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Abstract: The authors extend the classical Cormack–Jolly–Seber mark-recapture model to account for both
temporal and spatial movement through a series of markers (e.g., dams). Survival rates are modeled as a
function of (possibly) unobserved travel times. Because of the complex nature of the likelihood, they use
a Bayesian approach based on the complete data likelihood, and integrate the posterior through Markov
chain Monte Carlo methods. They test the model through simulations and apply it also to actual salmon
data arising from the Columbia river system. The methodology was developed for use by the Pacific Ocean
Shelf Tracking (POST) project.

Analyse bayésienne de données de capture-recapture à l’aide de
probabilités de survie dépendant du temps de déplacement
Résumé : Les auteurs généralisent le modèle de capture-recapture classique de Cormack–Jolly–Seber pour
tenir compte de déplacements spatiaux-temporels signalés par des marqueurs (tels que des barrages). Les
taux de survie sont modélisés en fonction de temps de déplacement parfois inobservables. Vu la complexi-
té de la vraisemblance, ils optent pour une approche bayésienne fondée sur la vraisemblance des données
complètes et intègrent la loi a posteriori par des méthodes de Monte-Carlo à chaı̂ne de Markov. Ils testent
le modèle par simulation et l’utilisent pour l’analyse de données sur les saumons du réseau hydrographique
de la Columbia. La méthodologie a été développée aux fins du projet POST (Pacific Ocean Shelf Tracking).

1. INTRODUCTION
The Pacific Ocean Shelf Tracking (POST) project (http://www.postcoml.org) is part of the Census
of Marine Life study (http://www.coml.org). In the POST project, acoustic transmitters are surgi-
cally implanted into fish (e.g., salmon smolt). The fish are then tracked during their migration
by a series of listening lines along the ocean shelf. These listening lines record the acoustic-
identification of the fish that pass near the receivers and their times of passage. A complicating
factor in the analysis of the POST data is that sometimes fish do not pass sufficiently close to the
receiver, and hence are not detected. Data are downloaded from the listening lines and are stored
in a database that can be queried by researchers.

The POST project is a combination of two types of mark-recapture experiments. In the first
type of mark-recapture experiment (Lebreton, Burnham, Clobert & Anderson 1992), animals
are initially marked, and then a subset of these animals are recaptured at yearly intervals (for
example). In this type of experiment, the interest is in the temporal dimension of survival. For
example, one may be interested in the survival rates of a species from year to year. In the POST
project, we are also interested in the temporal dimension of survival and this information is
captured by measuring the passage of time between listening lines.

In the second type of mark-recapture experiment, marked fish are released, and are detected
as they swim past landmarks (Burnham et al. 1987, p. 25). In this type of experiment, the interest
is in the spatial dimension of survival. For example, one may be interested in survival rates
between particular dams. In the POST project, the listening lines are placed in fixed locations
which may correspond to interest in the spatial dimension of survival.

This paper considers methods of combining both the temporal and the spatial dimensions of
the problem into a single mark-recapture model. We provide a generalization of the Cormack–
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Jolly–Seber model (Cormack 1964; Jolly 1965; Seber 1965). Their model assumes that survival
probabilities between listening lines are homogeneous amongst all animals. In our generaliza-
tion, the travel times of individual animals between listening lines differ amongst animals and
survival may be a function of travel time. Cowen & Schwarz (2005) considered a similar prob-
lem, but they assumed that survival rates between listening lines are independent of travel time.
We do not make this restrictive assumption. We model survival probabilities as a function of
travel times. Pollock, Bunck, Winterstein & Chen (1995) considered Kaplan–Meier estimation
in a context that allows for differential survival and the possibility of relocation of some animals.
We allow for nondetection as in standard mark-recapture models.

A standard likelihood approach is difficult because of the presence of multidimensional inte-
grals. A natural way to approach this problem is via a Bayesian framework through the use of
latent (unobservable) variables. A Bayesian approach via simulation avoids the maximization of
likelihoods which may be problematic in high-dimensional problems. Latent variables arise in
the experiment when marked fish go unobserved at listening lines. A complete data likelihood
is easy to construct as it treats the latent variables as though they are observable. We then “in-
tegrate” over the complete data likelihood by obtaining a Markov chain Monte Carlo (MCMC)
sample from the posterior. Brooks, Catchpole & Morgan (2000) provide a review of Bayesian
methods in mark-recapture experiments.

In Section 2, we provide a detailed development of the Bayesian model. The complete data
likelihood is derived where survival probabilities depend on travel times. When the distances
between listening lines vary greatly, the dependence structure is clearly important. Prior distrib-
utions are then defined on the model parameters. Computation is discussed in Section 3. As the
posterior distribution is complex and high-dimensional, we obtain posterior summary statistics
which describe key features in the study. In particular, posterior expectations are approximated
through MCMC methods using WinBUGS software (Spiegelhalter, Thomas & Best 2003). Un-
like the Cormack–Jolly–Seber model, it is shown that nonidentifiability is not a problem for the
proposed Bayesian model. In Section 4, we discuss the topics of model selection and model
adequacy. In Section 5, we provide some examples and demonstrate the reliability of the ap-
proach via simulation. We also provide sensitivity analyses with respect to some of the model
assumptions. We conclude with a short discussion in Section 6.

2. MODEL DEVELOPMENT
Consider a population of n fish where each fish is implanted with an acoustic transmitter. Without
loss of generality, assume that all fish are released at location j = 0, and that listening lines are
set up at locations j = 1, . . . ,m. The observed data for the experiment consist of (ω, T obs)
where ω = {ωij} is the detection history such that

ωij =

{

1 if the ith fish is detected at location j,

0 if the ith fish is not detected at location j

and ωi0 = 1. The vector T obs = {Tij} corresponds to observed cumulative travel times such
that Tij is the time required for the ith fish to travel from the point of release to location j. When
a fish is not detected, then there is no observed cumulative travel time. We refer to the missing
or latent cumulative travel times as Tmis and let T = (T obs, Tmis). Therefore T represents the
complete cumulative travel times. Note that when a fish has died (and is therefore not detected),
we still imagine that there is a cumulative travel time associated with the fish. The value is
missing but it represents the cumulative travel time that the fish would have taken had it been
alive.

Associated with (ω, T ) are the quantities (Sobs, t) where Sobs = {Sij} is a function of the
detection history data ω and t = {tij} is a function of the complete cumulative travel times T .
The variable Sij denotes the survival status of the ith fish at location j, where Sij = 1 (0) indi-
cates that the ith fish is alive (dead) at location j. Since fish are released alive, we have Si0 = 1.
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Note that whereas the entire vector ω is observed, some of the entries Sij are latent. This is due to
the fact that an undetected fish may be either alive or dead. As an example, consider the observed
data (ωi0, . . . ,ωi5) = (1, 0, 0, 1, 0, 0). In this case, (Si0, . . . , Si3) = (1, 1, 1, 1), but Si4 and Si5

are latent. We supplement the observed Sobs with the missing or latent Smis to give the complete
survival history S = (Sobs, Smis). The variable tij = Tij − Ti,j−1 denotes the interval travel
time for the ith fish from location j − 1 to j. Because some of the Tij may be missing, this im-
plies that some of the tij may be missing. In fact, there are at least as many missing tij as there
are missing Tij . As an example, consider (Ti0, Ti1, Ti2, Ti3, Ti4, Ti5) = (0, x,NA,NA, y, z)
where NA denotes “Not Available”. Then (ti0, ti1, ti2, ti3, ti4, ti5) = (0, x,NA,NA,NA, z−y).
Therefore, the vector t consists of both observed and latent data. Missing data issues have been
previously considered in mark-recapture experiments. For example, Bonner & Schwarz (2006)
showed how the classical Cormack–Jolly–Seber model can be extended for time-dependent in-
dividual covariates which form a set of missing values when animals are unobserved. Dupuis
(1995) used directed graphs for the Bayesian analysis of mark-recapture experiments of the first
type (Lebreton, Burnham, Clobert & Anderson 1992).

