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Abstract

This paper considers the determination of optimal team lineups in Twenty20 cricket where

a lineup consists of three components: team selection, batting order and bowling order. Via

match simulation, we estimate the expected runs scored minus the expected runs allowed for

a given lineup. The lineup is then optimized over a vast combinatorial space via simulated

annealing. We observe that the composition of an optimal lineup in terms of pure batsmen,

all-rounders and bowlers has a greater emphasis on batting than is traditionally found in

one-day cricket. As a by-product of the methodology, we obtain an “all-star” lineup selected

from international Twenty20 cricketers.
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1 INTRODUCTION

Twenty20 cricket (or T20 cricket) is a form of limited overs cricket which has gained popularity

worldwide. Twenty20 cricket was showcased in 2003 and involved matches between English and

Welsh domestic sides. The rationale behind the introduction of T20 was to provide an exciting

version of cricket with matches concluding in three hours duration or less. There are now various

professional T20 competitions where the Indian Premier League (IPL) is regarded as the most

prestigious. Even in Canada (not exactly known as a cricketing country), every game of the IPL

is telecast on live television.

Except for some subtle differences (e.g. fielding restrictions, limits on the number of overs

per bowler, powerplays, etc.), Twenty20 cricket shares many of the features of one-day cricket.

One-day cricket was introduced in the 1960s, and like T20 cricket, is a version of cricket based on

limited overs. The main difference between T20 cricket and one-day cricket is that each batting

side in T20 is allotted 20 overs compared to 50 overs in one-day cricket.

Consequently, many of the strategies used in one-day cricket have trickled down to Twenty20

cricket. This paper investigates the critical decisions involving the determination of T20 team

lineups (i.e. team selection, batting orders and bowling orders). It is desirable that teams field

their strongest sides, and doing so, requires a judgment on the relative value of batting versus

bowling. In one-day cricket, it is common for teams to field a side with four pure batsmen, three

all-rounders and four specialized bowlers. However, is this an optimal selection for Twenty20

cricket?

The question of team selection in cricket has been investigated by various authors. Barr and

Kantor (2004) advocated the use of a nonlinear combination of the strike rate (runs scored per

100 balls faced) with the batting average (runs scored per dismissal) to select batsmen in one-day

international (ODI) cricket. We note that the proposed metric involves an arbitrary weight α

and that individual player selection does not account conditionally for players already selected.

Swartz et al. (2006) obtained optimal batting orders in ODI cricket using batting characteristics

from multinomial regression. However, the paper failed to look at the effect of bowling and did not

address the initial team selection problem. Bretteny (2010) and Lemmer (2013) considered integer

optimization methods for selecting players in fantasy league cricket and in limited overs cricket.

Their methodology is based on performance measures computed from summary statistics such as

the batting average, strike rate, etc. Integer programming constraints include various desiderata

such as the inclusion of a single wicket-keeper and specified numbers of batsmen, all-rounders and

bowlers. Two major drawbacks of the approach are the ad hoc choice of performance statistics

(the objective function) and the lack of validation against “optimal” team selections.
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In this paper, we investigate the problem of determining team lineups in T20 cricket from

the point of view of relative value statistics. Relative value statistics have become prominent in

the sporting literature as they attempt to quantify what is really important in terms of winning

and losing matches. For example, in Major League Baseball (MLB), the VORP (value over

replacement player) statistic has been developed to measure the impact of player performance.

For a batter, VORP measures how much a player contributes offensively in comparison to a

replacement-level player (Woolner 2002). A replacement-level player is a player who can be

readily enlisted from the minor leagues. As another example, the National Hockey League (NHL)

reports plus-minus statistics. The statistic is calculated as the goals scored by a player’s team

minus the goals scored against the player’s team while he is on the ice. More sophisticated versions

of the plus-minus statistic have been developed by Schuckers et al. (2011) and Gramacy, Taddy

and Jensen (2013).

In cricket, a team wins a match when the runs scored while batting exceed the runs conceded

while bowling. Therefore, it is the run differential that is the holy grail of performance measures

in cricket. An individual player can be evaluated by considering his team’s run differential based

on his inclusion and exclusion in a lineup. Clearly, run differential cannot be calculated from

actual match results in a straightforward way because there is variability in match results and

conditions change from match to match. Our approach in assessing performance is based on

simulation methodology where matches are replicated. Through simulation, we can obtain long

run properties (i.e. expectations) involving run differential. By concentrating on what is really

important (i.e. run differential), we believe that our approach addresses the core problem of

interest in the determination of T20 team lineups.

In Section 2, we begin with some exploratory data analyses which investigate batting and

bowling characteristics of T20 cricketers. We observe that player characteristics are not clustered

according to position. Rather, player skills appear to vary on the continuum. We then provide an

overview of the simulator developed by Davis, Perera and Swartz (2015) which is the backbone

of our analysis and is used in the estimation of expected run differential.

