55 , 0.57 0.58 , 0.58

Toronto 0.49 0.51 , 0.50 0.45 , 0.47

Baltimore 0.39 0.48 , 0.48 0.42 , 0.42

Tampa Bay 0.38 0.29 , 0.30 0.32 , 0.32

Cleveland 0.56 0.65 , 0.57 0.58 , 0.55

Minnesota 0.52 0.67 , 0.61 0.57 , 0.58

Chicago White Sox 0.51 0.38 , 0.44 0.50 , 0.51

Detroit 0.40 0.44 , 0.43 0.44 , 0.43

Kansas City 0.40 0.35 , 0.39 0.39 , 0.41

Seattle 0.71 0.76 , 0.68 0.72 , 0.70

Oakland 0.63 0.48 , 0.53 0.53 , 0.55

Anaheim 0.46 0.46 , 0.50 0.50 , 0.51

Texas 0.45 0.35 , 0.33 0.45 , 0.42

Atlanta 0.54 0.51 , 0.55 0.57 , 0.57

Philadelphia 0.53 0.64 , 0.60 0.54 , 0.54

NY Mets 0.50 0.42 , 0.45 0.46 , 0.47

Florida 0.46 0.46 , 0.49 0.50 , 0.50

Montreal 0.42 0.38 , 0.40 0.42 , 0.43

Houston 0.57 0.49 , 0.49 0.54 , 0.53

St. Louis 0.57 0.58 , 0.57 0.50 , 0.52

Chicago Cubs 0.54 0.60 , 0.59 0.59 , 0.59

Milwaukee 0.42 0.52 , 0.52 0.44 , 0.45

Cincinnati 0.40 0.39 , 0.40 0.39 , 0.40

Pittsburgh 0.38 0.34 , 0.35 0.39 , 0.39

Arizona 0.56 0.57 , 0.57 0.56 , 0.57

San Francisco 0.55 0.50 , 0.49 0.54 , 0.53

Los Angeles 0.53 0.55 , 0.54 0.58 , 0.56

San Diego 0.48 0.52 , 0.50 0.49 , 0.49

Colorado 0.45 0.50 , 0.44 0.42 , 0.41



Table 6: Squared error difference criterion for assessing covariate combinations as described in (4).

The simple extrapolation model is also included.

Predictive Date S1 S2 S3 S4 S5 S6 S7 Extrapolation

May 30 0.104 0.101 0.075 0.091 0.089 0.071 0.089 0.154

June 30 0.083 0.081 0.067 0.074 0.074 0.066 0.075 0.089

July 30 0.045 0.441 0.039 0.036 0.037 0.038 0.037 0.041

August 30 0.015 0.015 0.013 0.011 0.011 0.013 0.011 0.012