We now describe the two primary parameters of interest in the model. We let pj denote the
probability of detection at the jth location. As the acoustic transmitters are identical and the fish
comprise a sample from an underlying population, one typically assumes that the probability pj

does not depend on fish i. In some instances, it may be reasonable to assume a common proba-
bility of detection (i.e., pj = p for all locations) although the general case causes no additional
difficulty. The second parameter of interest concerns survival, where φij denotes the survival
probability of the ith fish when travelling from location j−1 to location j given that the fish was
alive at location j−1. In Cowen & Schwarz (2005), the modelling assumption φij = φj implies
that survival probabilities are independent of travel times. In our paper, we consider φij = f(tij)
where f is a specified decreasing parametric function. Therefore, the longer that it takes a fish
to travel between locations j − 1 and j, the greater the chance that the fish does not survive. In
our datasets, travel times are measured in days, and we define φij = q

tij

j such that qj denotes
the daily survival probability when travelling between locations j − 1 and j. Our modelling
assumption implies that survival is independent across days. Therefore, the proposed framework
reduces the primary parameters of interest to (p, q) where p = {pj} and q = {qj}. Gimenez
et al. (2006) consider a penalized spline approach when modelling survival probabilities in a
semi-parametric fashion.

In Cowen & Schwarz (2005), an observed likelihood is obtained based on the observed data
(ω, T obs). The observed likelihood is complex as it involves integrals with respect to the latent
cumulative travel times Tmis. We take an approach based on the complete data likelihood as
in van Deusen (2002). The complete data likelihood treats latent variables as though they are
available, and is especially well suited to Bayesian analyses (as will be seen). An advantage of
the complete data likelihood over the observed likelihood is that it has a much simpler form. In
our approach, we develop the complete likelihood based on (ω, S, t).

In obtaining the complete data likelihood, let [A |B] generically denote the density function
or probability mass function corresponding to A given B. In addition, let ωi = (ωi0, . . . ,ωim),
Si = (Si0, . . . , Sim), and Ti = (Ti0, . . . , Tim). Then the complete data likelihood is given by

[ω, S, T ] =
∏n

i=1

[

ωi, Si, Ti

]

∏n
i=1

[

ωi |Si, Ti

]

[Si, Ti]
∏n

i=1

[

ωi |Si, Ti

]

[Si |Ti][Ti]
(1)

where the independence of fish is assumed and the expressions in (1) are based on conditional
probability. The complete data likelihood for the ith fish is therefore the product of three terms;
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the conditional probability mass function of detection history given survival and travel time his-
tory, the conditional probability mass function of survival history given travel time history and
the travel time density. We now derive expressions for each of the three terms in the product (1).
The first term is given by

[ωi |Si, Ti] = [ωi |Si]

=
∏m

j=1[ωij |Sij ]

=
∏m

j=1(p
ωij

j (1 − pj)1−ωij )Sij
(2)

where the key assumption in (2) is that detection at location j does not depend on other locations,
and we note that when a fish dies (i.e., Sij = 0), then detection is impossible and there is no
contribution to the complete data likelihood. Now

[Si |Ti] = [Sim |Si0, . . . , Si,m−1, Ti][Si,m−1 |Si0, . . . , Si,m−2, Ti] · · · [Si1 |Si0, Ti]

= [Sim |Si,m−1, Ti][Si,m−1 |Si,m−2, Ti] · · · [Si1 |Si0, Ti]

=
∏m

j=1[Sij |Si,j−1, Ti,j−1, Tij ]

=
∏m

j=1(φ
Sij

ij (1 − φij)1−Sij )Si,j−1

=
∏m

j=1(q
tijSij

j (1 − q
tij

j )1−Sij )Si,j−1

(3)

where tij = Tij − Ti,j−1 and there is no survival contribution to the likelihood when a fish has
already died (i.e., Si,j−1 = 0). Putting (1), (2) and (3) together, we have the complete data
likelihood

[ω, S, T ] =
n

∏

i=1

[Ti]
m
∏

j=1

(p
ωij

j (1 − pj)
1−ωij )Sij (q

tijSij

j (1 − q
tij

j )1−Sij )Si,j−1 . (4)

The last step in the determination of the complete data likelihood (4) is the specification
of [Ti]. Note that it is preferable to model [Ti] rather than [ti] = [ti0, . . . , tim] since there
are at least as many missing tij as missing Tij and therefore we would lose information by
modelling [ti]. As the fish arise from the same population and travel times are nonnegative, it
may be reasonable to consider a multivariate lognormal distribution. The convenient covariance
structure in the multivariate normal distribution is appealing as one might imagine that a fish that
is fast (slow) in travelling between two locations may be fast (slow) in travelling between other
locations. Specifically, we assume

(

log(Ti1), . . . , log(Tim)
)"

∼ Normalm(µ,Σ), (5)

subject to the constraint 0 < Ti1 ≤ · · · ≤ Tim where a covariance structure is explicitly allowed
between the log(Tij). A simpler (but perhaps less realistic) alternative to (5) is (Ti1, . . . , Tim) ∼
Normalm(µ,Σ) subject to the same constraint 0 < Ti1 ≤ · · · ≤ Tim.

In a Bayesian analysis, prior distributions are required for the unknown parameters. Some-
times, strong prior information may be available (e.g., a working knowledge concerning the
detection probabilities of listening lines) and it is useful to incorporate this knowledge as can be
done in a Bayesian framework. In this paper, we suggest default prior distributions which tend to
be diffuse. Diffuse distributions are appealing in that they allow the data to drive the inference.
Referring to (4) and (5), we consider the prior density

[p, q, µ,Σ] = [p] [q] [µ] [Σ] (6)
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where prior independence is assumed. As the p and q are probabilities defined on the simplex, it
is customary to assume Beta priors. Specifically, we assume independent detection probabilities
pj , where

[pj ] ∝ p
ap−1
j (1 − pj)

bp−1

and independent daily survival probabilities qj where

[qj ] ∝ q
aq−1
j (1 − qj)

bq−1.

The a and the b may be prespecified based on one’s subjective understanding of the listening
devices and the daily survival rates. We impose a diffuse Normalm(0,σµI) prior for the mean
log travel time distribution [µ] where σµ is set large and the normal distribution is constrained
according to µ1 ≤ · · · ≤ µm. We set Σ−1 ∼ Wishart((1/m)I,m). Having specified the
complete data likelihood (see (4) and (5)) and the prior (6), the ingredients for a Bayesian analysis
have been determined.

