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Abstract

This paper extends the methods of Silva, Guan and Swartz (2017) in an attempt to handle

nonstandard problems in test analysis. The approach is based on a Bayesian framework

where test characteristics are treated as random parameters for which posterior probability

assessments are available. The generality of the approach permits straightforward analyses

of problems that may be difficult using standard classical test theory and standard item

response theory. We first illustrate the methods on aviation test scores where the test

outcomes are not dichotomous (i.e. correct and incorrect responses). Instead, the approach is

modified to handle questions with answers on a five-point ordinal scale. The second problem

addresses the complication of the assessment of instructors in addition to the assessment of

test questions and students.
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1 INTRODUCTION

The analysis of tests and questionnaires has an extensive literature which addresses problems

across a spectrum of disciplines including educational testing, customer questionnaires, opinion

polls and social science surveys.

Historically, the two main approaches in test analysis have been classical test theory (CTT)

and item response theory (IRT). Both approaches are used in practice and numerous comparative

studies have been undertaken (e.g. Hambleton and Jones 1993, Fan 1998, Guler, Uyanik and

Teker 2014, Kohli, Koran and Henn 2015, Raykov and Marcoulides 2016). As research develop-

ments have progressed, the distinction between classical test theory and item response theory has

narrowed. However, in a very brief and perhaps oversimplified comparison of the two approaches,

CTT is the original testing framework which investigates the results of test questions on a specific

sample of respondents and has few (if any) modeling assumptions. One of the appealing aspects of

CTT is that the corresponding statistics are relatively simple and guidelines have been introduced

for the assessment of these statistics. In the IRT framework, statistical models form the backbone

of the approach. The statistical models involve parameters that distinguish particular aspects

of both test questions and respondents. IRT relies on statistical theory and is less accessible to

some practioners. IRT has grown in many directions where various models have been proposed.

Notably, Bayesian implementations of IRT now exist (Fox 2010, Levy and Mislevy 2016), and

these require another level of statistical sophistication on the part of the practitioner.

Silva, Guan and Swartz (2017) attempted to incorporate some of the best features of both

CTT and IRT in their approach to test analysis. Specifically, they attempted to retain some

of the simplicity of CTT which is appealing to practitioners. Also, like IRT, they developed an

approach which has inferential capability. In this paper, we demonstrate how the approach of

Silva, Guan and Swartz (2017) can be easily extended to address nonstandard problems in test

analysis. The use of the JAGS programming language (Plummer 2015) facilitates extensions to

these more complex testing scenarios.

In Section 2, we review the approach of Silva, Guan and Swartz (2017) in the context of

dichotomous responses arising from test questions. In particular, we point out some advantages

of the testing framework. In Section 3, we generate a dataset intended to mimic data from the

aviation industry. In this case, the responses are no longer dichotomous but lie on a five-point

ordinal scale. We illustrate an analysis of this dataset based on small modifications to the basic

model. In Section 4, a dataset is considered which also contains the identification of the instructor.
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Here, a nonstandard inferential question involves the impact of the quality of the instructor on

the test results. Again, we illustrate an analysis of this dataset based on small modifications to

the basic model. Finally, a short discussion and concluding remarks are provided in Section 5.

2 THE BASIC BAYESIAN MODEL

We consider test data consisting of an n × k matrix X = (xij) where the n rows correspond

to respondents and the k columns refer to test questions. The data are dichotomous (binary)

where xij = 1(0) specifies that the ith respondent provided a correct (incorrect) answer to the

jth question. Therefore, the setup is applicable in various scenarios including true/false questions

and multiple choice questions.

Our approach is based on a simple Bernoulli model where xij ∼ Bernoulli(θij). The model

stipulates that the probablity of a correct answer by the ith respondent to the jth question is

Prob(xij = 1) = θij which leads to the joint probability mass function

f(x | θ) =
n∏

i=1

k∏
j=1

θ
xij

ij . (1)

An immediate reaction to (1) may be that the model is problematic since there are as many

parameters nk as there are data values. However, in a Bayesian approach, prior information

concerning the parameters is often available and parameters may “borrow” from one another

such that the effective parametrization is reduced. For example, two parameters may have a

common prior distribution; learning about one of the parameters is effectively learning about

both parameters.

