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Abstract

This paper considers an extension of the Kelly criterion used in sports wagering. By recog-
nizing that the probability p of placing a correct wager is unknown, modified Kelly criteria
are obtained that take the uncertainty into account. Estimators are proposed that are devel-
oped from a decision theoretic framework. We observe that the resultant betting fractions
can differ markedly based on the choice of loss function. In the cases that we study, the

modified Kelly fractions are smaller than original Kelly.
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1 INTRODUCTION

In its application to sports gambling, the Kelly criterion (Kelly 1956) provides a gambler with the
optimal fraction of a bankroll that should be wagered on a given bet. In determining the Kelly
criterion, a gambler needs to specify the probability p of placing a correct (i.e. winning) wager
using a specified gambling system.

The Kelly criterion has received widespread attention, and some of the attention has been
negative (Samuelson 1979). Experienced gamblers claim that the Kelly fraction is too high and
often leads to financial loss (Murphy 2015). As a consequence, advice has been provided to instead
use fractional Kelly approaches, such as “half-Kelly”. With half-Kelly, a sports gambler wagers
only half of the fraction of the bankroll that the Kelly criterion specifies.

The perplexing aspect of these negative experiences is that the Kelly criterion is based on
mathematical proof. The Kelly criterion is optimal from several points of view; for example, it
maximizes the exponential rate of growth and it provides the minimal expected time to reach an
assigned balance (Breiman 1961). Therefore, how can it be that gamblers often experience losses
when using the Kelly approach? The simple but often overlooked explanation is that the input
p used in determining the Kelly fraction is an unknown quantity. Often, gamblers are overly
optimistic concerning their gambling systems and the true p is less than the specified p.

In this paper, we take a statistical approach to the problem where we account for the un-
certainty in p. The resulting fractions of the bankroll which we derive tend to be less than the
Kelly criterion. Therefore, we provide a systematic approach for obtaining “modified Kelly cri-
teria” rather than ad-hoc fractions such as half-Kelly or quarter-Kelly that have no theoretical
underpinnings.

There are many papers that propose systems and insights with respect to gambling. For ex-
ample, in greyhound racing, Schumaker (2013) used data mining techniques to identify profitable
wagers. In basketball, Lopez and Matthews (2015) used logistic regression techniques to predict
outcomes in the NCAA men’s basketball tournament. In soccer, Feng, Polson and Xu (2016)
used the Skellam process to represent real-time betting odds for English Premier League soccer.

However, there is only a scattered and limited scientific literature on the mathematical proper-



ties of sports gambling. Thorp (1969) provided probabilistic results concerning optimal systems
for favourable games. Insley, Mok and Swartz (2004) extended the Kelly criterion to situations
where simultaneous wagers are placed. Under simultaneous wagering, the simple Kelly criterion
is no longer applicable and computation is required to obtain optimal fractions. With respect to
mathematical and probabilistic treatments related to finance and investing, MacLean, Thorp and
Ziemba (2011) provide a comprehensive edited volume with contributions that focus on various
financial problems involving the Kelly criterion. For example, a number of papers in MacLean,
Thorp and Ziemba (2011) use Kelly principles to assist in asset allocation.

In Section 2, we review the necessary terminology and foundations of sports gambling. We
also review the derivation of the Kelly criterion. In Section 3, we develop modified Kelly criteria
by gradually increasing our assumptions. This is accomplished in a decision theoretic framework
with a loss function that is natural in the Kelly context. The first approach (requiring the fewest
assumptions) is based on minimax estimation. We observe that the minimax approach is too
conservative and does not provide useful betting fractions. The second approach is based on
Bayes estimation which requires the introduction of a prior distribution on p. The approach is
flexible since it accommodates different prior beliefs. Using a Beta prior distribution, an analytical
expression for the optimal betting fraction is obtained. In Section 4, we introduce alternative loss
functions and investigate the corresponding Bayes estimators. In some cases, numerical methods
are required for the resultant optimization problem. In Section 5, we investigate a number of
examples where various estimators of the betting fraction f are compared. In the context of the
Bayes estimators, we discuss the selection of prior distributions for p with particular emphasis
given to a default prior which we hope is appealing to a wide audience. In the examples which
we consider, the resulting fractions tend to be less than the Kelly criterion. A short discussion is
provided in Section 6.