3. COMPUTATIONS
We re-express the complete data likelihood [ω, S, t] in (4) as

[

Xobs, Xmis | p, q, µ,Σ
]

to empha-
size the dependency on the unknown parameters and to emphasize that (ω, S, t) consists of both
observed and missing values. The Bayesian paradigm then gives the following expression for the
posterior

[

p, q, µ,Σ |Xobs
]

∝
[

Xobs | p, q, µ,Σ
][

p, q, µ,Σ
]

=
∫ [

Xobs, Xmis | p, q, µ,Σ
][

p, q, µ,Σ
]

dXmis.

(7)

In theory, the posterior density (7) provides a complete description of the uncertainty in
the parameters defined in the mark-recapture experiment. However, the dimensionality and the
complexity of (7) is such that it is impossible to gain any meaningful insight. Alternatively, we
consider the following expression

[

p, q, µ,Σ, Xmis |Xobs
]

∝
[

p, q, µ,Σ, Xobs, Xmis
]

∝
[

Xobs, Xmis | p, q, µ,Σ
][

p, q, µ,Σ
]

(8)

where the last expression in (8) is the product of the complete data likelihood and the prior
density which are familiar and simple forms.

Therefore, if we are able to sample variates (p, q, µ,Σ, Xmis) from (8), then we can use the
sampled components (p, q, µ,Σ) as realizations from the posterior distribution. However, sam-
pling directly from (8) is a difficult/impossible task, and instead, a Markov chain is constructed
which has the posterior as its stationary distribution. Fortunately, this is easily implemented using
WinBUGS software (Spiegelhalter, Thomas & Best 2003). In WinBUGS, the user needs only to
specify the form of the complete data likelihood, the prior and the observed data. WinBUGS then
produces an appropriate Markov chain. The user may then proceed with the Markov chain output
as seen fit. For example, output may be averaged to provide estimates of posterior expectations
and marginal posterior densities may be approximated using density estimation techniques. We
may even obtain posterior expectations of latent variables. Note that whereas classical methods
(e.g., estimation and testing) often rely on asymptotic distributions of statistics, a sample from
the posterior is a sample from the distribution of interest. An overview of the use of MCMC
methods is provided in the edited text by Gilks, Richardson & Spiegelhalter (1996). Carlin &
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Louis (2000) and Gelman, Carlin, Stern & Rubin (2003) provide further information on MCMC
and give modern accounts of the Bayesian approach to statistics. A detailed description of the
WinBUGS code for the POST project is given in Muthukumarana (2007). There are different
versions of WinBUGS and only the full version 1.4.1 was able to handle the complexity of our
model. When a model is not too complex, WinBUGS makes use of the Gibbs sampling algo-
rithm to generate a Markov chain. With our model, the full conditional distributions required for
Gibbs sampling have nonstandard forms. In this case, WinBUGS makes use of the Metropolis–
Hastings algorithm, where Markov chain output contains streams of duplicate values due to the
acceptance/rejection step in the algorithm. We note that conditional on Sij and Si,j−1, there are
two Bernoulli terms in the complete data likelihood. More specifically, we can express (4) as

[ω, S, T ] =
n

∏

i=1

[Ti]
m
∏

j=1

(Sijpj)
ωij (1 − Sijpj)

1−ωij (Si,j−1q
tij

j )Sij (1 − Si,j−1q
tij

j )1−Sij .

The recognition of this fact enables a simpler expression for the complete data likelihood and
dramatically reduces the computational time. We also note that our model contains constrained
distributions for the log(Tij) and the µj variables. As constraints are not a standard feature
of WinBUGS, we overcame this difficulty through the use of indicator variables. Using this
approach, it is not necessary to determine the norming constant for the constrained distribution.

WinBUGS coding can initially be difficult; we hope that our code provides a beginning tem-
plate for future Bayesian analyses in mark-recapture. We also note that some preprocessing was
required for the data considered in Section 5.2. It was necessary to extract (ω, S) from T obs

prior to running WinBUGS. An R code developed for the preprocessing stage is provided in
Muthukumarana (2007).

3.1. Nonidentifiability.
It is well known that final survival and capture rates are confounded in the classical Cormack–
Jolly–Seber model as a result of nonidentifiability. To understand the problem at a deeper level,
we recall that the observed likelihood in that model is not the same as the complete data like-
lihood (4). The observed Cormack–Jolly–Seber likelihood differs in that it does not contain
the cumulative travel-time distributions [Ti] appearing in (4). Secondly, the individual survival
probabilities φij = q

tij

j in (4) are replaced with the simpler probabilities φij = φj . Finally,
the observed likelihood (which is difficult to write down in the general case) may be derived
from the complete data likelihood (4) by summing over cases that are not directly observed.
For example, the term in the complete data likelihood corresponding to the unobservable case
(Sim = 1,ωim = 0) is added to the term in the complete data likelihood corresponding to the
observable case (Sim = 0,ωim = 0). As a result, the terms pm and φm only appear in the
observed data likelihood as the product pmφm. The implication is that the data only allow us to
learn about the product pmφm and not about the individual parameters pm and φm. In this case,
we say that pm and φm are nonidentifiable.

In general, the typical consequences of nonidentifiability include ridges in the likelihood sur-
face and multimodality which are problematic for estimation. In a Bayesian context, these sorts
of problems may not be as problematic as in the classical context. In theory, all that one needs
to do in a Bayesian analysis is integrate to obtain the required posterior summaries. However,
from a practical perspective, nonidentifiablity still may cause problems in a Bayesian analysis.
For example, MCMC algorithms may have difficulty traversing parameter spaces with elongated
likelihoods.

Swartz, Haitovsky, Vexler & Yang (2004) have demonstrated that the use of informative (i.e.,
nondiffuse) priors may be effective in mitigating the effects of nonidentifiability in Bayesian
models. In our application, we recommend the use of informative priors particularly for the
detection probabilities pj . There is often good prior knowledge concerning the capabilities of
the listening lines and the acoustic transmitters.
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In view of the above discussion, there is an appealing by-product of the modelling assumption
φij = q

tij

j with respect to nonidentifiablity. In the Cormack–Jolly–Seber model, if one replaces
φij = φj with φij = q

tij

j , the nonidentifiablity disappears because the product pmqtim
m appearing

in the likelhood differs over the fish i = 1, . . . , n. This result is somewhat paradoxical as the
model with φij = q

tij

j is more complex than the traditional Cormack–Jolly–Seber model with
φij = φj , yet we gain better insight regarding the individual parameters with the more complex
model. In the model proposed in this paper (which is a generalization of the Cormack–Jolly–
Seber model), it follows that there is no problem with nonidentifiability.

4. MODEL SELECTION AND MODEL ADEQUACY
The topics of model selection and model adequacy are of fundamental importance in applied
statistics and these topics are becoming increasingly important with the consideration of more
complex models. However, in Bayesian statistics, a myriad of approaches have been proposed for
both model selection and assessing model adequacy, and it is fair to say that there is no consensus
on the “correct” approach to either of these problems. In this section, we provide some general
remarks on model selection and model adequacy, and we provide some concrete suggestions that
are relevant to the problem at hand.

