
Bayesian Analysis of Binary Data Subject to Misclassi�cationM. Evans I. Guttman Y. Haitovsky T. Swartz �AbstractThis paper considers estimation of success probabilities of categorical binary data subject to mis-classi�cation errors from the Bayesian point of view. It has been shown by Bross (1954) that sampleproportions are in general biased estimates. This bias is a function of the amount of misclassi�cationand can be substantial. Tenenbein (1970) proposed to eliminate the bias by subjecting a portion ofthe sample to both true and fallible classi�ers, resulting in a 2 x 2 table, from which the misclassi-�cation rates can be estimated. The rationale is that fallible classi�ers are inexpensive relative toinfallible ones. Hence if only a part of the sample is measured by the infallible classi�er one canobtain a more e�cient estimate, for a given sampling budget, than by measuring the whole sampleusing the infallible classi�er.In many contexts an infallible classi�er is unavailable or prohibitively expensive. Bayesian methodsthen provide a useful approach for dealing with the consequent nonidenti�ability problems which arisewhen we want to carry out inference.In this paper we treat both the single measurement and the repeated measurements (where theformer is a special case of the latter) from a Bayesian point of view. The posterior analyses are carriedout using both Gauss-Jacobi quadrature and Gibbs sampling. Through examples it is shown that inmost cases Gauss-Jacobi quadrature produces very good approximations, both in terms of accuracyand speed of computation. The Gibbs sampler requires more computation to reach the same level ofaccuracy as the Gauss-Jacobi.1. IntroductionIn various applications and particularly medical contexts binary data may be subject to misclassi-�cation errors. For example, a healthy patient may be incorrectly diagnosed as sick by a physician.Conversely a sick patient may be incorrectly diagnosed as healthy. The e�ects of ignoring misclassi�ca-tion were �rst noted by Bross(1954) who showed that classical estimators based on proportions may beprofoundly biased. He also investigated the loss of power resulting from the standard analysis of a 2x2contingency table. Others have extended his work to consider the e�ects of misclassi�cation on general-ized contingency tables and the derivation of optimal designs. Fleiss(1973) and Kleinbaum, Kupper andMorgenstern(1982) are both reference sources surveying the problem of binary misclassi�cation.As for the e�ect of misclassi�ed categorical data on the estimation of success probabilities, Bross(1954)showed that the knowledge of both false positive and false negative rates is needed for correcting the bias�M. Evans and I. Guttman are Professors, Department of Statistics, University of Toronto, Toronto, Ontario, CanadaM5S1A1. Y. Haitovsky is Professor, Departments of Economics and Statistics, Hebrew University, Jerusalem 91905, Israel.T. Swartz is Assistant Professor, Department of Mathematics and Statistics, Simon Fraser University, Burnaby, BritishColumbia, Canada V5A1S6. The authors thank 2 referees and the Associate Editor for helpful comments.1



resulting from estimation based on observed proportions. Tenenbein(1970, 1971, 1972) proposed toobtain this information by double sampling; i.e. by subjecting a portion of the sample to an infallibleclassi�er. Thus, this portion of the sample is cross-classi�ed by both fallible and correct classi�ers,enabling the estimation of false positive and false negative rates. The rationale of Tenenbein's doublesampling procedure is that inexpensive classi�cation procedures will often result in misclassi�cations,whereas true classi�ers are more expensive and often substantially so.But what if an infallible device is not available or its use is prohibitively expensive, as is often thecase with medical problems? One approach is a Bayesian approach where we assume prior knowledgeon the misclassi�cation parameters, and then incorporate this prior knowledge with sample informationvia Bayes rule. It is this approach which we consider in this paper. Gaba and Winkler(1992) alsodiscuss Bayesian inference for this model when a single measurement is available. Our paper extendstheir analysis to the