Before proceeding, there are two papers that deserve special mention. These papers also focus
on the unknown aspect of p when considering the use of the Kelly criterion. In Baker and McHale
(2013), a decision theory framework is developed where fractional Kelly systems are investigated.
Although the language in Baker and McHale (2013) differs from ours (e.g. utility versus loss),

our concern with the minimization of the loss function (see (6) ahead) is equivalent to their



optimization problem. However, loss functions are complex in the sense that they depend on
parameters, data and decisions. Consequently, treatment of the underlying estimation problem
can differ, and at this stage, Baker and McHale (2013) take a distinctly alternative approach. They
impose an assumed betting fraction ks*(q) where s*(p) is the Kelly fraction, ¢ is an estimator of p
and 0 < k < 1 is a shrinkage factor. We make no such assumptions on the betting fraction. Baker
and McHale (2013) then focus on their “utility” function (based on the imposed assumptions)
and how the function is impacted by k, particular estimators ¢ and their corresponding sampling
distributions. Utility is analyzed for specified values of p. They also study alternative utility
functions. A main takeaway from their paper is that shrunken Kelly (i.e. betting fractions that are
reduced proportions of the Kelly fraction) seem preferable. In our development, the consideration
of Bayes estimators leads to optimal betting fractions without imposing a specified form on the
betting fraction.

Baker and McHale (2016) is more of a theoretical paper that builds on their previous work and
argues that “frequentist risk minimization can be a useful technique”. Baker and McHale (2016)
provide conditions when bet fraction shrinkage used in their earlier paper may be preferred to
minimizing expected posterior loss. We note that a major difference between the two papers and
ours is that we make use of prior distributions whereas their approach is frequentist. Moreover,

we provide explicit expressions and R code to evaluate optimal betting fractions.

2 REVIEW OF SPORTS GAMBLING

There are many types of wagers that can be placed on sporting events. The most common type
of wager is known as a point spread wager. For example, consider game three of the 2017 Western
Conference finals between the Golden State Warriors and the San Antonio Spurs of the National

Basketball Association (NBA). One particular line took the form

Warriors —6.5 —110 (1)
Spurs +6.5 —110 .



The line (1) is based on American odds and states that a wager of $110 placed on the Warriors
returns the original $110 plus an additional $100 if the Warriors win by more than 6.5 points.
Alternatively, a wager of $110 placed on the Spurs returns the original $110 plus an additional
$100 if the Spurs win or if they lose by less than 6.5 points. One sees immediately from the point
spread that the Warriors are the favorite (chalk) whereas the Spurs are the dog. If the point
spread is an integer, then the betting outcome can be a push where the gambler neither wins nor
loses, and the wager is returned.

Referring to the line (1), it is also apparent that if a bookie collects a bet of $110 (Warriors)
and a second bet of $110 (Spurs), then the bookie ensures a profit (vigorish) of $10 no matter
which team wins. Therefore, an objective of the bookie is to set a competitive point spread that
encourages a balance of the bets on both sides of the point spread. To move sentiment, bookies
can modify the point spread and they can also offer different odds on the two teams (e.g. -115 and
-105). When positive American odds are posted such as +110, this means that a $100 winning
wager returns the original $100 plus an additional $110.

FEuropean (decimal) odds provide an alternative representation of American odds. For example,
European odds of # = 1.909 imply that a winning bet of $110 returns $110(1.909) = $210.
Therefore, European odds of # = 1.909 corresponds to American odds of -110 where the return
on a winning $110 wager is $110 + $100 = $210.

Consider now a gambler who places wagers with European odds 6. Suppose further that the
gambler is correct (i.e. makes winning wagers) with probability p. Then the gambling system is
profitable if the expected return is positive. Using our notation and wagers of $x, the gambling

system is profitable if

(=2)(1 =p) + (x0 —2)p > 0

which implies

p>1/0. (2)



Therefore, under the common scenario of § = 1.909, a gambling system needs only be correct
p > 1/0 — 52.4% of the time in order to be profitable.

Whereas the profitability condition (2) may seem remarkably low and plausible, gambling
has been around for a very long time. Clearly, bookies cannot systematically be exploited by
profitable gamblers and continue to exist. Therefore, the development of a gambling system that
ensures (2) is difficult to attain. The focus of the remainder of the paper concerns an investigation
of the optimal fraction of a gambler’s bankroll that should be wagered. But we stress that this is
only applicable under a gambling system that satisfies the profitability condition (2). When (2)
does not hold, gambling is a losing proposition.