What makes our Bayesian approach different from CTT is that the focus changes from cal-

culations performed on the data xij to calculations performed on the parameters θij. We suggest

that the θij are intrinsically of more interest than the observed xij. For example, there is typically

more interest in the quantity θi· =
∑k

j=1 θij which is an ability measure of the ith subject rather

than the subject’s one-off test score xi· =
∑k

j=1 xij. Similarly, θ̄·j =
∑n

i=1 θij/n describes the

difficulty of test question j where the formulation acknowledges the randomness of test questions.

One may think of test question j as arising from a population of questions. The idea of focusing

on population quantities (i.e. parameters) rather than statistics (i.e. data) has been previously

explored; see for example Swartz (2011) in the context of clustering.

And herein lies a second possible reaction - the θij’s are unknown. How can one learn about
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the parameter matrix θ = (θij), especially in cases where the posterior distribution is complex

and high-dimensional? Under a simulation-based Bayesian approach, θ’s are generated from the

posterior distribution, from which posterior quantities of interest can be calculated. With samples

generated from the posterior, variability of the posterior quantities can also be determined. For

example, we have mentioned that the quantity θi· =
∑k

j=1 θij is an ability measure of the ith

student and its posterior mean may be a quantity of interest. If we denote θ
(l)
ij as the lth realization

of θij generated from the posterior distribution, l = 1, . . . ,M , then the posterior mean E(θi· | x)

can be estimated by θ̂i· =
∑M

l=1

∑k
j=1 θ

(l)
ij /M . We may also obtain the corresponding standard

error of θ̂i· by SD = [
∑M

l=1(
∑k

j=1 θ
(l)
ij )2/M − θ̂2i· ]1/2.

The only additional ingredient that is required for the Bayesian implementation is the spec-

ification of a prior distribution on the parameters. A prior density π(θ) is combined with the

Bernoulli sampling model to yield the posterior density

π(θ | x) ∝ f(x | θ) π(θ)

∝
n∏

i=1

k∏
j=1

θ
xij

ij π(θ) . (2)

Although prior distributions may be subjective and take into account expert knowledge, we

utilize empirical Bayes priors in the applications presented in Section 3 and Section 4.

One of the added advantages of a Bayesian approach is the elegance and ease with which

missing data can be handled. For example, there are exams where test questions are randomly

generated from a databank for each student or subsets of students. In these situations, individual

students answer only some of the questions. In this sense, there is missing data. We therefore

distinguish between the observed data xobs and the missing data xmis. Letting f denote generic

functions, the relevant posterior distribution in this case is given by the posterior density

π(θ, xmis | xobs) ∝ f(θ, xmis, xobs)

= f(xmis, xobs | θ) π(θ) . (3)

The key observation from (3) is that f(xobs, xmis | θ) π(θ) is the unnormalized posterior density

that one would obtain if xmis were actually observed. Therefore, one simulates as before except

that xmis takes the role of a random parameter rather than a fixed data value.

Above, we have alluded to simulation-based Bayesian software. For this purpose, we use the

JAGS programming language which is relatively simple and avoids the need of special purpose
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Markov chain Monte Carlo code. JAGS is open source software (www.mcmc-jags.sourceforge.net)

which is similar to WinBUGS. To handle missing data in JAGS, we need only code the unobserved

data values with the NA symbol. Details on WinBUGS and an introduction to the Bayesian

approach are given by Lunn et al. (2013).

3 EXTENSION 1: ORDINAL OUTCOMES

We now consider a generated dataset intended to mimic data arising from the aviation industry.

The benefit of a generated dataset is that we know the “truth” (i.e. the underlying parameters)

and can assess whether the proposed methods provide accurate estimates. Here, n = 80 pilots

are evaluated on k = 20 tasks from a flight simulator. In this case, the data consists of an

n × k matrix X = (xij) where the outcomes are no longer dichotomous (0/1) as in Section 2.

Rather, the outcomes are measured on a five-point scale where 1 ≡ very poor, 2 ≡ not meeting

expectations, 3 ≡ normal, 4 ≡ exceeding expectations and 5 ≡ outstanding.