In Section 3, a simulated annealing algorithm is proposed to obtain optimal team lineups

(i.e. the joint determination of team selection, batting order and bowling order). The algorithm

searches over the vast combinatorial space of team lineups to produce an optimal lineup with the

greatest expected run differential. This is a more complex problem than is typically considered

in the literature where only team selection is discussed. We remark that we have not seen any

previous work that addresses bowling orders. In the search for an optimal team lineup, the

objective function is the run differential which is the quantity that is relevant to winning and
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losing matches. The simulated annealing algorithm requires fine tuning in order to effectively

search the space and converge to the optimal lineup.

In Section 4, we provide two applications of the simulated annealing algorithm. First, we

determine an optimal lineup for both India and South Africa in T20 cricket and we compare

these lineups to actual lineups that have been used in the recent past. Some comments are

then made on the optimal composition of teams with respect to pure batsmen, all-rounders and

specialized bowlers. Second, the simulated annealing algorithm is applied to an international pool

of players to identify an “all-star” lineup. We compare the resulting team selection with some

common beliefs concerning “star” players. We conclude with a short discussion in Section 5.

2 PRELIMINARIES

To initiate discussion on T20 team composition, we begin with some exploratory data analyses.

We consider T20 matches involving full member nations of the International Cricket Council

(ICC). Currently, the 10 full members of the ICC are Australia, Bangladesh, England, India, New

Zealand, Pakistan, South Africa, Sri Lanka, West Indies and Zimbabwe. The matches considered

were those that took place from the first official match in 2005 until May 21, 2014. Details from

these matches can be found in the Archive section of the CricInfo website (www.espncricinfo.com).

In total, we obtained data from 282 matches.

For batting, we use familiar quantities. We let BA denote the batting average (runs scored

per dismissal) and we let SR denote the batting strike rate (runs scored per 100 balls). Good

batting is characterized by large values of both BA and SR. We define similar quantities for the

bowling average BA (runs allowed per dismissal) and the bowling economy rate ER (runs allowed

per over).

In Figure 1, we produce a scatterplot of BA versus SR for the 40 batsmen in our dataset who

have faced at least 500 balls. As expected, players who are known as bowlers are not as proficient

at batting (lower left section of the plot). We observe that batsmen have different styles. For

example, V. Kohli of India has the best batting average but his strike rate is only slightly above

average. On the other hand, Y. Singh of India scores many runs (i.e. has a high strike rate) yet

his batting average is not exceptional. A. Hales of England and K. Pietersen of South Africa are

plotted deep in the upper right quadrant, and are the ideal combination of reliability (i.e. batting

average) and performance (i.e. strike rate). We also observe a continuum in batting abilities along

both axes with no apparent clustering. This is an important observation for the determination

of optimal team selections. Consequently, players should be selected on their own merits rather
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than filling quotas of pure batsmen, all-rounders and bowlers.
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Figure 1: Scatterplot of batting average versus batting strike rate. Pure batsmen (i.e. those who
never bowl) are indicated by black squares.

In Figure 2, we produce a scatterplot of BA versus ER for the 33 bowlers in our dataset who

have bowled at least 500 balls. Again, we observe that bowlers have different characteristics.

For example D. Vettori of New Zealand concedes very few runs (i.e. low economy rate) but he

is mediocre in taking wickets as highlighted by his middling bowling average. We also observe a

continuum in bowling abilities with no apparent clustering.

We now provide an overview of the simulator developed by Davis, Perera and Swartz (2015)

which we use for the estimation of expected run differential. Ignoring extras (sundries) that arise

via wide-balls and no-balls, there are 8 broadly defined outcomes that can occur when a batsman

faces a bowled ball. These batting outcomes are listed below:
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Figure 2: Scatterplot of bowling average versus bowling economy rate.

outcome j = 0 ≡ 0 runs scored
outcome j = 1 ≡ 1 runs scored
outcome j = 2 ≡ 2 runs scored
outcome j = 3 ≡ 3 runs scored
outcome j = 4 ≡ 4 runs scored
outcome j = 5 ≡ 5 runs scored
outcome j = 6 ≡ 6 runs scored
outcome j = 7 ≡ dismissal

(1)

In the list (1) of possible batting outcomes, we include byes, leg byes and no balls where the

resultant number of runs determines one of the outcomes j = 0, . . . , 7. We note that the outcome

j = 5 is rare but is retained to facilitate straightforward notation.