At this stage, it is useful to review both the statement and the proof leading to the Kelly

criterion.

Proposition (Kelly 1956): Consider a gambling system that picks winners with probability p
and places wagers at European odds 6. Then the optimal fraction of the bankroll for wagering

(explained later) is known as the Kelly criterion and is given by

po—1
=4 = P 3)
0 p<1/0

Proof: Begin with an initial bankroll By where we bet a fraction f of the bankroll. Let w = 1(0)
according to whether we win(lose) the wager. Then the subsequent bankroll is the random

quantity

Bi(f) =1~ f+0)"(1—f)""B.

The Kelly approach attempts to maximize the expected log growth

E[log(Bi(f)/Bo)] = E[log(1—f+6f)"(1—f)""]
= Elwlog(1—f+6f)+ (1 —w)log(1— f)]

= plog(1—f+0f)+ (1 —p)log(l— f) (4)



Differentiating (4) with respect to f and setting equal to zero leads to the Kelly criterion f = k(p)
in (3). O

3 DEVELOPMENT OF MODIFIED KELLY CRITERIA

We take the view that the determination of the optimal wagering fraction f is a statistical problem
where the probability p of placing a winning wager is an unknown parameter. From the framework
described in Section 2, we know that the Kelly criterion k(p) is the optimal value of f. Hence,
the problem is one of estimating the unknown k(p) by an estimator f = f(x).

The data x arises in the context of historical data. In practice, sports gamblers propose
potential wagering systems and use historical data to estimate p which leads to k(p). For example,
a sports gambler may consider placing bets on road teams in the NBA when the home team is
playing its first game back from a road trip. This constitutes a wagering system (i.e. a set of rules
for wagering) where p is the proportion of winning hypothetical wagers from past seasons that
satisfy the conditions of the system.

What is often overlooked in this standard approach is that the true parameter p is unknown.

We therefore introduce a statistical model based on a proposed wagering system:
X = number of winning historical matches ~ Binomial(n, p) . (5)

To assess the quality of an estimator, it is necessary to introduce a loss function. We denote
I(f,p) as the loss incurred by estimating the true Kelly criterion k(p) with the fraction f = f(z).
As shown in Breiman (1961), the Kelly desiderata of maximizing expected log growth has various
appealing properties. Therefore, it seems reasonable to consider a loss function which is the ratio
of the optimal Kelly expected log growth to the expected log growth under an alternative fraction

f. This natural loss function is given by

bif.p) = E [bg (M)}

Bi(f)/Bo
= plog (1 _1k_<p} i gl;(p)) + (1 —p)log (—1 1__]{;5?)) : (6)
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Our problem therefore reduces to minimizing the loss lo(f,p) given in (6). However, more
structure is required in the minimization problem since f is a function of x and the parameter
p is unknown. We therefore consider standard decision theoretic approaches with respect to the

minimization (see chapter 12 of Wasserman (2004)).

3.1 Minimax Estimators

Given the above framework, decision theoretic approaches typically begin with the introduction

of the risk function of an estimator f given by

Re(p) = > l(f.p) p(z|p) (7)

where p(x | p) is the binomial probability mass function that follows from (5). What is apparent
is that R(p) is an average over the sample space, and that the preference of an estimator f; over
f2 involves the comparison of risk functions. To simplify comparisons, minimax estimators are

those which minimize the maximum risk

S(f) = Sup Rs(p) ;

the simplification arises because the comparison of S(f;) with S(f2) now involves the comparison
of scalar quantities. Unfortunately, the minimax approach is not fruitful because it is overly
conservative. When we look at the worst thing that can happen for a given f (i.e. S(f)), this
quantity is minimized by f(z) = 0 for all . To see this, note that lo(f,p) in (6) is non-negative
for all f and p. Therefore, to make R;(p) in (7) as small as possible (i.e. Rf(p) = 0), this can be
achieved by not betting (i.e. f = 0) such that no money is ever lost. In other words, we should
never wager even when the system is profitable according to (2).

To see this mathematically, imagine that we do in fact have a profitable system where p > 1/6.