multiple measurement case and the two sample problem. In addition, we consider amore general class of priors, we derive expressions for posterior distribution functions and we obtain anexpression for the posterior probability of encountering k1 false positives and k2 false negatives. Mostsigni�cantly, however, we focus on developing computational approaches for the practical implementationof Bayesian techniques. Matchar, Simel, Geweke and Feussner(1990) discuss aspects of Bayesian inferencewhen full classi�cation information is available.In section 2, we formulate the basic problem from the Bayesian point of view and then indicateimmediate generalizations to our model. In section 3, we discuss the implementation of the posterioranalysis via two approaches: quadrature using Gauss-Jacobi rules and Monte Carlo integration usingthe Gibbs sampler. The two-sample problem is considered in section 4 and the posterior probability ofencountering k1 false positives and k2 false negatives is given in section 5. Section 6 presents numericalexamples and some conclusions are o�ered in section 7.2. The Bayesian FormulationIn keeping with the medical analogy and the original framework developed by Bross(1954) we considera random patient having probability p of being sick, error probability � of being misdiagnosed as healthyand error probability � of being misdiagnosed as sick. In symbols we writep = P (� = 1)� = P (X = 0 j � = 1)� = P (X = 1 j � = 0)where � = 1(0) is a latent indicator variable indicating sick(healthy) and X = 1(0) is the observeddiagnosis indicator variable indicating sick(healthy). For a sample of n patients we obtain the likelihood[p(1� �) + (1� p)�]t[p� + (1� p)(1� �)]n�t (1)where t =Pni=1 xi.The probability of a single individual being diagnosed sick for �xed error probabilities (�; �) is justf(pj�; �) = p(1 � �) + (1 � p)�. It is natural to require that this be an increasing function of p andthis entails that � < 1 � � or equivalently that � + � < 1. Hence we impose this restriction hereafter.The appeal of this restriction can also be seen from Corr[X; �] = p(1 � p)(1 � � � �)=SD[X]SD[�] andhence the correlation is positive if and only if the restriction applies; see Haitovsky and Zelen(1990)2



and Deming(1977). With this condition P (� = 1 j X = 1) > P (� = 1 j X = 0) or equivalentlyP (� = 0 j X = 0) > P (� = o j X = 1). Deming(1977) uses the latter.We note that f(pj�; �) = f(1 � pj1� �; 1� �) and therefore 1� f(pj�; �) = 1� f(1 � pj1� �; 1� �).Hence the model, without the restriction, is nonidenti�able for every value of n. The restriction eliminatesthis redundancy in the parameterization but we can still have f(pj�1; �1) = f(pj�2; �2) for some p when(�1; �1) 6= (�2; �2). Hence the nonidenti�ability is reduced but not eliminated by the restriction. >From astatistical viewpoint the nonidenti�ability arises because we have no sample information that allows us todistinguish amongst the values of (p; �; �) which lead to a �xed value of f(pj�; �). Thus, to eradicate thenonidenti�ability problem, more information is necessary. In double sampling this additional informationis attained by subjecting a subsample to both fallible and infallible classi�cation devices. The Bayesianapproach has the virtue that nonidenti�ability is not a problem for inference; one simply integrates toobtain the desired marginal posterior distributions.We consider a more general problem than that just discussed. We allow for the situation where miphysicians examine the ith patient assuming each physician has the same probability of misdiagnosis andthat xi of the physicians diagnose the ith patient as sick. This could also correspond to the situationwhere multiple readings are observed from some measuring device. The likelihood for data x1; : : : ; xn isthen L(p; �; � j x) / nYi=1[p(1� �)xi�mi�xi + (1� p)�xi(1� �)mi�xi ]: (2)A natural choice for the prior is a Beta prior for p and an independent Dirichlet prior for (�; �) leadingto the joint posterior�(p; �; � j x) / L(p; �; � j x)pv1�1(1� p)v2�1�v3�1�v4�1(1� � � �)v5�1 .In the case of prior ignorance one might choose vi = 1; i = 1; : : : ; 5 yielding independent uniform priorson p and (�; �). In section 6 a more detailed discussion is given of the e�ect of