According to the enumeration of the batting outcomes in (1), Davis, Perera and Swartz (2015)

suggested a statistical model for the number of runs scored by the ith batsman:

(Xiow0, . . . , Xiow7) ∼ multinomial(miow; piow0, . . . , piow7) (2)

6



where Xiowj is the number of occurrences of outcome j by the ith batsman during the oth over

when w wickets have been taken. In (2), miow is the number of balls that batsman i has faced

in the dataset corresponding to the oth over when w wickets have been taken. The dataset is

“special” in the sense that it consists of detailed ball-by-ball data. Typically, researchers study

aggregate match data. The data were obtained using a proprietary parser which was applied to

the commentary logs of matches listed on the CricInfo website.

The estimation of the multinomial parameters piowj in (2) is a high-dimensional and complex

problem. The complexity is partly due to the sparsity of the data; there are many match situations

(i.e. combinations of overs and wickets) where batsmen do not have batting outcomes. For

example, bowlers typically bat near the end of the batting order and do not face situations when

zero wickets have been taken.

To facilitate the estimation of the multinomial parameters, Davis, Perera and Swartz (2015)

introduced the simplification

piowj =
τowj pi70j∑
j τowj pi70j

. (3)

In (3), the parameter pi70j represents the baseline characteristic for batsman i with respect to

batting outcome j. The characteristic pi70j is the probability of outcome j associated with the ith

batsman at the juncture of the match immediately following the powerplay (i.e. the 7th over) when

no wickets have been taken. The multiplicative parameter τowj scales the baseline performance

characteristic pi70j to the stage of the match corresponding to the oth over with w wickets taken.

The denominator in (3) ensures that the relevant probabilities sum to unity. There is an implicit

assumption in (3) that although batsmen are unique, their batting characteristics change by the

same multiplicative factor which is essentially an indicator of aggression. For example, when

aggressiveness increases relative to the baseline state, one would expect τow4 > 1 and τow6 > 1

since bolder batting leads to more 4’s and 6’s.

Given the estimation of the parameters in (3) (see Davis, Perera and Swartz 2015), a straight-

forward algorithm for simulating first innings runs against an average bowler is available. One

simply generates multinomial batting outcomes in (1) according to the laws of cricket. For exam-

ple, when either 10 wickets are accumulated or the number of overs reaches 20, the first innings

is terminated. Davis, Perera and Swartz (2015) also provide modifications for batsmen facing

specific bowlers (instead of average bowlers), they account for the home field advantage and they

provide adjustments for second innings simulation.

In summary, with such a simulator, we are able to replicate matches and estimate the expected
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run differential when Team A (lineup specified) plays against Team B (lineup specified).

3 OPTIMAL LINEUPS

Consider the problem of selecting 11 players from a pool of players for a Twenty20 cricket team

and then determining the batting order and the bowling order for the selected players. We refer

to this overall specification as a ”team lineup”. The objective is to select a team lineup that

produces the greatest expected difference between runs scored Rs and runs allowed Ra

E(D) = E(Rs −Ra)

= E(Rs)− E(Ra) (4)

against an average opponent.

For a particular team lineup, the calculation of E(D) in (4) depends on the batting and

bowling characteristics of the selected players. Clearly, this is not something that we can obtain

analytically. Therefore, we simulate the batting innings and the bowling innings for a particular

lineup and then take the average of the run difference D over many hypothetical matches. In

calculating D, we simulate first innings runs for both teams. This seems reasonable since in

practice, second innings batting terminates if second innings runs exceed the target. Since the

performance measure E(D) is recorded in runs, it is desirable that our estimates are accurate

to within a single run. We have found that simulating N = 25000 pairs of innings provides a

standard error of less than 0.2 for the expected run difference E(D).

We now formalize the solution space of team lineups. Although the set of possible team lineups

is discrete and finite, it is a vast combinatorial space. Let M denote the number of players who

are available in the team selection pool. Then the first step in obtaining an optimal lineup is the

specification of the 11 active players. There are (M11) potential selections. Once team selection

is determined, there are 11! ≈ 40 million potential batting orders alone. And with a potentially

different bowler for each over in a bowling innings, there is an upper bound of (11)20 bowling

orders. The number of bowling orders is an upper bound since the rules of T20 cricket prohibit a

bowler for bowling more than four overs. Therefore a simple upper bound for the cardinality of

the solution space is given by

(M11)(11!)(11)20 =
M ! (11)20

(M − 11)!
. (5)
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Our problem is therefore computationally demanding. We need to optimize team lineups

over an enormous combinatorial space where the objective function E(D) itself requires many

simulations of innings. For example, if M = 15, the upper bound (5) yields 3.67 × 1031. In the

Appendix, we provide a more nuanced description of the solution space taking into account some

detailed aspects of the game.