Under this restriction,

S(f) = Sup Ry (p)



= Ry(p=1/0)
- () oo o

=0

Therefore, the minimization of (8) with respect to f requires the minimization of the term within

the square parentheses for each value of z. Some straightforward calculus then yields f = 0.

3.2 Bayes Estimators

To facilitate estimation, we introduce an additional ingredient to the framework; a prior density
function 7(p) which describes our uncertainty in the parameter p.

With the addition of the prior distribution, it is customary to consider the Bayes risk

wzﬁm@ﬂm@ ©)

and Bayes estimators f which minimize the Bayes risk (9). This formulation is helpful since we
are now comparing scalar quantities. For example, the estimator fi(z) is preferred to fo(z) if
The) < Th) We use the well-known result that a Bayes estimator minimizes expected posterior

loss. In other words, we attempt to find an estimator f which minimizes

szﬁmmmmmwm. (10)

The prior distribution that immediately comes to mind in this application is p ~ Beta(a, b).
The Beta is defined on the intended range p € (0,1). Note also that for a > 1 and b > 1, the
prior density is concave. Concavity is appealing to the sports gambler who has an apriori belief
concerning the most likely value py with decreasing probability as we move away from py. It may
also be possible for a user to specify his or her subjective beliefs (a, b) through mean and variance
considerations. In the case of p ~ Beta(a, b), E(p) = a/(a+0b) and Var(p) = ab/((a+b)?(a+b+1)).
Furthermore, the Beta(a,b) prior together with the historical observed data x in (5) gives the



convenient posterior distribution

p |z ~ Beta(x +a,n—x +b) (11)

with probability density function

I'(n+a+b)
I'(z+a)l'(n—x+0b)

m(p|x) = prreT (1 —p)nEtt (12)

Therefore, based on (3), (6), (10) and (12), a Bayes estimator is the fraction of the bankroll

f = f(x) that minimizes

6t = [ frioe (FEAEE) 0= os () | 5o

+ /01/9 {plog (ﬁ) +(1—p)log (ﬁ)} w(p| ) dp. (13)

Noting that f does not appear in the numerators of the logarithms in (13), minimizing (13)

is therefore equivalent to maximizing

Q) = /0[plog<1—f+ef>+<1—p>1og<1—f>17r<pr:c> dp

= plog(1—f+06f)+ (1—p)log(l—f) (14)

where p = (z + a)/(n 4+ a + b) is the posterior mean of p corresponding to (11). Finally, the
maximization of Q(f) with respect to f in (14) is equivalent to the original Kelly formulation
(i.e. the maximization of expected log growth (4)). Therefore, based on the loss function Iy( f, p)
in (6) and the Beta(a,b) prior for p, we obtain the following attractive formula for the Bayes

estimator of f,

po—1

fO — 6—1 >
0 p<

e (15)
1

/6

3>

We note the similarity between the Kelly fraction (3) and the Bayes estimator (15).
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4 ALTERNATIVE LOSS FUNCTIONS

Whereas we believe that the proposed loss function lo(f,p) in (6) is reasonable for the given
application, there are many loss functions in the literature and various criteria underlying the
choice of a loss function (Jafari Jozani and Tabrizi 2013). We now investigate Bayes estimators
based on three alternative loss functions where we retain the same Beta(a, b) prior for the unknown
parameter p. Whereas the proposed loss functions are individually appealing, we will observe that
the choice of loss function can have a considerable impact on the resultant betting fraction.

Our first alternative loss function is absolute error loss which is a common loss function and

is given by

L(f,p) = [ f—k(p) ]|

where k(p) is the Kelly fraction (3).
With the absolute error loss function, it is well known (Berger 1985) that the posterior median

of k(p) is the Bayes estimator. Some distribution theory gives the following distribution function

for k(p):

(p|x) dp k=0
F(k) = Prob(k(p) < k) = f%(g 1

Jo 7 mplxz)dp 0<k<1

from which F(f;) = 1/2 provides the the Bayes estimator based on absolute error loss