4.1. Model selection.
A principled Bayesian approach for comparing a finite number of competing models involves
the calculation of the posterior probabilities of the models. When equal prior probabilities are
assigned to each of the models, then the posterior comparison of two models (i and j) reduces to
a study of the Bayes factor

Bij =

∫

fi(x | θi)πi(θi) dθi
∫

fj(x | θj)πj(θj) dθj
, (9)

where fi(x | θi) is the likelihood of model i with parameter θi, and πi(θi) is the prior density
corresponding to parameter θi. When the Bayes factor Bij is greater (smaller) than 1, this pro-
vides evidence for (against) model i relative to model j. A major practical difficulty with the use
of Bayes factors is the calculation of the Bayes factorBij . The expression (9) can rarely be eval-
uated analytically and it is typical to attempt to approximate Bij . For example, a method that
is often unstable involves the approximation of the numerator by averaging fi(x | θ(k)

i ) where
θ(k)

i is the kth iteration of θi from the prior distribution. Naturally this approach presupposes
a proper prior. Methods of approximation based on output from MCMC simulation have also
been proposed. However, even these methods are fraught with difficulties. For example, we have
experienced unstable estimation and overflow with the complex models proposed in this paper.
Another serious problem with the use of Bayes factors is one of calibration when improper priors
are used. An overview of Bayes factors is given by Kass & Raftery (1995).

Due to the practical difficulties with the use of Bayes factors in complex models, a num-
ber of alternative diagnostics have been proposed that are often viewed as approximations to
Bayes factors. For example, the diagnostics AIC (Akaike 1973), BIC (Schwarz 1978) and DIC
(Spiegelhalter, Best, Carlin & van der Linde 2002) have all received prominent attention in the
literature.

Amongst the numerous model selection diagnostics, it appears that the DIC is the most
widely used in WinBUGS applications. In fact, WinBUGS provides DIC values as an option
in its Inference menu. Unfortunately, DIC is unavailable in WinBUGS with our model due to
the complexity of the model where some of the stochastic nodes (e.g., survival status Sij) are
discrete.

One of the main thrusts of our paper is that complex mark-recapture models can be analyzed
fairly easily using WinBUGS software. Therefore we believe that it would be against the spirit
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of the paper to require the investigator to fit models using WinBUGS and then carry out model
selection using some sophisticated procedure outside of WinBUGS. For example, the method of
Laud & Ibrahim (1995) based on posterior predictive discrepancies requires variate generation
from marginal distributions outside of WinBUGS. For this reason, we want a model selection
approach that can be easily implemented within WinBUGS.

For model selection in our mark-recapture models, we suggest the use of the BIC diagnostic.
The BIC diagnostic is a little more sophisticated than AIC as it takes sample size into account.
Denote the complete data likelihood (4) by L(θ) where θ = (ω, S, T ) and let θ(i) represent the
ith realization of θ from MCMC simulation. Then the BIC is approximated by

BIC = p log(n∗) −
2

N

N
∑

i=1

log L(θ(i)), (10)

where p is the number of parameters in the model (including missing values), n∗ is the number
of observed data values, and N is the number of MCMC simulations. A model with a smaller
value of (10) is a preferred model. Note that p log(n∗)may be viewed as a penalty term that takes
the dimensionality of the model into account. Note also that the Bayesian formulation of BIC
is different than the classical version which evaluates log L at the maximum likelihood estimate
rather than averaging log L over the posterior. Again, an important feature is that (10) may be
evaluated directly in WinBUGS by coding BIC. Some discussion of the use of BIC and other
model selection diagnostics in Bayesian applications is given by Aitkin (1991) and DeSantis &
Spezzaferri (1997).

4.2. Model adequacy.
As problematic as model selection may be with complex Bayesian models, the assessment of
model adequacy in complex Bayesian models is even more problematic. A possible explanation
for this is that a posteriori testing of model adequacy is not a Bayesian construct and may be
seen as violating the Bayesian paradigm. From the point of view of a subjective Bayesian purist,
any uncertainty concerning a model ought to be expressed via prior opinion. For example, if
an experimenter is unsure whether the sampling distribution of the data is normal or Student,
then the uncertainty might be expressed via a mixture. In theory, if we are able to express
uncertainty in a model (and this includes both the sampling model and the parameters given the
sampling model), then there is no need to assess model adequacy, as all possible models have
been considered and our inferences are subjective. However, from a practical point of view,
it is typically difficult or impossible to determine the space of possible sampling models and
parameters, and to assign prior opinion to the space.

Therefore, what does the practical Bayesian do in the context of model assessment? An
honest answer may be that the assessment of complex Bayesian models is not a routine activ-
ity. When Bayesian model assessment is considered, it appears that the prominent modern ap-
proaches are based on the posterior predictive distribution (Gelman, Meng & Stern 1996). These
approaches rely on sampling future variates y from the posterior predictive density

f(y |x) =

∫

f(y | θ)π(θ |x) dθ, (11)

where x is the observed data, f(y | θ) is the sampling density for y and π(θ |x) is the posterior
density. In MCMC simulation, approximate sampling from (11) proceeds by sampling yi from
f(y | θ(i)), where θ(i) is the ith realization of θ from the Markov chain. Model assessment then
involves a comparison of the future values yi versus the observed x. One such comparison
involves the calculation of posterior predictive P -values (Meng 1994).

A major difficulty with posterior predictive methods concerns a double use of the data.
Specifically, the observed data x is used both to fit the model giving rise to the posterior density
π(θ |x) and then is used in the comparison of yi versus x. For this reason, some authors prefer
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a cross-validatory approach (Gelfand, Dey & Chang 1992) where the data x = (x1, x2) are split
so that x1 is used for fitting and x2 is used for validation.

We take the view that in assessing a Bayesian model, the entire model ought to be under
consideration, and the entire model consists of both the sampling model of the data and the prior.
We also want a methodology that does not suffer from double use of the data. Finally, we want an
approach that is not too difficult to implement; as we have argued, our complex mark-recapture
models are easily fit usingWinBUGS. For the models proposed here, we recommend an approach
that is similar to the posterior predictive methods but instead samples “model variates” y from
the prior predictive density

f(y) =

∫

f(y | θ)π(θ) dθ, (12)

where π(θ) is the prior density. This approach was advocated by Box (1980) before simulation
methods were common. Note that generating from (12) presupposes proper priors which are
required in WinBUGS.

It is not difficult to write R code to simulate y1, . . . , yN from the prior predictive density
in (12). It is then a matter of deciding how to compare the yi against the observed data x.
We advocate simple comparisons that are of direct interest to the application. For example,
one might compare the mean observed cumulative travel time T 2 =

∑n
i=1 Ti2/n at the second

listening line to the histogram formed by the N variates T 2 obtained from the prior predictive
simulation. Naturally, as the priors become more diffuse, it becomes less likely to find evidence
of model inadequacy. We investigate the assessment of model adequacy on the Columbia river
data in Section 5.2.