To carry out the optimization, we employed a simulated annealing algorithm (Kirkpatrick,

Gelatt and Vecchi 1983). Simulated annealing is a probabilistic search algorithm that explores

the combinatorial space, spending more time in regions corresponding to promising team lineups.

Successful implementations of simulated annealing typically require careful tuning with respect

to the application of interest.

For our problem, simulated annealing proceeds as follows: Denote the current team lineup

at the beginning of step i of the algorithm as lineup ci−1 where i = 1, 2, . . . The algorithm

has a prescribed starting lineup c0 where a typical T20 lineup is straightforward to specify and is

recommended. During each step of the algorithm, a candidate lineup c∗ is generated (as described

in the fine tuning of the algorithm - Section 3.1). Then Ni matches are generated with the lineup

c∗ which provides the estimated run differential Ê(Dc∗). The candidate lineup is accepted as the

current lineup, i.e. we set ci = c∗ if

Ê(Dc∗) > Ê(Dci−1
) . (6)

The candidate lineup is also accepted, i.e. we set ci = c∗ if both

Ê(Dc∗) ≤ Ê(Dci−1
) (7)

and if a randomly generated u ∼ Uniform(0, 1) satisfies

u < exp

{
Ê(Dc∗)− Ê(Dci−1

)

ti

}
(8)

where ti is a specified parameter referred to as the “temperature”. If the proposed lineup c∗ is

not accepted, then the current lineup is carried forward, i.e. we set ci = ci−1. The temperature is

subject to a non-increasing “cooling schedule” ti → 0. We therefore observe that the simulated

annealing algorithm goes “up the hill” (6) to states corresponding to preferred lineups but also

occasionally goes “down the hill” (7) allowing the algorithm to escape regions of local maxima in

the search for a global maximum. Intuitively, condition (8) says that as the temperature cools (i.e.

gets closer to zero) and the system is more stable, then it becomes more difficult (probabilistically)
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to escape a state (i.e. a lineup) for a state with a lower expected run differential. Under suitable

conditions, the simulated annealing algorithm converges to an optimal lineup. Practically, the

algorithm terminates after a fixed number of iterations or when there are infrequent state changes.

The asymptotic results suggest that the final state will be nearly optimal.

The fine tuning of the algorithm corresponds to the cooling schedule and the mechanism for

generation of candidate lineups. A necessary condition of the asymptotic theory is that all team

lineups are “connected”. In other words, it must be possible for every team lineup to be reached

from any other team lineup in a finite number of steps. A guiding principle in the development of

our simulated annealing algorithm is that we enable large transitions (moving to “distant” team

lineups) during the early phases of the algorithm and we restrict transitions to neighbouring (i.e.

close) lineups during the latter phases of the algorithm.

With the combinatorial space described above, we note that our problem has similarities to the

longstanding travelling salesman’s problem (TSP) where the potential routes of a salesman consist

of permutations of the order of visited cities. In the TSP, given n cities, there are n! orderings in

which the cities may be visited. As this is likewise a large discrete space for even moderate n, there

are some useful heuristics in proposing candidate routes. For example, total distance travelled is

unlikely to vary greatly if the order of the visited cities is only slightly changed. This introduces

a concept of closeness where total distance travelled is close if there are only small changes to

the route. This corresponds to small changes in the permutations such as interchanging the

order of two adjacent cities. Also, in simulated annealing we want to explore the solution space

widely in the initial phase of the search so that with high probablity, we are eventually in the

neighbourhood of the global optimum. In the TSP, exploring wide neighbourhoods corresponds

to more extreme changes in the permutations of cities visited. Although our problem is more

complex than the TSP, we borrow ideas from Aarts and Korst (1989) and Swartz et al. (2006)

where simulated annealing has been successfully utilized to address optimization problems for

related discrete spaces.

We note that there is considerable flexibility in the proposed procedure. For example, suppose

that the captain wants to try out a new player in the 4th position in the batting order. In this

case, the proposal distribution of the simulated annealing algorithm can be hard-coded such that

the new player is forced into the 4th position, and the remaining lineup is optimized according to

this constraint. The introduction of such constraints provides a systematic approach for experi-

mentation with lineups, and is particularly useful with new players who do not have much of a

batting/bowling history.
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3.1 Fine Tuning of the Algorithm

Recall that the determination of a team lineup has three components:

(a) the selection of 11 players from a roster of available players

(b) the specification of the batting order for the selected 11 players

(c) the specification of the bowling order for the selected 11 players

Our mechanism for the generation of candidate lineups takes these three components into account.