In this setting, the first challenge is to assign a sampling distribution to the data. We choose

xij ∼ 1 + Binomial(4, θij) . (4)

Technically, the specification in (4) is not ideal as the Binomial distribution is appropriate for

ratio data and our data are ordinal. However, the Binomial distribution is appealing since it is

based on a single unknown parameter θij which describes the difficulty of the jth question for

the ith pilot. Furthemore, the distribution in (4) has the correct range, xij = 1, 2, 3, 4, 5 and its

probability mass function exhibits concavity with the presence of an interior mode provided that

θij 6= 0, 1. With test scores, we would naturally expect decreasing probabilities as we move away

from the mode towards more extreme scores in the tails. In the sampling model (4), θij represents

a pilot/task characteristic. For θi1,j > θi2,j, pilot i1 has an expected stronger performance than

pilot i2 on task j. Similarly, for θi,j1 > θi,j2 , it is expected that task j1 is easier than task j2 for

pilot i. Following (2), this leads to the posterior density

π(θ | x) ∝
n∏

i=1

k∏
j=1

θ
xij−1
ij (1− θij)5−xij π(θ) . (5)

The next challenge is the specification of the prior density π(θ) in (5). Our suggested prior
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density has the following structure

π(θ) =
∏
i,j

π(θij)

where the θij are conditionally independent with

θij ∼ truncated-Normal(µij, σ
2
ij) . (6)

In (6), there are various potential specifications for the hyperparameters µij and σij. A simple

choice is µij = k1 (say k1 = 0.5), and σij = k2 (large, say k2 = 20). This nearly corresponds to a

flat prior over the interval (0, 1). However, such a prior does not take into account the physical

knowledge associated with test analysis. For example, some questions are typically more difficult

than other questions and we would like to take this prior knowledge into account. A drawback of

a flat prior (i.e. Uniform(0,1)) is that the posterior mean of θij is pulled towards the prior mean

0.5 to the extent that our inferences depart markedly from CTT inferences. This is illustrated in

Silva, Guan and Swartz (2017).

Another possibility for the specification of the hyperparameters µij and σij in (6) based on an

empirical Bayes (EB) procedure. One EB procedure requires fitting (4) with a generalized linear

model (glm) where we introduce the parametrization

logit(θij | β0, αi, γj) = β0 + αi + γj . (7)

The logistic relationship (7) states that good pilots (i.e. pilots i where αi is large) tend to perform

better across all tasks and that simple tasks (i.e. tasks j where γj is large) tend to be easier

across all pilots. A difficulty with this parametrization is that the prior too closely resembles the

likelihood, and we do not observe the desired shrinkage in parameter estimates which is discussed

later in the following example.

Our preferred choice for the prior specification of µij in (6) is similar to (7) but is based on

fitting the simpler glm

logit(θij | β0, γj) = β0 + γj (8)

which states that simple tasks (i.e. tasks j where γj is large) tend to be easier across all pilots.

In addition to enabling shrinkage, an additional advantage of (8) over (7) is that we may fit (8)
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using the same test questions from other pilots to obtain our prior. In that case, we have a “true”

prior rather than an EB procedure. Using (8), the fitted glm provides parameter estimates β̂0

and γ̂j. Since µij denotes the mean E(θij), we therefore invert the logistic function (8) and set

µij =
exp(β̂0 + γ̂j)

1 + exp(β̂0 + γ̂j)
.

We treat σij = k as a tuning parameter where larger (smaller) values of k provide relatively less

(more) weight on the prior structure and more (less) weight on the data. In this example, we

choose σij = 0.2 which allows both likelihood and prior to impact the posterior. The calculation

of the estimates µij are immediately available from the predict function which can be used on a

glm object in R.

Following the model development described above, the data generation procedure begins by

setting the underlying parameters in (7) according to β0 = 0, αi = (i− 1)/n and γj = (j − 1)/k

for i = 1, . . . , n and j = 1, . . . , k. With these prescribed values, the θij terms are determined via

(7) and we generate data xij according to (4). Under these settings, the test scores xij tend to

increase with increasing i and increasing j. The values of β0, αi and γj were chosen so that pilots

tend to have high test scores as is typically the case in practice. For example, with our dataset,

pilot #1 scored 69 out of 100 and pilot n = 80 scored 88 out of 100.

The first thing that we wish to check is the estimation procedure. In Figure 1, we plot the

posterior means of the test scores of pilots E(Ti | x) =
∑k

j=1(1 + 4E(θij | x)) verus the associated

quantity E(Ti | θi) =
∑k

j=1(1+4θij) where the θij are the true underlying values obtained from (7)

based on the specified settings of β0, αi and γj in the data generating mechanism. The agreement

in the pairs suggest that the model and the associated Markov chain procedure are producing

sensible results. The dispersion of points about the line y = x describes the natural variation

based on randomly generated data. We also see that the pairs of points are generally increasing

with i and this is in keeping with the fixed settings of αi.