5. EXAMPLES

5.1. Simulated data.
Various simulation studies were carried out. We report on one such simulation. A dataset corre-
sponding to n = 500 fish withm = 5 listening lines was simulated using the R code. Detection
probabilities at each listening line were set to pj = p = 0.8, while daily survival probabilities be-
tween listening lines were set to qj = q = 0.99, j = 1, . . . ,m. The logarithms of the cumulative
travel times between the listening lines were generated from the constrained multivariate normal
distribution (5) with µ = (1, 2, 3, 4, 5)′ and Σ =( σij) where σii = 1.0 and σij = 0.8 for i %= j.
We then generated a survival history S based on Sij ∼ Bernoulli (q

tij

j ) and a detection history
ω based on ωij |Sij = 1 ∼ Bernoulli (pj). Having generated the data as described, we parti-
tioned the data into the observed and missing components of (ω, S, T ); this is necessary for the
construction of the complete data likelihood (4). In the simulated data, there are 5(500) = 2500
cumulative travel times Tij of which 858 are missing. Therefore we have considered a chal-
lenging test case with a large proportion of missing values. At the fifth listening line, a typical
survival probability is φi5 = qTi5−Ti4

5 = (0.99)exp(5)−exp(4) ≈ 0.39.
For the analysis of the simulated dataset, we first consider the “full model” which contains all

of the parameters described in the paper. Uniform prior distributions for the parameters pj and
qj were assigned according to pj ∼ Beta (1.0, 1.0) and qj ∼ Beta (1.0, 1.0), j = 1, . . . , 5 with
independence across the distributions. The specified priors provide a good test of the robustness
of the methods with respect to the priors as the corresponding prior means E (p) = E (q) = 1/2
are not close to the preset parameter values. The cumulative travel times are modelled as in (5)
and the rest of the prior settings are given as described in Section 2. The model was fit usingWin-
BUGS software where 500 iterations were used for the burn-in period. The posterior estimates in
Table 1 were based on 8000 iterations which required approximately 15 minutes of computation
on a personal computer. We observe that the posterior means of the primary parameters pj and
qj are close to the preset values. The posterior means of the secondary parameters µ and Σ also
appear in agreement with the preset values.
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TABLE 1: Estimates of posterior means and posterior standard deviations in Example 5.1.

Parameter Mean SD Parameter Mean SD

p1 0.77 0.02 Σ11 0.91 0.06
p2 0.79 0.02 Σ12 0.79 0.05
p3 0.81 0.02 Σ13 0.77 0.05
p4 0.82 0.02 Σ14 0.77 0.05
p5 0.76 0.02 Σ15 0.77 0.06
q1 0.99 0.00 Σ22 1.01 0.06
q2 0.99 0.00 Σ23 0.84 0.06
q3 0.99 0.00 Σ24 0.80 0.06
q4 0.99 0.00 Σ25 0.85 0.06
q5 0.99 0.00 Σ33 0.94 0.06
µ1 1.02 0.04 Σ34 0.82 0.06
µ2 2.06 0.04 Σ35 0.81 0.06
µ3 3.06 0.04 Σ44 0.95 0.06
µ4 4.02 0.04 Σ45 0.83 0.06
µ5 5.02 0.04 Σ55 0.99 0.07

We now wish to investigate aspects of the model selection diagnostic BIC in (10). With
simulated data, we can investigate the diagnostic since we know the true model from which the
data were generated. For the full model considered above with the uniform priors, we obtained
BIC = 9640.3. Knowing the way that the data were simulated, we also fit the “true model” with
φij = qtij and pij = p where independent uniform priors were assigned to p and q. For the true
model, we obtained BIC = 9557.5. Therefore the BIC diagnostic preferred the true model over
the full model.

We next fit an even simpler model with φij = φj and pj which is analogous to the Cowen
and Schwarz (2005) model as it does not consider survival as a function of travel time. In
this case, BIC = 9725.2. Therefore the BIC diagnostic rightly suggests that the travel time
assumption is important. In fact, the full model is preferred to the model analogous to Cowen
and Schwarz (2005).

Finally, we consider the sensitivity of the analysis with respect to the travel time assump-
tion (5). The analysis here is the same as in the full model analysis except that we assume
the simpler travel time distribution (Ti1, . . . , Tim) ∼ Normalm(µ,Σ) subject to the constraint
0 < Ti1 ≤ · · · ≤ Tim. Under the simpler assumption, the posterior means of the pj and qj are
comparable to the posterior means in the analysis of the full model and BIC = 9763.3. This
suggests that even though the overall fit of the simpler model is not good (in terms of the BIC),
the precise shape of the distribution of the cumulative travel times is not a critical assumption in
the estimation of the primary parameters of interest.

5.2. Columbia river data.
The model was then fit to data obtained from the Columbia River system. From April 25, 2001 to
May 30, 2001, n = 324 radio-tagged chinook salmon were released from the Rock Island Dam.
Data were recorded at listening lines established at the m = 3 dams downstream at Wanapum,
Priest Rapids, and Hanford Reach. For example, corresponding to fish j = 4, we have data values
ω4 = (1, 1, 0, 0) and (T40, T41, T42, T43) = (0, 6.1,NA,NA). This implies that the fourth fish
was released at the Rock Island Dam and then detected at Wanapum but was undetected at both
Priest Rapids and Hanford Reach. The fish took 6.1 days to reach Wanapum from the Rock
Island Dam. The data gives rise to the survival history S4 = (1, 1,NA,NA) since we know
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that the fish survived up to Wanupum, but it is unknown whether the fish survived up to Priest
Rapids or Hanford Reach. The interdam distances are approximately 37.6 miles, 18.7 miles,
and 15.0 miles, respectively. In the Columbia river data, there are 3(324) = 972 cumulative
travel times Tij of which 294 are missing. Cowen & Schwarz (2005) also studied this dataset
in the context of radio failure. Here, we ignore radio failure, and therefore survival is a function
of both actual survival and radio failure. In this example, we fit a model which allows for the
possibility of varying detection probabilities pj and varying daily survival probabilities qj at each
of the dams. Uniform priors were assigned to the detection and daily survival probabilities. The
remaining priors are given as in Section 2. We remark that it is possible to enhance the model by
stratifying the salmon according to their release date, although we have not done so.

TABLE 2: Estimates of posterior means and posterior standard deviations in Example 5.2.

Parameter Mean SD

p1 0.96 0.03
p2 0.97 0.03
p3 0.98 0.02
q1 0.99 0.00
q2 0.91 0.01
q3 0.77 0.02
µ1 2.23 0.03
µ2 2.60 0.03
µ3 2.78 0.03
Σ11 0.19 0.02
Σ12 0.16 0.02
Σ13 0.15 0.02
Σ22 0.17 0.02
Σ23 0.16 0.02
Σ33 0.18 0.02

Estimates of the posterior means of the parameters are given in Table 2. These are based
on a MCMC simulation using WinBUGS with a burn-in period of 500 iterations followed by
4000 iterations. We observe that the detection probabilities pj are high and are similar across
the dams. We note that the daily survival probabilities q1, q2, and q3 decrease and this appears
to make biological sense. With respect to the estimated travel-time parameter µ, we refer to
Figure 1 which provides density plots of the observed travel times between dams. The average
travel times between the three dams are 9.9, 3.6, and 1.9 days, respectively. These values are
roughly in agreement with MCMC estimates of the mean interval travel times (e.g. E(ti1) ≈
exp(µ1 +Σ11/2)) which are 10.3, 4.6, and 2.7 days, respectively. Figure 2 provides an estimate
of the posterior density of µ1 using a kernel smoother fromWinBUGS. The plot suggests a nearly
symmetric unimodal distribution as might be expected. We observe strong positive correlations
in the Σ matrix; this is expected as we are modelling cumulative travel times.
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FIGURE 1: Density plots for observed travel times tij (days) in Example 5.2.

FIGURE 2: Estimate of the posterior density of µ1 in Example 5.2.