In each step of simulated annealing, we generate a random variate u ∼ Uniform(0, 1). If 0 ≤ u <

1/3, we address issue (a). If 1/3 ≤ u < 2/3, we address issue (b). If 2/3 ≤ u < 1, we address

issue (c). Specifically, we generate candidate lineups as follows:

(a) Team Selection - Denote the roster of M potential players as {i1, . . . , iM} where i1, . . . , i11

are the players in the current lineup. We randomly choose a player from i1, . . . , i11 and swap

this player with a randomly chosen player from i12, . . . , iM . The swapped-in player replaces the

swapped-out player in both the batting order and the bowling order. If the swapped-out player

is a bowler who is active in the bowling order and the swapped-in player is a pure batsman, then

the excess bowling overs are randomly distributed to the current bowlers in the lineup. We do

not allow swaps that result in lineups with fewer than five players who can bowl nor do we allow

swaps that result in lineups without a wicketkeeper. The resultant lineup is the candidate lineup.

(b) Batting Orders - Denote the batting order corresponding to the current lineup by i1, . . . , i11

where ij corresponds to the batsman in the jth batting position. We randomly choose a batsman

ij from i1, . . . , i10 and then interchange ij with ij+1. The resultant lineup is the candidate lineup.

(c) Bowling Orders - Suppose that we have MB potential bowlers in the current lineup. The

generation of a candidate bowling order begins with an ordered list of 4MB bowler symbols where

each bowler appears in the list four times. The setup therefore enforces one of the T20 rules that

no bowler may bowl more than four overs in a match. The first 20 entries in the list define the

current bowling order where ij corresponds to the bowler who bowls during over j. We randomly

choose a bowler from i1, . . . , i20 and then swap him with a randomly chosen player from one of

i1, . . . , i4MB
According to T20 rules, bowlers are not permitted to bowl in consecutive overs, and

we do not allow such a swap. The resultant lineup is the candidate lineup.

In the early stages of the algorithm (i = 1, . . . , 500), we permit double swaps instead of single

swaps in steps (a), (b) and (c) to facilitate larger transitions to escape local neighbourhoods. To
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complete the description of the algorithm, we use an exponential cooling schedule defined by a

sequence of temperature plateaux

ti = 0.5(0.9)bi/100c . (9)

We introduce a provision to the cooling schedule (9) whereby we move to the next temperature

plateau if there are more than 20 state changes at any temperature. The rationale is that we do

not want to “waste” time at temperatures where we are regularly accepting the candidate lineup

(i.e. moving both up and down the hill). At such temperatures, we would not be moving in the

direction of an optimal lineup.

As the algorithm proceeds, we also want to make sure that the objective function E(D) is

estimated accurately. We therefore increase the number of innings simulations Ni as the algorithm

proceeds. Specifically, we set

Ni = min(25000, 1000 + 16i) .

For example, N1 = 1016, and when our algorithm has typically converged, N1500 = 25000.

4 APPLICATIONS

We have run the simulated annealing algorithm for various teams and have obtained sensible yet

provocative results in each case. In our testing, we have found that 1500 iterations are sufficient

for convergence and this requires approximately 24 hours of computation on a laptop computer.

A large fraction of the computational cost comes from the simulation of innings. Since the

number of simulations increases as the algorithm proceeds, so does the cost of each successive

iteration. We eliminate unnecessary simulations wherever possible. The expected run differential

and the lineup are stored for each proposal that is accepted, so only the newly proposed lineup

needs to be simulated during any given iteration. Furthermore, if the batting order is unchanged

between the current lineup and the proposed lineup in an iteration, then only the bowling innings

is simulated and the current lineup’s batting average is reused. Likewise, if the bowling assignment

is unchanged in a proposal, then only the batting innings needs to be simulated.

Since the algorithm simulates a large number of independent innings during each iteration,

the simulation step is embarrassingly parallelizable, meaning it requires 1/n as much time to

complete using n identical CPU cores as it would on one such core. We use the Snow package

(Tierney et al. 2013) and the Snowfall package (Knaus 2013) in R to parallelize simulation on
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four cores using an Intel i7 processor. Other steps in the algorithm such as creating candidate

lineups and checking them for validity are not parallelizable, and there is a computational cost

associated with work assignment and aggregation of output between cores.

In Figure 3, we illustrate a path taken by the simulated annealing algorithm in the search

for the optimal Indian lineup described in more detail in Section 4.1. We observe that the

starting lineup is far from optimal (i.e. E(D1) ≈ 0) but very quickly iterates to good lineups (i.e.

E(Di) > 10) for larger values of i. Recall that our computational strategy was to not spend much

time exploring unsuitable lineups. Hence we see that confidence intervals corresponding to the

estimates of E(Di) are wider in the early stages of the algorithm where Ni is small. We note that

we have confidence in the algorithm since different starting values (i.e. lineups) all lead to the same

neighbourhood of solutions. We say “neighbourhood of solutions” since we have found that small

lineup changes (e.g. exchanging the batting order of the 9th and 10th batsmen) lead to changes

in E(D) that are not meaningul (i.e. less than 0.5 runs). As the temperature decreases, candidate

lineups continue to be proposed but fewer are accepted. Also, as the temperature decreases,

the magnitude of the dips in Figure 3 decrease as it becomes less probable that condition (8) is

satisfied.