To get a sense of the utility of the approach in this nonstandard problem, we investigate the

average performance of pilots by looking at posterior quantities associated with θi· =
∑k

j=1 θij.

The quantity k+4θi· can be interpreted as the expected total score on the test (consisting of k

questions) which we would expect to be attained by the ith pilot. In Figure 2, we plot 90%

posterior bands of this quantity for the n = 80 pilots in the study. The posterior intervals were

estimated from M = 10, 000 runs of a Markov chain obtained from JAGS where the tuning

parameter in (6) was again set at σij = 0.2. The posterior intervals in Figure 2 based on the
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Figure 1: Based on the Markov chain output, the posterior means of total pilot scores E(Ti | x)
are plotted against their expected underlying values E(Ti | θi).

empirical Bayes procedure are appealing as they allow us to differentiate between pilots. Specifi-

cally, we observe performance differences between pilot pairs corresponding to small and large i.

We also observe a shrinkage effect where expected test scores are smaller (larger) for those pilots

who attained high (low) test scores. As an example of a pilot with a low test score, pilot 22 had

an actual test score of 71/100 and an expected test score of k + 4θ22· = 73.12. As an example

of a pilot with a high test score, pilot 49 had an actual test score of 85/100 and an expected

test score of k + 4θ49· = 78.51. Doing exceedingly well (poorly) on a test may be perceived as

being partially lucky (unlucky). This is a standard regression to the mean effect. Note that by

increasing (decreasing) the tuning parameter σij we can decrease (increase) the shrinkage effect.

To illustrate the effect of the tuning parameter σij = k, we repeat the above calculations for pilot

49. With σij = 0.22, the expected test score k+ 4θ49· is 78.46. With σij = 0.18, the expected test

score k + 4θ49· is 78.64.

We next investigate the comparative difficulty of the k = 20 tasks undertaken by the pilots

as described by θ̄·j =
∑n

i=1 θij/n, j = 1, . . . , 20. In Figure 3, we plot the associated 90% posterior

bands. We observe that there is a general decrease in the level of difficulty of test questions (i.e.
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Figure 2: Posterior intervals (90%) of the expected posterior test scores k + 4θi· for the n = 80
pilots.

increasing θ̄·j). This is in accordance with the data generating mechanism.

We may also be interested in the redundancy of tasks. The problem of survey fatigue is

well-known in the survey literature where it is not desirable to have two questions that address

essentially the same problem for which the responses are similar. We therefore consider the

correlation parameter

rj1,j2 =

∑n
i=1(θi,j1 − θ̄·j1)(θi,j2 − θ̄·j2)√∑n

i=1(θi,j1 − θ̄·j1)2
√∑n

i=1(θi,j2 − θ̄·j2)2

which compares the similarity of tasks j1 and j2. With k = 20 tasks, there are (k2) = 190

correlations of interest. In each iteration of the Markov chain, rj1,j2 can be calculated and these

values are averaged over the M iterations to provide a posterior mean of rj1,j2 . In Figure 4, we

provide a scatterplot corresponding to the posterior output of θi,1 and θi,2 based on a single Monte

Carlo iteration after burn-in. The plot consisting of n = 80 points examines the comparative

difficulty of tasks #1 and #2. Although these two questions (tasks #1 and #2) are similar

in difficulty, we recall that the data were generated independently with respect to pilots and
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Figure 3: Posterior intervals (90%) for the task difficulty parameter θ̄·j for the j = 1, . . . , 20 tasks
in the study.

tasks. Therefore, we should not expect a correlation between these two tasks, and we observe

the expected posterior mean E(r1,2 | x) = −0.025 which is indeed small. With real data, if the

correlation between two tasks is strong, this suggests that the two tasks are redundant, and in

the interest of efficiency and survey-fatigue, perhaps one of the tasks could be removed from the

test.

4 EXTENSION 2: ASSESSMENT OF INSTRUCTORS

In this nonstandard application in test analysis, we are interested in the assessment of instructors.

For example, we may have L instructors who are each responsible for a cohort of students. In

this case, every observation xij has an added subscript such that xijl denotes the score by the ith

student on the jth question, and this student received instruction on this question by instructor

l. We similarly extend the notation for the parameters leading to terms θijl. In the assessment of

instructors, it would be difficult to conclude a causal relationship due to instructors if the students

were not randomized amongst instructors. For example, there could be an underlying confounding
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Figure 4: Scatterplot of the posterior output of θi,1 and θi,2 based on a single iteration from the
Markov chain.

variable that is associated with instructor differences. The above setup is also applicable to other

situations. For example, a comparison of different groups of students may be of interest.