;o % f/ﬂ'(p|flj)dp<l/2
L =
0 S wp | x) dp > 1/2
_ ol 5>1/6 (16)
0 p<1/6

where p is the posterior median of p corresponding to (11). We again note the similarity of
(16) with the Kelly fraction (3) and the Bayes estimator based on absolute error loss (15). In

applications where the posterior distribution of p is nearly symmetric, there is little difference
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between the two Bayes estimators fy and f;. Near symmetry occurs when the posterior Beta
parameters x +a and n — x + b are large and comparable in magnitude. Given specified values of
a, b, x, n and 0, we easily obtain f; in (16) using the following commands in the R programming

language:

f1 <-0
median = gbeta(0.5,x+a,n-x+b)

if (median > 1/theta){ f1 <- (median*theta-1)/(theta-1) }

Our second alternative loss function is squared error loss which is also a common loss function

and is given by

L(f,p) = (f—k(p)

where k(p) is the Kelly fraction (3).
With the squared error loss function, it is well known (Berger 1985) that the posterior mean

of k(p) is the Bayes estimator. Therefore, the Bayes estimator based on squared error loss is

f2

/ k() 70 | 2) dp

_ /1/10 (1969_—11) w(p | 2) dp . (17)

Given specified values of a, b, , n and 6, we note that f, in (17) is easily obtained in the R

programming language via the following commands:

integrand <- function(p){ (p*theta-1)/(theta-1)*dbeta(p,x+a,n-x+b) }

f_2 <- integrate(integrand,1/theta,1)$value

Even though squared error loss is a common loss function, we see from (3), (15), (16) and

(17) that f, (the Bayes estimator based on squared error loss) provides a fundamentally different

12



betting fraction than k(p), fo and f;. With the other three fractions, there are always scenarios
in which one will not bet (i.e. the betting fraction is zero). This is never the case with f.

Our third alternative loss function provides a compromise between absolute error loss and
squared error loss (i.e. we consider an exponent 1 < k < 2). The loss function is also motivated
by common complaints involving the Kelly criterion. As mentioned, many gamblers claim that
the Kelly fraction is too large. We therefore consider a loss function that introduces a penalty
on overestimation and underestimation of the true Kelly fraction via the parameters ¢; > 0 and

co > 0. We define this general loss function

(f.p) = (alpip +e) | f—k@)[* (18)

where [ is the indicator function. With appropriate selections of ¢1, ¢co and k, we observe that
li(f,p) and I5(f, p) are special cases of I3(f,p). For illustration of a different sort of loss function,

we consider
cg=1,co=1land k=15 (19)

such that k lies halfway between absolute error loss and squared error loss, and the penalty of
overestimation is double the penalty of underestimation. The estimation penalties in (19) may

be considered extreme. Therefore, we also consider the settings
cg=1,ce=2and k=15 (20)

such that the penalty of overestimation is 1.5 times the penalty of underestimation.
In the case of the loss function I3(f,p), the Bayes estimator is obtained by minimizing the

expected posterior loss

G(f) = / (f,p) 7(p | ) dp (21)

with respect to f = f(z).

13



Obtaining an analytic expression for the minimum of G(f) in (21) does not seem to be within
our capabilities. Fortunately, simple quadrature rules such as Simpson’s rule can approximate
the integral (21). With quadrature rules, one does need to be careful of the discontinuity in (18)
as a function of p. Also, the minimization problem is essentially a discrete optimization problem;
in practice, we only need the optimal fraction to roughly three decimal points. Therefore, a brute
force procedure can be used where f is incremented from 0.000 to 1.000 in steps of size 0.001, and
G(f) is calculated for each incremental value. We then obtain the Bayes estimator fs3, = f3q()
which minimizes G(f) for the observed x based on the loss function settings in (19). We also
obtain the Bayes estimator fs, = fs,(2) which minimizes G(f) for the observed x based on the loss

function settings in (20). R code which carries out the optimization is provided in the Appendix.

5 EXAMPLES

Example 5.1: Consider the case of European odds 8 = 1.952 which corresponds to American
odds -105. We imagine a gambler who has proposed a wagering system where x = 100 correct
wagers are observed at European odds 6 = 1.952 out of n = 180 historical wagers. The gambler
rashly determines that the winning probability is p = z/n = 0.556. This appears to be a profitable
system since p > 1/0 = 0.512. Using p, the standard application of the Kelly approach determines
the Kelly fraction k(p) = 0.089. Therefore, Kelly advises that the gambler should bet 9% of the
bankroll on each wager, a substantial fraction!