4.1 Optimal T20 Lineup for India

To investigate our methodology, we considered 17 currently active players for India who have

a playing history in T20 ICC matches. The optimal lineup (i.e. team selection, batting order

and bowling selection) based on the proposed simulated annealing algorithm is given in the first

column of Table 1. For comparison, columns 2, 3 and 4 provide actual lineups used by India in the

T20 World Cups of 2010, 2012 and 2014, respectively. In general, we see many similarities between

the optimal lineup and the lineups used in practice. Also, there seems to be as much variation

between the optimal lineup and the actual lineups as between the actual lineups themselves.

However, there are a number of interesting discrepancies between the optimal lineup and the

actual lineups used by India. For example, we observe that India may not be positioning M.S.

Dhoni properly in the batting order. Whereas India places him in the middle batting positions

(No 4, 5 and 7), they may be better served to have him bat later, such as in the 9th position

as specified in the optimal lineup. This is suggestive that Dhoni (who is both captain and

wicketkeeper) may be overrated as a batsman. It is also interesting to observe that the optimal

lineup has only one fast bowler, namely B. Kumar. In each of the actual lineups there are two

fast bowlers. In cricket, there is a tradition of mixing the bowling sequence between fast and

spin bowlers. However, from an analytics point of view, if your team does not have many good
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Figure 3: A plot of the estimated run differential versus the iteration number in simulated an-
nealing corresponding to India. Confidence intervals for the estimates are provided.

fast bowlers (for example), then maybe the composition should be reexamined to include more

spin bowlers. Sometimes it is useful to question tradition and folklore in the presence of hard

numbers.

We found it interesting to compare the general team composition in ODI cricket with the

optimal T20 lineup in Table 1. In ODI cricket, it is common to have four pure batsmen, three

all-rounders and four bowlers. We emphasize that the definition of an all-rounder is ambiguous;

it suggests that a player is both good at batting and bowling. But technically, any player who

bowls is forced to bat occasionally, and therefore, whether or not he is considered an all-rounder

is subject to debate. In contrast, our optimal T20 lineup for India shows two pure batsmen, four

all-rounders and five bowlers. The actual T20 lineups for India also have fewer pure batsmen

than in one-day cricket. Later, in Section 4.2, we see that the optimal South African T20 lineup

has three pure batsmen, four all-rounders and four bowlers. Therefore, it appears that to perform

optimally in T20, a team requires more potential bowlers (i.e. fewer pure batsmen) than in one-

day cricket. The more aggressive batting style in the T20 format requires a larger pool of bowlers
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Optimal May 11/10 Oct 02/12 Apr 06/14
Lineup Lineup Lineup Lineup

01. V Kohli (1) KD Karthik G Gambhir RG Sharma
02. G Gambhir G Gambhir V Sehwag AM Rahane
03. S Raina (3) S Raina V Kohli V Kohli
04. Y Singh (4) MS Dhoni* RG Sharma (1) Y Singh
05. V Sehwag Y Singh (1) Y Singh (4) MS Dhoni*
06. RG Sharma YK Pathan (3) S Raina S Raina (4)
07. YK Pathan RG Sharma MS Dhoni* R Ashwin (4)
08. H Singh (4) PP Chawla (4) IK Pathan (3) RA Jadeja (1)
09. MS Dhoni* H Singh (4) R Ashwin (4) A Mishra (4)
10. A Mishra (4) V Kumar (4) L Balaji (4) B Kumar (3)
11. B Kumar (4) A Nehra (4) Z Khan (4) MM Sharma (2)
NS Z Khan
NS R Ashwin
NS R Jadeja
NS V Kumar
NS S Dhawan
NS AM Rahane

E(D) 32.4 2.9 7.4 1.1

Table 1: Optimal lineup for India and three typical lineups that were used on the specified dates.
The vertical numbering corresponds to the batting order where the players labelled NS were not
selected. In parentheses, we provide the number of overs of bowling and the asterisk denotes the
wicketkeeper.

to curtail the aggressive batting.

It is worth commenting that E(D) for the optimal T20 lineup is remarkably larger than for the

actual lineups in Table 1. While this is a promising reason to consider the proposed methodology,

there may be various nuances involved in this observation. First, there are important changes that

collectively explain the 30-run gap between the optimal lineup and the ones that were actually

used. For example, M.M. Sharma was unknown before the 2014 World Cup match, and his

limited international T20 information implies that he is worse than an average bowler. Hence, his

inclusion in the April 6/14 lineup reduced E(D). India included Sharma in their roster despite

his limited international experience. It was Sharma’s stellar performance in other leagues (e.g.