We consider a complex design involving n = 12 students, k = 11 test questions on a five-point

ordinal scale (1-5) and L = 12 instructors. As in Section 3, the questions are tasks so that students

may have more than one response to a specific task with each response associated with a specific

instructor. The experimental design is summarized in Table 1. The discussion in Section 2 on

missing data is particularly relevant in this example as we have many cases of missing data due

to students not having received instruction by a given instructor (e.g. x1,j,3 for all j = 1, . . . , k).

The statistical model which we consider is similar to Section 3 where we now define

xijl ∼ 1 + Binomial(4, θijl) (9)

which leads to the posterior density

π(θ | x) ∝
n∏

i=1

k∏
j=1

L∏
l=1

θ
xijl−1
ijl (1− θijl)5−xijl π(θ) (10)

where θ is the parameter space. Also, following Section 3, we specify the prior density π(θ) in
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Student
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Instructor1 1 1 1 1 1 0 0 0 0 0 0 0
Instructor2 1 1 0 0 0 0 0 0 1 1 1 1
Instructor3 0 0 0 0 0 1 1 1 1 1 1 1
Instructor4 1 0 0 0 0 0 1 1 1 1 1 1
Instructor5 1 1 1 0 0 0 0 0 1 1 1 1
Instructor6 1 1 1 1 0 0 0 0 1 1 0 0
Instructor7 1 0 0 0 1 1 1 0 0 0 0 1
Instructor8 1 1 0 0 0 1 1 0 0 0 0 0
Instructor9 0 0 0 0 0 0 0 0 1 1 1 1
Instructor10 1 1 0 0 0 0 0 0 0 0 1 1
Instructor11 1 1 0 0 0 0 0 1 1 0 0 1
Instructor12 1 1 0 0 0 0 1 1 1 0 0 0

Table 1: An entry of 1(0) in the (i, j)th cell indicates that Instructor i provided (did not provide)
instruction to student j on all k = 11 tasks.

(10) according to

π(θ) =
∏
i,j,l

π(θijl)

where the θijl are conditionally independent with

θijl ∼ truncated-Normal(µijl, σ
2
ijl) . (11)

In (11), the truncation again corresponds to the interval (0, 1) and the parameters µijl and σijl

are specified according to an EB procedure. The EB procedure first requires fitting (9) with a

glm where we define

logit(θijl | β0, γj, λl) = β0 + γj + λl . (12)

The difference between (12) and (8) involves the inclusion of the λl term in (12) which accounts

for the instructor effect. Following the development in Section 3, the estimates β̂0, γ̂j and λ̂l are

used to specify µijl in (11). We again treat σijl = k as a tuning parameter.

Our interest in instructors may be expressed by the rating index θ̄··l = 1
n
1
k

∑n
i=1

∑k
j=1 θijl for

instructors l = 1, . . . , L which can be interpreted as the average probability of a correct answer

based on instruction from instructor l. Posterior realizations of the parameters θijl are generated

as before, and these are used to obtain more complex quantities of interest such as θ̄··l.
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Using our data, in Figure 5, we plot 90% confidence bands for the instructor rating index θ̄··l

for the L = 12 instructors. According to the plot, we observe that Instructor 1 is the “best”

instructor and that Instructor 9 is the “worst” Instructor. These inferences are consistent with

the observed data where Instructor 1 had 5 students whose observed average score was 39.8/55,

and Instructor 9 had 4 students whose observed average score was 30.0/55. The posterior mean

scores corresponding to these instructors (1/n)
∑n

i=1

∑k
j=1(4θijl + 1) were 38.68 (l = 1) and 30.45

(l = 9) which demonstrates a desirable shrinkage effect from observed scores to posterior mean

scores.

0.45

0.50

0.55

0.60

0.65

1 2 3 4 5 6 7 8 9 10 11 12
Instructor Number

θ .
.l

Figure 5: Posterior intervals (90%) for the instructor rating index θ̄··l for the l = 1, . . . , 12 in-
structors in the study.