In determining the modified Kelly criterion, the last step is the specification of the prior
parameters a and b of the Beta distribution. In investing circles (of which gambling is a special
case), there exists a theory of efficient markets. One version of the theory essentially states that
market shares are valued at their proper valuation, and consequently, there is no systematic way
to exploit the market. In our scenario, this suggests that for wagers of type (1) where both teams
have the same odds, the probability p of placing a correct wager should be 0.5. Furthermore,
internet searches related to sports gambling reveal that even the most positive touts do not claim
to have gambling systems that pick winners at a rate greater than 60% (Moody 2015). Therefore,
together with symmetry, these two insights suggest that most of the prior probability should
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be assigned to the interval (0.4,0.6). Choosing a = b = 50 provides us with E(p) = 0.5 and
SD(p) ~ 0.05. Therefore, the interval (0.4,0.6) contains roughly 95% of the prior probability.
According to the proposed loss functions, when we use this default prior, we obtain the modified
Kelly criteria fo = 0.048, f1 = 0.048, fo = 0.056, f3, = 0.034 and f3, = 0.041. These conservative
fractions are smaller than the Kelly criterion k(p) = 0.089. In particular, the estimate f3, based
on the extreme loss function is very small, and this highlights the importance and the effect of
the choice of loss function. In this example, and in most of the examples that follow, we observe
that the relationship amongst the Bayes estimators is f3, < f3, < fo = f1 < fo. In particular, f
(our preferred estimator) nearly corresponds to half-Kelly. Hence, we have provided a theoretical
rationale for the use of half-Kelly.

Another idea in prior specification is to impose a tighter constraint p > 0.5 and then proceed
with the same type of argumentation as above. Imposing p > 0.5 may be sensible from the point
of view that coin flips (no knowledge) provided p = 0.5, and it may be argued that it is impossible

to know less than a coin.

Example 5.2: In this example, we modify Example 5.1. We now set the European odds to
0 = 1.909 which corresponds to American odds -110; odds of -110 are more standard in the
sportsbook industry and provide a greater vigorish. Consequently, the gambler will need to choose
winners at a higher rate to ensure profitability. As before, we choose a = b = 50 and consider
historical data with = 100 and n = 180. We then obtain the Kelly criterion k(p) = 0.067 and
the modified Kelly criteria fy = 0.025, f; = 0.025, fo = 0.039, f3, = 0.018 and f3, = 0.024. These
are all smaller fractions than the corresponding fractions in Example 5.1. Thus the increased
vigorish causes a reduction in the fractions wagered. In the context of the loss function Iy(f,p)
in (6), Figure 1 provides a plot of G(f) in (13) versus f in this example. We observe that that
the function is convex where the expected posterior loss increases more rapidly for f > f, than

for f < fo.

Example 5.3: We make an adjustment to Example 5.2. As before, # = 1.909 and a = b = 50.
However, this time, we have more historical data x = 200 and n = 360 but we retain the same

proportion of successful wagers. The Kelly criterion remains at k(p) = 0.067 but the modified
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Kelly criteria increase from fy = 0.025, f; = 0.025, fo = 0.039, f5, = 0.018 and f3, = 0.024 to
fo = 0.041, f1 = 0.041, fo = 0.047, f3, = 0.030 and f3, = 0.036, respectively. The increased
fractions reflect our increased posterior support for larger values of p via the data.

As we collect more and more data (i.e. as n — o0), we gain confidence in the performance
of a gambling system. Consequently, the posterior becomes concentrated at p, and our modified

Kelly criterion approaches the original Kelly criterion.

Example 5.4: We make another adjustment to Example 5.2 which concerns an examination
of prior sensitivity. As before, # = 1.909, x = 100 and n = 180. However, this time, we are
apriori more doubtful about our ability to have a winning system. We set a = b = 100 which
leads to SD(p) ~ 0.035. This implies that the interval (0.43,0.57) contains roughly 95% of the
prior probability. In this case, the Kelly criterion remains at k(p) = 0.067 but the modified
Kelly criteria decrease from fy = 0.025, f; = 0.025, fo = 0.039, f3, = 0.018 and f3, = 0.024
to fo = 0.005, fi = 0.005, fo = 0.024, f3, = 0.008 and fs, = 0.012, respectively. The smaller
fractions reflect our decreased prior belief in having a profitable system.