IPL) and one-day cricket which earned him the right to bowl in a Twenty20 World Cup final.

Other notable inclusions in the optimal lineup who did not play in 2014 are Gambhir, Sehwag,

Pathan and Singh. Also, we recall that the timeframe of our dataset used for estimating player

characteristics was 2005-2014. It is therefore likely that some of the players who were selected

in the actual lineups were experiencing a good run of form, perhaps better than their historical
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characteristics which were used in obtaining E(D). Related to this comment, G. Ghambir and V.

Sehwag were included in our optimal squad but not in 2014. By 2014, they were likely perceived

as aging players with sub-optimal performance.

4.2 Optimal T20 Lineup for South Africa

Similarly, we carried out the optimization procedure for South Africa. This time, 15 current

players were considered for team selection. The optimal lineup and the actual lineups (used in

the three most recent World Cups) are given in Table 2. The optimal lineup ranges from 16.8

runs to 21.9 runs superior to the actual lineups.

Optimal May 10/10 Oct 02/12 Apr 04/14
Lineup Lineup Lineup Lineup

01. H Amla HH Gibbs H Amla Q de Kock*
02. AB de Villiers* GC Smith JH Kallis (3) H Amla
03. JP Duminy JH Kallis (4) AB de Villiers* F du Plessis
04. F du Plessis (4) AB de Villiers F du Plessis (1) JP Duminy (3)
05. F Behardien JP Duminy JP Duminy (1) AB de Villiers
06. D Miller MV Boucher* F Behardien D Miller
07. JA Morkel JA Morkel (4) RJ Peterson (4) JA Morkel (2)
08. M Morkel (4) J Botha (2) JA Morkel D Steyn (3)
09. LL Tsotsobe (4) RE van der Merwe (2) J Botha (3) BE Hendricks (4)
10. I Tahir (4) D Steyn (4) D Steyn (4) I Tahir (4)
11. D Steyn (4) CK Langeveldt (4) M Morkel (4) WD Parnell (3)
NS Q de Kock
NS BE Hendricks
NS WD Parnell
NS AM Phangiso

E(D) 36.6 14.7 19.8 14.7

Table 2: Optimal lineup for South Africa and three typical lineups that were used on the specified
dates. The vertical numbering corresponds to the batting order where the players labelled NS
were not selected. In parentheses, we provide the number of overs of bowling and the asterisk
denotes the wicketkeeper.

A significant difference between Table 2 and Table 1 is that the South African optimal lineup

has three fast bowlers (Morkel, Tsotsobe and Steyn) compared to India’s one fast bowler. This

implies that the South African fast bowlers are more effective than their Indian counterparts. And,

this is again suggestive that teams should consider the best players available for team selection,

and not be tied to a tradition of having an even mix of fast and spin bowlers.
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Perhaps the largest discrepancy between the optimal lineup and the 2014 actual lineup is that

Q. de Kock was not selected to the optimal lineup whereas he is the opening batsman in 2014.

We note that de Kock did not play all that well in the World Cup scoring only 64 runs in five

innings. Also, the optimal lineup appears to place more value on A.B. de Villiers as he is selected

as an opener compared to No 5 in the 2014 lineup.

4.3 All-Star Lineup

To our knowledge, the determination of an “all-star” team which attracts interest in many team

sports (e.g. the National Basketball Association, the National Hockey League, etc.) is not some-

thing that is common to cricket. We have therefore carried out this novel exercise by including a

larger pool of 25 widely recognized and current T20 players for team selection. This provided a

further test of the algorithm to see that the size of the player candidate pool did not impose an

impediment to obtaining an optimal lineup.

The optimal all-star lineup is shown in Table 3. Although there is no way of assessing whether

the optimal lineup is “correct”, our cricketing intuition is that the resultant all-star team is very

strong. It is interesting to note that four of the selected players are from the West Indies, of whom

three are all-rounders and are well-known power hitters. The West Indies have been a strong T20

team in recent years, winning the 2012 World Cup and reaching the semi-finals in the 2014 World

Cup.

The optimal all-star team has two pure batsmen, 7 all-rounders and two bowlers giving a

powerful bowling lineup of 9 potential bowlers. The fact that M.S. Dhoni was not selected to the

all-star team reinforces the observation that he was placed down at No 9 in the optimal Indian

batting order. We note that although V. Kohli is thought by some to be the best current Indian

cricketer, he was not selected to the all-star team, yet his teammate, S. Raina was selected. It was

also interesting to observe that B.B. McCullum was selected as the wicketkeeper instead of A.B.

de Villiers who is known as a great power hitter. The all-star team had an impressive expected

run differential of E(D) = 61.6.