It is instructive to look at some plots related to the MCMC simulation. A trace plot for µ1

is given in Figure 3. The trace plot appears to stabilize immediately and hence provides no
indication of lack of convergence in the Markov chain. In Figure 4, an autocorrelation plot for
µ1 is provided. The autocorrelations appear to dampen quickly. This provides added evidence
of the convergence of the Markov chain and also suggests that it may be appropriate to average
Markov chain output as though the variates were independent. Similar plots were obtained for
all of the parameters in the model. In addition to the diagnostics described, multiple chains were
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obtained to provide further assurance of the reliability of the methods. For example, the Brooks–
Gelman–Rubin statistic (Brooks & Gelman 1997) gave no indication of a lack of convergence.

As discussed in Section 3.1, nonidentifiability poses neither a theoretical nor a practical ob-
stacle for the model proposed in this paper. To investigate the degree of confounding between the
final capture rate p3 and the final daily survival probability q3, we calculate the posterior corre-
lation between p3 and q3 using the output from the MCMC simulation. The posterior correlation
is found to be 0.02 which indicates a lack of confounding between the final capture rate and the
final daily survival probability.

FIGURE 3: Trace plot for µ1 based on MCMC simulation in Example 5.2.

FIGURE 4: Autocorrelation plot for µ1 based on MCMC simulation in Example 5.2.

In assessing model adequacy, we have mentioned that a model with diffuse priors will almost
always be viewed as adequate. The reason for this is that a model with diffuse parameters gives
rise to diffuse data, and observed data is unlikely to be seen as inconsistent when compared to
diffuse data. To provide a more stringent test, we consider a modification of our model where
subjective priors are introduced. Since we know a priori that the listening lines and acoustic
devices are of high quality, we assign prior probabilities of detection according to independent
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[pj ] ∼ Beta (19, 1). We also know that daily survival probabilities are high and we therefore
set independent [qj ] ∼ Beta (18, 2). The prior distribution for the log cumulative travel times is
a constrained multivariate normal distribution with mean vector and variance covariance matrix
given by the posterior means from the initial analysis. This distribution is roughly consistent with
the data and is far less diffuse. With this model, the posterior means of the primary parameters
are very close to estimates provided in Table 2. This suggests that the data are informative and
dominate the inferences. To assess model fit, we generated 20 datasets from the prior predictive
density (12) according to the model described above, and compared the generated data with the
observed data. Although there are many features of the data that could be checked, we focus on a
study of detection history ω and cumulative travel time T . For ω, Figure 5 provides a histogram
of the proportion of fish detected in the simulated datasets. For each simulation, the proportion
detected is given by

∑324
i=1

∑3
j=1 ωij/(924). The proportion detected for the observed data is

0.70 which appears consistent with the model. For T , there appears to be no limit on the number
of features that one may check. For illustration we consider the travel time to the first dam.
Figure 6 provides a boxplot for each generated dataset using the 324 total travel times Ti1. The
boxplot for the observed data is also included and appears to be consistent with the generated
data.

FIGURE 5: Histogram of the proportion of fish detected for the observed data and the 20 generated
datasets in Example 5.2.

To check whether the travel-time assumption is relevant to the Columbia river data, we fit a
second model that is analogous to the model considered by Cowen & Schwarz (2005). We keep
everything the same as in the initial model with the diffuse priors, but let φij = φj rather than
φij = q

tij

j . For the Cowen and Schwarz (2005) model, we obtain BIC = 3988.8, which is much
worse than the initial model with BIC = 2521.1. The extremely bad fit of the Cowen & Schwarz
(2005) model may have been anticipated, as Figure 1 suggests large travel time differences be-
tween the three dams.

6. DISCUSSION
The Bayesian framework provides a straightforward approach to dealing with the complex ob-
served likelihood which requires integration over the unobservable travel times. Furthermore,
the Bayesian approach provides a convenient way of estimating the correlation in travel times
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between sampling locations. This addresses an important biological question as to whether some
fish are intrinsically faster, or whether travel times are independent random events.

FIGURE 6: Boxplots of the travel time Ti1 to the first dam for the observed data and the 20 generated
datasets in Example 5.2.

An alternative approach might be based on the EM algorithm as used by van Deusen (2002).
However, the computation of the expected log-likelihood is not straightforward and numeri-
cal methods would likely be needed. In our Bayesian approach, Markov chain Monte Carlo
(MCMC) methods avoid the necessity of numerical integration.

Finally, our model is easily extended to allow for individual time-independent covariates such
as initial body mass mij by modelling qij = f(mij) for some function f . Work is underway
to extend our formulation to allow for time-dependent individual covariates and to more fully
investigate the choice of f . The revised model must account for missing values both in the travel
times and in the individual covariates.

It is not immediately clear how our model might be extended to a two-dimensional spatial
setting. For example, listening lines may be set up in the woods to track the movements of
animals. In this case, in addition to death and radio tag failure, lack of detection may be due to
nonstandard travel paths. We consider this to be an open research problem.
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Discussion:
Towards a Bayesian analysis template?
Olivier GIMENEZ

1. INTRODUCTION
I would like to congratulate Drs Muthukumarana, Schwarz and Swartz (henceforth MSS) for
extending classical mark-recapture models to estimate survival in a complex situation arising
from fish monitoring. Because of their model likelihood complexity, MSS used Markov chain
Monte Carlo (MCMC) simulations to implement a Bayesian analysis of their data. The Bayesian
framework in association with MCMC algorithms is becoming increasingly popular for fitting
complex models such as models with latent structures. Two of the main reasons for this are
that (i) MCMC methods are well suited to circumvent the issue of high-dimensional integrals
involved in these likelihoods and, (ii) fast and powerful computers along with flexible and
reliable programs are now available allowing the relatively time-realistic and easy implementa-
tion of various MCMC routines. This being said, the possibility to fit complex models comes
with methodological issues that should not be overcome. In that sense, MSS have provided
an impressive work that deserves to be emphasized. In this discussion, I comment on several
technical points and give general considerations that were inspired by the MSS paper.

2. TECHNICAL POINTS

2.1. Model selection.
To determine whether a model specifying survival as a function of travel times was better
supported by the data than without, MSS relied on BIC as it was easy to implement within
WinBUGS. As acknowledged by MSS, this was one choice among many alternatives, and this
is precisely the Achilles’ heel of Bayesian analyses. Indeed, many procedures exist and none
of them seems to be as consensual as AIC is in the statistical ecology literature (Burnham &
Anderson 2002). Basically, there are two groups of methods. One produces a value for each
model to be compared among a set of models (e.g., mean square predictive error: Gelfand &
Ghosh 1998; DIC: Spiegelhalter, Best, Carlin & van der Linde 2002; BIC: for example, Link
& Barker 2007), and the other performs automatic exploration of the model space (e.g., Gibbs
variable selection: George & McCulloch 1993; reversible jump MCMC: Green 1995). Most
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often, we adopt one option or another because it is convenient to calculate, or because we are
familiar with it. MSS went for a method belonging to the first family of methods, in line with
recent recommendations (Link & Barker 2007). Interestingly, reversible jump MCMC is now
implemented in WinBUGS, and MSS could have used it to compare models. This raises the
issue of which method to use. Unfortunately, I’m not aware of any comparison or any review
that might give clear guidelines. Having made clear what each method does, the performances
of several candidate methods could be assessed by calculating frequencies of ranking the true
model as best in Monte Carlo simulations.