The approach developed here may be adapted to other inferential questions of interest. For

example, suppose pilot i had received instruction from instructor l1 but we are interested in the

counterfactual situation of how the pilot might have performed under instruction from instructor

l2 when no instruction was actually received by pilot i from instructor l2. The average test score

of pilot i under instruction from instructor l is given by Ti·l =
∑k

j=1(4θijl + 1). Therefore, the

question of interest is addressed by comparing Ti·l1 with Ti·l2 . When i = 1, l1 = 1 and l2 = 9,

we have posterior means and posterior standard deviations of Ti·l given by 41.03 (1.73) for l1 and

30.52 (2.36) for l2. It is apparent that instructor l1 = 1 is much more effective than instructor
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l2 = 9 with respect to instruction given to pilot i = 1. Notably, it is not clear how a CTT or IRT

approach could be used to investigate this complex query.

5 DISCUSSION

We have extended the methods of Silva, Guan and Swartz (2017) to handle nonstandard problems

in test analysis. We see that it is not difficult to modify the basic Bayesian model where inference

is facilitated using posterior realizations from a Markov chain. The two nonstandard problems

that are considered in this paper are real problems of interest in the aviation industry.

One of the features of the proposed approach is that the parameters that we have studied in

this paper θi·, θ̄·j and rj1,j2 (see Section 3) are direct analogs of the popular statistics which one

would naturally study in the CTT framework (i.e. xi·, x̄·j and rxi1
,xi2

). In Section 3, we have

studied data arising on the scale 1,2,3,4,5 which differs from the typical 0/1 data arising from

multiple choice exams and true/false questions. In Section 4, our investigation was focused on

the parameter θ··l whose analogous CTT statistic x··l may not even be calculable due to missing

data. An appeal of CTT over the years is that CTT statistics are intuitive and are often readily

adaptive to various test designs. An advantage with our simulation-based Bayesian approach

is that we have inferential capabilities to study the θ terms whereas inference does not form a

part of CTT analyses. Another advantage of the Bayesian approach is that one may be able

to incorporate prior knowledge. For example, we have emphasized that it may be reasonable to

assume that good students generally do better than weaker students across all questions. It may

also be possible to use results from previous tests to inform prior opinion.

We believe that the basic approach that we have illustrated here may be modified to suit other

nonstandard problems of interest in test analysis. For example, suppose that the ith student has

taken tests on multiple occasions. It would be a simple matter to treat the student as a different

subject according to the times t1, . . . , tm that tests were written. Accordingly, the student would

have performance measures θ
(t1)
i· , . . . , θ

(tm)
i· . Posterior estimates and associated intervals for these

performance measures could then be plotted against time to assess improvement.

Data and code developed in this paper (both R and JAGS) are available from the authors

upon request.

14



6 REFERENCES

Fan, X. (1998). ‘Item response theory and classical test theory: an empirical comparison of their
item/person statistics’. Educational and Psychological Measurement, Vol. 58, No. 3, pp. 357-381.

Fox, J-P. (2010). Bayesian Item Response Modeling: Theory and Applications, Statistics for Social and
Behavioral Sciences Series, Editors S.E. Fienberg and W.J. van der Linden, Springer, New York.

Guler, N., Uyanik, G.K. and Teker, G.T. (2014). ‘Comparison of classical test theory and item response
theory in terms of item parameters’. European Journal of Research on Education, Vol. 2, No. 1,
pp. 1-6.

Hambleton, R.K. and Jones, R.W. (1993). ‘Comparison of classical test theory and item response
theory and their application to test development’. Educational Measurement: Issues and Practice,
Vol. 12, No. 3, pp. 38-47.

Kohli, N., Koran, J. and Henn, L. (2015). ‘Relationships among classical test theory and item response
theory frameworks via factor analytic models’. Educational and Psychological Measurement, Vol.
75, No. 3, pp. 389-405.

Plummer, M. (2015). JAGS Version 4.0 User Manual, Accessed online June 5, 2017 at http://www.uvm.
edu/∼bbeckage/Teaching/DataAnalysis/Manuals/manual.jags.pdf

Raykov, T. and Marcoulides, G.A. (2016). ‘On the relationship between classical test theory and item
response theory: from one to the other and back’. Educational and Psychological Measurement,
Vol. 76, No. 2, pp. 325-338.

Silva, R., Guan, Y. and Swartz, T.B. (2017). ‘Bayesian diagnostics for test design and analysis’. Journal
on Efficiency and Responsibility in Education and Science, 10, 44-50.

Swartz, T.B. (2011). ‘Bayesian clustering with priors on partitions’. Statistica Neerlandica, Vol. 65,
No. 4, pp. 371-386.

15