5 DISCUSSION

This paper provides a powerful methodology for the joint problem of determining team selection,

the optimal batting order and the optimal bowling order in Twenty20 cricket. No such work has

been previously carried out on this signficant problem. Moreover, the approach is based strictly

on analytics, avoiding opinion, folklore and tradition.
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Optimal Pure Batsmen Bowlers & All-Rounders &
Lineup not Selected Wicketkeepers not Selected

01. AJ Finch, Aus G Bailey, Aus S Afridi, Pak
02. BB McCullum, NZ* MJ Guptill, NZ S Ajmal, Pak
03. NLTC Perera, SL (2) AD Hales, Eng K Akmal, Pak*
04. G Maxwell, Aus (2) R Levi, SA C Anderson, NZ
05. C Gayle, WI D Miller, SA DJ Bravo, WI
06. K Pollard, WI A Shehzad, Pak SCJ Broad, Eng
07. D Sammy, WI (4) R Taylor, NZ AB de Villiers, SA*
08. S Raina, Ind MS Dhoni, Ind*
09. F du Plessis, SA (4) JP Duminy, SA
10. S Badree, WI (4) U Gul, Pak
11. D Steyn, SA (4) M Johnson, Aus

V Kohli, Ind
L Malinga, SL
S Narine, WI
D Ramdin, WI*
KC Sangakkara, SL*
S Watson, Aus

Table 3: All-Star lineup including players not selected. In parentheses, we provide the number of
overs of bowling and asterisks denote wicketkeepers.

One of the features of the proposed approach is that teams are free to modify player charac-

teristics. Perhaps a player is in particularly good form and it is believed that his probability of

dismissal is reduced. It is a simple matter of lowering his value of pi707 in (3) and observe what

optimal lineup is obtained. Alternatively, one can hard-code a subset of players into the lineup

and build the remainder of the roster around them.

One of the surprises (to us) is that optimal T20 lineups appear to favour fewer pure batsmen

than in one-day cricket. This may be explained by the aggressiveness of T20 batting and the

need to keep the batsmen at bay.

It is our hope that papers like this will help promote the adoption of analytics in cricket. Big

money is now being spent in leagues such as the IPL, and it is only sensible to make use of the

knowledge contained in data.
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7 APPENDIX

The major goal of this paper is the determination of optimal lineups for Twenty20 cricket sides. In

(5), we provide a simple upper bound for the cardinality of the solution space for the optimization

problem. For various reasons, there are some lineups which we exclude as possibilities from the

solution space. We discuss this here and provide an improved upper bound for the cardinality of

the solution space.

We expand on our earlier notation and let M = M1 +M2 +M3 denote the number of players

that are available in the team selection pool where M1 is the number of wicketkeepers, M2 is the

number of non-wicketkeepers who are pure batsmen and M3 is the number of non-wicketkeepers

who are able to bowl. From these players, an optimal lineup of 11 players is chosen where

m1 +m2 +m3 = 11 using the obvious notation for m1, m2 and m3.

Although there is no formal rule in cricket that prevents two wicketkeepers from playing at the

same time, we assume that m1 = 1. This assumption is in accordance with the way that cricket is
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played in practice. And since only one wicketkeeper is selected, it follows that this wicketkeeper

does not bowl (for if he did, there would be no available wicketkeeper). Also, we recall that no

player may bowl more than four overs (i.e. this implies that there must be at least five players

who are able to bowl). Therefore, the selection of the 11 active players can be chosen in

∑
A

(M1
1 )(M2

m2
)(M3

m3
)

ways where A = { (m2,m3) : 1 +m2 +m3 = 11, m2 ≤M2, 5 ≤ m3 ≤M3 } .

For batting, there are 11! possible batting orders given the team selection. For bowling, given

that m3 bowlers have been selected, let ij denote the number of overs bowled by bowler j. Then

i1, . . . , im3 are restricted according to the set B = { ij ≤ 4 : i1+· · ·+im3 = 20 }. Given i1, . . . , im3 ,

there are 20!
i1!···im3 !

indistinguishable orderings of the bowlers. However this term is an upper bound

for the number of bowling orders given i1, . . . , im3 because it does not take into account the

restriction that no bowler is allowed to bowl in consecutive overs. Unfortunately, we were unable

to derive a combinatorial expression for the number of distinct orderings of i1 + · · · + im3 = 20

symbols where ij symbols are of type j and no two symbols may be ordered consecutively.

Putting all three lineup components together, an improved upper bound for the cardinality of

the solution space is given by

∑
A

[
(M1

1 )(M2
m2

)(M3
m3

) (11!)
∑
B

20!

i1! · · · im3 !

]
.
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