the choice of the prior.Assuming a Dirichlet prior for (�; �) imposes the additional restriction that � and � are negativelycorrelated. In certain contexts this may be unnatural and hence a Dirichlet would not be appropriate. Inthe domain of application we are addressing, however, a negative correlation is quite reasonable. Whena physician overestimates the amount of sickness (health) in a population, the physician will tend tomake more (fewer) misdiagnoses of healthy people as sick, and at the same time will tend to make fewer(more) misdiagnoses of sick people as healthy. Such circumstances would arise when a physician's errorsare largely caused by a substantial error in their prior beliefs concerning the prevalence of the diseasein the population. A larger class of distributions on the simplex which contains the Dirichlet familyand which allows for positive correlations is given by the class of generalized Liouville distributions, seeDevroye(1986). Bayesian inference for this family together with the associated computational problemsis a subject for further research.As in the case where diagnosis errors do not arise, our primary concern is drawing inferences onthe parameter p (the probability that a random patient is sick). The marginal posterior density for ptakes the form of a positive polynomial of degree n + v1 + v2 when v1 and v2 are integers; a structurewhich we exploit in the next section. Further, in the Bayesian context, the problem of comparing 2 (ormore) independent populations is not unduly complicated. For example we simply multiply the marginalposterior densities of p1 and p2 to obtain their joint posterior density from which quantities such as = p1 � p2 can be studied. The two-sample problem is taken up in section 4.3



3. ComputationsIn carrying out the posterior analysis, based on the general model of section 2, we need to evaluate3-dimensional integrals of the formI(m) = Z 10 Z 1��0 Z 10 m(p; �; �)L(p; �; � j x)�p(p)��;�(�; �)dpd�d� (3)where the functions �p and ��;� are the densities of the Beta(v1; v2) and Dirichlet(v3; v4; v5) distributionsrespectively. For example I�1(1) is the norming constant for the joint posterior density and I(pi)=I(1)is the ith posterior moment for the probability that a random patient is sick.A simple transformation is helpful in evaluating (3); namely p ! p; � ! � and � ! � = �=(1 � �).With this transformation (3) is proportional toZ 10 Z 10 Z 10 m(p; (1� �)�; �)L(p; (1� �)�; � j x)pv1�1(1� p)v2�1�v3�1(1� �)v5�1 � (4)�v4�1(1� �)v3+v5�1dpd�d�:Note that with this transformation the ranges of integration become 0 to 1 for all variables and the priordensity becomes a product of Beta densities. Then a natural multiple quadrature rule to be used inapproximating I(m) is a particular type of Gauss rule known as a product Jacobi rule. It is given byI�(m) = n1Xi1=1 n2Xi2=1 n3Xi3=1w1;i1w2;i2w3;i3m(t1;i1 ; t2;i2(1� t3;i3); t3;i3)L(t1;i1 ; t2;i2(1 � t3;i3); t3;i3 j x)where n1n2n3 is the order of the rule and the wj;ij and the tj;ij ij = 1; : : : ; nj, j = 1; 2; 3 are re-ferred to as the weights and points respectively. These weights and points are completely determined byv1; v2; v3; v4; v5 and can be obtained using the Fortran programs provided in Stroud and Secrest(1966) orfrom such libraries as the NAG and IMSL subroutines. For a mathematical de�nition of Jacobi weightsand points the reader is referred to Davis and Rabinowitz(1984).The appeal of the product Jacobi rule is that the approximation of I(m) by I�(m) is exact ifm(p; �; �)is a polynomial of degree u1, u2 and u3 in p, � and � respectively where u1+n � 2n1�1, u2+Pni=1mi �2n2� 1 and u2+u3+Pni=1mi � 2n3� 1. Hence the norming constant and more generally the posteriorexpectations of polynomials in p, � and � can all be exactly evaluated. In practice the approximationmay be quite good even if n1, n2 and n3 are not su�ciently large to satisfy the above 3 inequalities.The approximation may also be quite good in the case where m(p; �; �) is not a polynomial but can bewell-approximated by a polynomial.A di�culty with the product Jacobi rule arises when evaluating posterior probability contents suchas P (p � p0 j x) for some p0. The reason for this is that m(p; �; �) then takes the form of an indicatorfunction which is not well-approximated by a polynomial. Clearly the product Jacobi rule will yield thesame value for P (p � p0 j x) and P (p � p�0 j x) whenever t1;i1 � p0 � p�0 < t1;i1+1 for some i1. A solutionto this di�culty is to express the marginal posterior density of p as the sum�pjx(p j x) = nXi=0 cih(v1;v2)i (p)�p(p)4