To get a sense of the performance of original Kelly versus modified Kelly, we carried out
simulations based on hypothetical wagering. Following the settings in Example 5.4, the original
Kelly fraction is f,.; = 0.067 and the modified Kelly fraction is fo = 0.005. Inverting (3), gives
the corresponding probabilities of correct wagering, porig = 0.556 and py = 0.526, respectively. For
the simulation, we set the true p = (porig + Po)/2 = 0.541. Under these conditions, and beginning
with an initial bankroll of By = $1000, we generated 200 consecutive wagers following the two
money management schemes (i.e. original Kelly and modified Kelly fy). Five iterations of each
scheme are presented in Figure 2 where we monitor the bankroll B; after ¢t wagers. We observe
that original Kelly has more variability, with greater potential profits and greater potential losses.
In the five simulation runs, three out of the five modified Kelly runs do better by the end of the
wagering season than the corresponding original Kelly runs.

We then repeated the simulation procedure using 1000 runs. From these simulations, we
provide density plots of the final bankroll By in Figure 3. We observe that modified Kelly fj is
safer with 65% of the runs resulting in profits. In contrast, original Kelly is profitable only 53%

of the time.
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Finally, we considered simulation settings where the number of bets in a season was varied.
We considered 1000 runs for independent seasons of length 100 to 5000 in increments of 100.
Figure 4 shows the percentage of runs where the schemes were profitable, doubled and halved.
Original Kelly is again compared against f;. When the season length is large, the asymptotic

properties begin to take over, and on average, modified Kelly f; outperforms original Kelly.

Example 5.5: This is a real data example based on an article (Professor MJ 2017) from the
gambling website covers.com and his website. Professor MJ recommends a gambling system
for the NBA playoffs that is applicable when a playoff team loses a game and the difference
between the actual margin of victory and the point spread exceeds 12.5 points. In other words,
the team has lost badly. Professor MJ’s system is to bet on that team (using point spread)
in the next game. This push-back phenomenom was also explored in the context of basketball
and hockey by Swartz et al. (2011). Professor MJ’s recommendation was based on studying all
NBA playoff games from the 1991 playoff season up to game 2 of the 2017 Western Conference
semi-finals. Under these conditions, there were n = 484 historical matches and x = 271 winning
bets according to the binomial distribution in (5). The historical data provide an impressive
winning proportion p = 0.560. Professor MJ goes on to recommend betting on the San Antonio
Spurs in game 2 of their Western Conference semi-final match against the Houston Rockets. The
Rockets had crushed the Spurs 126-99 in game 1 where the Spurs were 6-point favorites. Game
2 satisfies the betting conditions as the difference between the actual result and the point spread
was (126 — 99) — (—6) = 33 > 12.5 points.

Using European odds of # = 1.909 (the industry standard), the Kelly system advises a betting
fraction of k(p) = 0.076. However, if we use the same rationale for prior selection as in Example
5.1 (a = b = 50) and provide historical data inputs z = 271 and n = 484, we obtain modified
Kelly fractions fy = 0.054, f; = 0.054, fo = 0.056, f3, = 0.042 and f3, = 0.047. We note that
these are smaller fractions than original Kelly. In particular, fy is roughly 3/4 Kelly.

We now investigate the performance of Professor MJ’s system on the remainder of the 2017
playoff matches. Admittedly, it is a small sample. Of the 32 subsequent playoff games beyond May
1/2017, there there were 14 playoff games that satisfied Professor MJ’s betting criterion. In those

games, wagering as stipulated by the system resulted in 4 wins, 8 losses and 2 pushes. Beginning
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with a $1000 bankroll, the Kelly criterion would have produced a balance of $694.10 whereas
modified Kelly based on f; would have produced a balance of $776.91. Therefore, the cautious
modified Kelly approach was helpful in this example. The sequence of wins/losses/pushes was
WLLWPLLWLLWLLP. Incidentally, in game 2 of the Western Conference semi-final, the Spurs
were favorites by 5.5 points and they won the match 121-96, beating the spread.

6 DISCUSSION

In terms of money management, the Kelly criterion has received considerable attention in sports
gambling. However, for many gamblers the Kelly criterion is thought to be an excessive fraction
which has led to recommendations such as half-Kelly. In this paper, modified Kelly criteria are
suggested which require the specification of a Beta prior distribution on the gambler’s probability
p of selecting winning wagers. When the priors are conservative (i.e. place less probability on
p > 1/60), then the modified Kelly criteria tend to be smaller than the original Kelly criterion.
Moreover, in the examples we have considered, we have attempted to elicit reasonable prior
opinion on p. And in these cases, the modified Kelly criteria are smaller than the original Kelly
criterion.