2.2. Identifiability and convergence issues.
We are often provided with, even in biological papers, technical details regarding convergence
of the MCMC algorithms, while it wouldn’t come to one’s mind to mention anything about
convergence in a classical analysis. This is probably because the procedures in the former
case have not yet been implemented in an automatic way, and further work is needed in that
direction. MSS have paid careful attention to the identifiability issue, and demonstrated that
their model was not parameter redundant. Note that formal methods were developed to assess
parameter redundancy of probabilistic models that could be used here too (review in Gimenez et
al. 2005). Nevertheless, a cause of poor MCMC convergence is weak identifiability (rather than
nonidentifiability) because it leads to large autocorrelations. Calculating the overlap between
prior and posterior parameter distributions can help in diagnosing weak identifiability (Garrett
& Zeger 2000; Gimenez, Morgan & Brooks 2008). Practical recommendations on checking
MCMC convergence are given by experienced statisticians in Kass, Carlin, Gelman & Neal
(1998) and comparisons of several available methods can be found in El Adlouni, Favre &
Bobée (2006).

2.3. Goodness-of-fit testing.
Goodness–of–fit testing has received little attention in the Bayesian literature and only a few
methods are available, which are reviewed by MSS: Bayesian p-values, cross-validation, and
another approach developed by Box (1980). Here again, I’m not aware of any evaluation of the
frequentist properties (nominal level and power) of these methods. Besides, these procedures
tend to be ’omnibus’, in that the alternative hypothesis is simply stated as ’the model does not fit
the data at hand’, without any further indication as to where to go then. Once again, the Bayesian
approach may benefit from getting closer to a classical framework. Indeed, goodness-of-fit
testing procedures are well developed for single (Lebreton, Burnham, Clobert & Anderson
1992) and multistate (Pradel, Wintrebert & Gimenez 2003) mark-recapture models (review in
Pradel, Gimenez & Lebreton 2005). These methods rely on contingency tables that specify
well-identified alternative hypotheses (e.g., a trapping effect on recapture probabilities or a
memory effect on movement probabilities), which, in case of rejection, are invaluable when it
comes to building a model which fits the data better.

2.4. Even more complexity?
I have two further minor suggestions that might help to improve the MSS model. First, MSS
made the strong assumption that variation in survival could be fully explained by travel times
variation. However, if some extra variation exists, then bias may occur in parameter estimates
(Barry, Brooks, Catchpole & Morgan 2003). By using a state-space formulation of their model
(Gimenez et al. 2007), MSS could have incorporated individual random effects to cope with
(potential) unexplained sources of variability in survival (see Clark et al. 2005; Gimenez et al.
2006; Zheng, Ovaskainen, Saastamoinen & Hanski 2007; Royle 2008). Second, MSS wonder
how their model might be extended to a two–dimensional spatial setting. We have recently
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extended our nonparametric approach dealing with complex relationships between survival and
covariates that was mentioned by MSS (Gimenez et al. 2006; see also Gimenez et al. 2006 in
the Additional References) to cope with bivariate smoothing (Gimenez & Barbraud 2008). This
methodology has also potential applications in ecology in order to estimate spatial synchrony,
as well as in evolutionary biology in order to estimate fitness surfaces made of quantitative
phenotypic traits.

3. GENERAL CONSIDERATIONS

3.1. Bayes or not Bayes: is that the question?
As a biostatistician, I have long adopted an eclectic and pragmatic approach and have been using
either the Bayesian or the frequentist approach based on a few empirical criterions such as the
time it takes to get results, the ease of programming and the nature of the biological question (is
there any added value of going for a Bayesian analysis?). From a practitioner’s point of view,
it is worth repeating that, although it may appear obvious, both approaches are complementary,
provided that one is careful in using the terminology. As a nice illustration of this statement,
I would like to draw attention to the MCMC procedure recently proposed by Lele, Dennis &
Lutscher (2007) which has the appealing feature of producing maximum likelihood estimates.
It is fair to say that the Bayes approach is rarely used for what it is intrinsically, but rather as
an excuse for implementing the MCMC machinery to cope with complex multidimensional
likelihoods. Examples of incorporating prior information are still too few (see, however, Martin,
Kuhnert, Mengessen & Possingham 2005; McCarthy & Masters 2005), probably due to our
feebleness as referees, while every biologist would agree never to start a new data analysis
without prior knowledge of the system.

3.2. Transfer to biologists.
Obviously, in a pragmatic approach, the key question is ’why should I go for a Bayesian analysis’.
The answer depends obviously on the analyst and the question, but several steps may be taken to
help in deciding whether jumping or not into new territory is worth the price.

• We should think more of teaching Bayesian theory in introductory statistics courses, al-
though some colleagues still hesitate to do so. I’ve taught both Bayesian and frequentist
theories this year in a statistical modelling course for Masters students in ecology and evo-
lutionary biology. The discussions were stimulating, focusing mainly on the incorporation
of prior information and on when to use one or the other method. I will repeat this next
year as I think that this lecture has not only added an arrow to their bow, but it has also
contributed to the development of their critical mind.

• Several excellent textbooks are now available which encourage self–teaching, for applied
statistician readers (Gilks, Richardson & Spiegelhalter 1996; Lee 1997; Carlin & Louis
2000; Congdon 2003; Gelman, Carlin, Stern & Rubin 2003; Congdon 2006) as well as
for biologist readers (Clark 2007; McCarthy 2007), and many others will surely follow.
Attending Bayesian workshops is another very efficient way of learning new material,
which has the non negligible advantage of keeping us stuck somewhere (often in exotic
places) with limited risk of being disturbed.

• To encourage codes and data sharing, we militate with other colleagues for the creation of a
statistical ecology internet platform, with a format similar to Genbank (Benson et al. 2007)
in genetics, a database to which nucleotides sequences are submitted prior to publication.
This web site would gather material (in particular BUGS codes) that have been used in
publications, and would avert the too convenient statement ’the code is available upon
request from the authors’ which I have used myself too often.
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• Related to that, user-friendly and reliable pieces of software are needed. WinBUGS
(Spiegelhalter, Thomas & Best 2003) is very flexible (Gimenez et al. 2008), but could
gain in conviviality (e.g., by improving its debugging capabilities and implementing in
routine several simple analyses). The efforts to build a dialog between R and WinBUGS
initiated through the R package R2WinBUGS (Sturtz, Ligges & Gelman 2005) should
be continued. An alternative to WinBUGS is AD–Model Builder (Fournier 2001), which
seems to be much quicker, but is neither free nor open-source, as is WinBUGS.

Overall, teaching (and research) in ecological statistics largely benefits from collaboration
between statisticians and biologists.