where h(v1;v2)i (p) is the degree i orthonormal polynomial with respect to the Beta(v1; v2) density andci = R 10 h(v1;v2)i �pjx(p j x)dp. This is the orthogonal expansion of �pjx with respect to the orthonormalpolynomials of �p. It is exact because �pjx takes the form of a polynomial times �p. Note that theorthonormal polynomials h(v1;v2)i (p) can be generated through Jacobi recurrence formulae (see Davis andRabinowitz(1984), p. 38) and that the ci can be exactly calculated using Gauss-Jacobi quadrature. Anapplication of Rodrigue's formula, which expresses h(v1;v2)i (p)�p(p) as a derivative which can be integratedin closed form (see Davis and Rabinowitz (1984), p. 38), leads to the following exact expression for theposterior distribution function of p,P (p � p0 j x) = nXi=0 ci Z p00 h(v1;v2)i (p)�p(p)dp= c0Beta(v1; v2; p0) + pv10 (1� p0)v2 nXi=1 cid(v1;v2)iid(v1+1;v2+1)i�1 h(v1+1;v2+1)i�1 (p0)where Beta(v1; v2; p0) is the distribution function of the Beta(v1; v2) distribution evaluated at p0 andd(v1;v2)i = h�(v1)�(v2)�(i+v1+v2)(2i+v1+v2�1)i!�(v1+i)�(v2+i)�(v1+v2)(i+v1+v2�1)i1=2.Note that this expression holds for all p0 and no further integrations are required once we have computedall the ci.A second computational approach which can be easily applied here is the Gibbs sampling algorithm in-troduced by Geman and Geman(1984). The Gibbs sampler is a Monte Carlo algorithm whereby repeatedsampling from updated conditional distributions asymptotically yields marginal samples. Following thenotation of Gelfand and Smith(1990) and Gelfand et. al.(1990) we denote densities by square brackets,so that joint, conditional and marginal densities appear for example as [X;Y ], [X j Y ] and [Y ]. In theBayesian context of our problem the Gibbs sampling algorithm takes the following form:(1) Initialize p, � and � with p0, �0 and �0(2) For i = 1; : : : ;M- generate pi from [p j �i�1; �i�1; x]- generate �i from [� j pi; �i�1; x]- generate �i from [� j pi; �i; x](3) Record (pM ; �M ; �M)(4) Repeat steps (1)-(3) N timesNote that although p0, �0 and �0 are arbitrary we typically set them equal to the values of pM , �M and�M from the previous iteration of step (2).The Gibbs algorithm yields a 3-dimensional sample of size N which we treat as a sample from theposterior distribution. The choice of cycle length M to minimize dependence between the sample vectorsand the choice of N to ensure posterior convergence depend on the particular application.The generation of variates from [p j; �; �; x], [� j p; �; x] and [� j p; �; x] is not trivial as in each case weneed to e�ciently sample from a density taking the form of a positive polynomial times a beta density.For example the rejection method is di�cult to implement as it is not clear how to �nd an e�cientbounding density from which to sample. 5



Instead we consider the data augmentation approach whereby the introduction of additional variablesresults in straightforward sampling. This is done at the expense of increasing the number of conditionaldistributions from which to sample. In our problem we introduce n additional variables �i for i = 1; : : : ; nwhere �i = 1(0) indicates that the ith patient is sick(healthy). We also make the transformation (�; �)!(�; �) where � = �=(1� �), sample from the conditional of � given the remaining variables and then put� = (1� �)�. Using the notation �(i) = (�1; : : : ; �i�1; �i+1; : : : ; �n) it is not di�cult to show that[�i j p; �; �; �(i)x] / [p(1� �)xi�mi�xi ]�i [(1� p)�xi(1� �)mi�xi ]1��i[p j �; �; �; x] / pP�i+v1�1(1� p)(1�P�i)+v2�1[� j p; �; �; x] / Pxi�iXj=0 � Pxi�ij ��j[�Pmi�i�P xi�i+j+v3�1(1� �)P xi�i�j+v5�1][� j p; �; �; x] / Pxi�iXj=0 � Pxi�ij ��j(1� �)�j [�Pxi�P xi�i+j+v4�1(1� �)Pmi�P xi+v3+v5�1]:The conditional sampling is now straightforward as the 4 density forms are Bernoulli, Beta, a mixtureof Betas and a mixture of Betas respectively. We note, however, that sampling from the