We have seen that the choice of loss function also plays a role in determining an alternative to
Kelly. Although the loss function lo(f,p) in (6) appears natural to us, individual gamblers may
prefer to increase/decrease their betting fractions by considering the alternative loss functions
presented in this paper.

Now there may be gamblers who do not follow a system such as described in Example 5.5.
For example, they may have a sequence of potential bets where p is variable. In other words, they
may have more confidence in some wagers than in others. It is also possible that these wagers
correspond to variable odds 6. Note that the use of original Kelly is challenged in this setup
because the estimation of p would be based on some smaller subset of games or perhaps on some
regression analyses. How would modified Kelly work here? Well, the stumbling block would be
the specification of z, n, a and b. Perhaps x = n = 0 is convenient; this would essentially lead to

a criterion based on minimizing expected prior loss. Specifying a and b may be possible by using
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some of the same constraint argumentation used in Example 5.1.
In future work, it would be desirable to obtain modified Kelly fractions in the context of

simultaneous wagers.
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8 APPENDIX

Below is an R function that takes as input the historical betting record (x,n), the European
odds 6 corresponding to the wager of interest, the Beta parameters (a, b) that describe the prior
probability of a correct wager and the loss function parameters ¢, ¢, and k based on the general

loss function I3(f,p) in (18). The output is the betting fraction f; which is a Bayes estimator.

library(cubature)
G <- function(f, x, n, theta, a, b, cl, c2, k){

1_3_1 <~ function(p){
kelly <- ifelse(p > (1/theta), (p * theta - 1) / (theta - 1), 0)

loss_func = ifelse(p < (f * (theta - 1) + 1)/theta,
yes = (cl + c2) * (abs(f-kelly) k),

no = 0)

return(loss_func*dbeta(p, a + x, n - x + b))

1_3_2 <- function(p){
kelly <- ifelse(p > (1/theta), (p * theta - 1) / (theta - 1), 0)
loss_func = ifelse(p >= (f * (theta - 1) + 1)/theta,
yes = c2 * (abs(f-kelly) k),
no = 0)
return(loss_func*dbeta(p, a + x, n - x + b))

# Integrate the loss function

part_1 <- adaptIntegrate(1_3_1, lowerLimit = O, upperLimit = (f * (theta-1) + 1)/theta, tol = le-10)
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part_2 <- adaptIntegrate(1_3_2, lowerLimit = (f * (theta-1) + 1)/theta , upperLimit = 1, tol = le-10)

# Return the sum of the two integrals
return(part_1$integral + part_2$integral )
}

£f3 <- function(x, n, theta, a, b, cl1, c2, k)
{

i <= 0.001

# f is a vector from O to 1

f <- seq(0, 1, i)

# G_ of_f contains the results of the function of G evalutated at all the f values

G_of_f <- lapply(f, G, x = x, n = n, theta = theta, a =a, b =b, c1l =cl, c2 =c2, k = k)

# Find the index of the minimum value and the corresponding f

Modified_Kelly_Value <- which.min(G_of_f) * i - i

return(Modified_Kelly_Value)
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Figure 1: Plot of expected posterior loss G(f) in (13) versus f for the conditions specified in
Example 5.2 where original Kelly is compared versus modified Kelly f;.
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Figure 2: Plot of the bankroll B, after ¢t wagers using the original Kelly fraction and the modified
Kelly fraction fj as described in Example 5.4 (five iterations of each scheme).
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Figure 3: Plot of the estimated density function of the final bankroll By using the original Kelly
fraction and the modified Kelly fraction f, as described in Example 5.4.
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Figure 4: Corresponding to Example 5.4, percentages corresponding to the original Kelly and the
modified Kelly schemes f; under betting seasons of length 100, ...,5000. We plot the percentages
of profitable final bankrolls (i.e. exceeding $1000), the percentages of final bankrolls that have at
least doubled (i.e. exceeding $2000) and the percentages of final bankrolls that have decreased by
at least half (i.e. less than $500). Points are smoothed using lowess curves.
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