4. CONCLUSIONS
Hierarchical analysis of data on marked animals (Clark et al. 2005; Pradel 2005; Gimenez et
al. 2007; Zheng, Ovaskainen, Saastamoinen & Hanski 2007; Royle 2008) is experiencing an
increasing number of applications in ecology, conservation and evolutionary biology, thanks to
the Bayesian framework in conjunction with MCMC methods for its implementation. Note that
even though this combination has many advantages, I do not mean to overlook other methods
that are valuable to fit models with latent structures, such as particle filtering (Buckland, New-
man, Thomas & Koesters 2004; Thomas, Buckland, Newman & Harwood 2005), Kalman filter-
ing (Besbeas, Freeman, Morgan & Catchpole 2002) and Newton-type algorithms (Pradel 2005).
Even better, we still need to explore other methods since, although the Bayesian framework is
more than three centuries old, we have to confess that its practical implementation using MCMC
simulations is not as mature as maximum likelihood analyses using standard optimization meth-
ods. AsMuthukumarana, Schwarz and Swartz acknowledge, potential issues may arise at various
steps of the analysis, such as model identifiability, convergence assessment, model selection and
goodness-of-fit testing. We see, however, good signs of a trend towards clear guidelines on how
to carry out a Bayesian analysis using MCMC algorithms, the paper by MSS being an important
contribution in that direction. In that spirit, and besides the original development of new models
for fish monitoring, I consider the paper by MSS as a successful attempt to produce a Bayesian
analysis template for future data analyses.

ACKNOWLEDGEMENTS
Many thanks to B. J. T. Morgan who encouraged me to do my first steps in the Bayesian theory while I was
his research fellow working at the university of Kent, and to Rachel Borysiewicz who checked my English
with patience.

Received 7 November 2007 Olivier GIMENEZ: olivier.gimenez@cefe.cnrs.fr
Accepted 7 November 2007 Centre National de la Recherche Scientifique

Centre d’Ecologie Fonctionnelle et Evolutive –UMR 5175
1919 Route de Mende, 34293 Montpellier Cedex 5, France

Authors’ response

We thank Gimenez for his commentary on our article—we agree with him on virtually all of his
points.



2008 MARK-RECAPTURE DATA 25

Swartz was born a Bayesian, Muthukumarana is a novice, and Schwarz is a heretic who
converted from likelihood methods. We share many of Gimenez’s frustrations with the Bayesian
approach in capture-recapture. Perhaps some of us have too many grey hairs and find it difficult
to learn new tricks, but the transition from likelihood methods to Bayesian methods has not been
without much soul-searching and questioning.

1.MODEL SELECTION
Some of us like the likelihood AIC paradigm – all models are wrong, so if several models seem
to fit the data equally well, why not combine inference over these models rather than searching
for the best single model. A possibility is to do the same using Bayesian methods although this
requires additional complexity and computation.

Like Gimenez, given that Bayes factors can rarely be computed in complex models, we find
the Bayesian alphabet soup (AIC, DIC, BIC, etc) somewhat confusing. We are also uneasy about
some uses of RJMCMCmethods where there are literally millions of potential models (e.g. King
et al. 2006). The first rule in using likelihood-AIC methods is NOT to data dredge, but to start
with a carefully selected set of candidate models. This advice seems to be discarded in these
large scale reversible jump MCMC applications where the model space can’t even be listed in
advance because it is so large. We wonder about the reliability of inference when millions of
MCMC iterations cannot possibly cover the entire model space.

In cases like this, perhaps a better model selection summary is available? Rather than pro-
ducing the probability of individual models, perhaps obtaining the probability of related groups
of models would be more useful? For example, in King, Brooks, Morgan & Coulson (2006), the
number and size of age classes was explored. The probability of a model for a given age class
structure or all models that are subsets of this age class structure seems appropriate.

2.GOODNESS-OF-FIT
One approach to Bayesian goodness-of-fit involves model comparison between the current model
and a very general but well-fitting model. This approach suggests the use of model selection
methods rather than trying to mimic likelihood methods via Bayesian p-values, etc. This could be
a viable strategy for goodness-of-fit against specified alternatives, but is it possible to determine
an adequate and “fully-saturated model” in the Bayesian context?

We are also somewhat at a loss on how to deal with goodness-of-fit for these very complex
models. In likelihood methods, the basic goodness-of-fit tests in mark-recapture methods are
comparisons between the observed and expected counts of various histories. However, in com-
plex models such as in this paper, every history (a combination of where and when captured) is
likely unique, and this approach breaks down. There have been many paper in the literature deal-
ing with sparse multinomial models (e.g., Simonoff, 1985; Eubank, 1997) which assume local
smoothness in the cells which would seem like a logical way to proceed, but we are unaware of
any such methods being used for capture-recapture.

3.INFLUENCE OF PRIORS
One of the powerful advantages of Bayesian methodology is the ability to include useful prior
information. Yet, lip service is often paid to this idea; indeed, “uninformative” priors are often
used where the data are supposed to speak for themselves. Some of us feel that there are actually
two stages of inference that ought to be practiced. In the first stage, we find it appealing to
see what the data from the experiment, and the experiment alone are saying. In this case, non-
informative priors would be utilized. In the second stage, a Bayesian analysis using subjective
prior information would be carried out. The two-stage procedure permits a comparison of the
relative importance of data versus prior opinion. In practice, we find that the second step is rarely
done. Often, it is difficult to summarize the state of knowledge about a parameter and researchers
want to avoid comments from referees that the prior ignored paper x or paper y.
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Another reason for the choice of noninformative priors is the (naive) belief that the results
are not influenced by the prior. Schwarz must admit that he has made this mistake in thinking.
He finds it unintuitive that a flat beta prior on p in a binomial experiment has the “effect” of
adding “1” to the sample size when the posterior is examined. In his naive thinking, Schwarz
would like (uninformative) priors to “subtract” 1 from the sample sizes! And how can priors be
uninformative when there are sometimes several uninformative priors to choose from in a given
problem?

Gimenez’s suggestion of looking at the overlap between the prior and posterior distribu-
tions (see the additional references) appears to be one way to see how much new information
is contributed by the data over the prior. This could be an “automated” approach to looking
at the relative contribution of information from priors and data, but another (admittedly) naive
approach would be to simply look at the difference between the maximum likelihood estimator
(MLE) and the mean of the posterior. Presumably if the MLE cannot be explicitly computed, a
stochastic MLE could be found, as outlined in Lele, Dennis & Lutscher (2007).

4.TECHNOLOGY TRANSFER

Gimenez’s suggestion of an MCMC bank for code is extremely useful. The ‘wiki’ paradigm may
be more useful where code can be modified and improved. An impediment, unfortunately, is the
common problem that the reward system in most academic institutions is completely orthogonal
to collaborative approach of this sort.

We also agree with Gimenez’s comments about the difficulty in using WINBUGS. Except
for simple problems, we find that using this package is not for the faint of heart. We hope that
our WINBUGS can serve as a foundation for future applications in capture recapture.

We cannot emphasize too strongly the importance of exercising code using simulated data
(with enormous sample sizes) where the answers are known in advance and MCMC simulation
error will be negligible. These simulation exercises should try a variety of parameter values and
scenarios. Here we grey-haired members of the community actually have an advantage over
newcomers as this was common practice when debugging FORTRAN or other codes, but is
rarely practiced now.

5.FINAL REMARKS
As Gimenez notes, the Bayesian paradigm together with MCMC methods, allows more complex
models to be fit than when using standard likelihood theory. But, at the same time, the fundamen-
tal problems of model selection, model averaging and goodness-of-fit are seldom straightforward.

We found that our team worked well on this paper. Often new converts are more zealous than
members born to a faith, but our varied team kept each other in check. The novice supplied the
energy and drive; the heretic challenged the methods at every step and the cardinal supplied the
background and wisdom to ensure that the project did not stray from the proper path.
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