conditionaldistributions for � and � becomes progressively more di�cult as n rises.4. The Two-Sample ProblemA problem which is of particular interest to experimenters is the comparison of rates of disease intwo independent populations. Typically these two populations are the cases and the controls. Letting�1(p1 j x1) and �2(p2 j x2) be the marginal posterior densities of p1 and p2 respectively we are interestedin drawing inference on  = p1 � p2 where the density of  is given byf() = ZU �1( + u j x1)�2(u j x2)duand U = fu j 0 < u < 1; 0 < +u < 1g. This general formulation allows for di�erent priors to be placedon the parameters of the two separate populations. Splitting the domain of integration into �1 <  � 0and 0 <  < 1 and changing variables in each domain according to w = (u+)=(1+) and w = u=(1�)respectively it is not di�cult to show thatf() = ( r1() = R 10 (1 + )�1(w +w j x1)�2(w(1 + ) �  j x2)dw �1 <  � 0r2() = R 10 (1� )�1( +w(1� ) j x1)�2(w � w j x2)dw 0 <  < 1Note that f() is particulary amenable to Gauss quadrature if the Beta prior parameters for p1 and p2 areintegers. Speci�cally, r1() and r2() are each polynomials of degree n� = n1+v(1)1 +v(1)2 +n2+v(2)1 +v(2)2 �3where ni and (v(i)1 ; v(i)2 ) are the sample size and Beta prior parameters in population i, i = 1; 2. Thecalculation of posterior moments of  = p1� p2 is then straightforward using the expression for f() andGauss-Legendre quadrature. 6



The calculation of posterior probability contents of  = p1�p2 can also be carried out exactly. Lettinghi be the ith degree orthonormal polynomial with respect to the Uniform(0,1) density, we write r1() =Pn�i=0 cihi( + 1) and r2() = Pn�i=0 c0ihi() where ci = R 10 hi()r1( � 1)d and c0i = R 10 hi()r2()d.Then P ( � 0 j x1; x2) = ( Pn�i=0 ci R 1+00 hi()d �1 < 0 � 0c0 +Pn�i=0 c0i R 00 hi()d 0 < 0 < 1An application of Rodrigue's formula then yields the expressionP ( � 0 j x1; x2) =8><>: c0(1 + 0) + (1 + 0)(�0)Pn�i=1 ci h 6i(i+1)i1=2 h(2;2)i�1 (1 + 0) �1 < 0 � 0c0 + c00(0) + 0(1� 0)Pn�i=1 c0i h 6i(i+1)i1=2 h(2;2)i�1 (0) 0 < 0 < 1In the case of Gibbs sampling, nothing new is required in the two-sample problem. We simply sampleas before in the two independent cases and combine our variates according to  = p1 � p2.5.The Posterior Probability of k1 False Positives and k2 False NegativesA false positive occurs when a diagnosis of disease is made when an individual is healthy and a falsenegative occurs when a diagnosis of health is made when an individual is diseased. Of course the actualnumber of these is latent in the data. Suppose we pretend, however, that these are observable and denotethe number of false positives by k1 and the number of false negatives by k2. We consider �rst the problemwhere m1 = : : : = mn = 1 to avoid excessive combinatorial problems.Expanding (1) we obtaintXk1=0� tk1 � [(1� p)�]k1[p(1� �)]t�k1 n�tXk2=0� n� tk2 � [p�]k2[(1� p)(1� �)]n�t�k2= tXk1=0 n�tXk2=0� tk1 �� n� tk2 � pt�k1+k2(1 � p)n�t�k2+k1�k2 (1� �)t�k1�k1(1 � �)n�t�k2 (5)Note that (1 � p)� is the probability that a false positive is obtained and p� is the probability that afalse negative is obtained for a single randomly selected individual. If we multiply (5) by the prior of p,� and � and recall that the inverse of the norming constant is I(1), then the joint posterior probabilityof having obtained k1 false positives and k2 false negatives isI(1)�1� tk1 �� n� tk2 �Z 10 Z 10 Z 1��0 pt�k1+k2 (1� p)n�t+k1�k2 �k2 (1� �)t�k1�k1(1� �)n�t�k2 ��p(p)��;�(�; �)d�d�dp:Again making the transformation � ! �=(1� �) we see that this posterior probability can be calculatedexactly using Gauss-Jacobi quadrature.In the general case the answer is somewhat more complicated. Let Ak denote the set of all subsetsof f1; : : : ; ng of cardinality k, where k is the latent number of sick patients and put t(A) =Pi�A xi and7



m(A) =Pi�Ami for A�Ak. Note that t(A) equals the number of correct diagnoses of sickness, m(A)�t(A)equals the number of false negatives, t(Ac) equals the number of false positives and m(Ac)� t(Ac) equalsthe number of correct negatives. Then (2) can be written asnXk=0pk(1� p)n�k XA�AkYi�A(1� �)xi�mi�xi Yi�Ac �xi(1� �)mi�xi= nXk=0pk(1� p)n�k XA�Ak(1� �)t(A)�m(A)�t(A)�t(Ac)(1� �)m(Ac)�t(Ac) : (6)Hence the posterior probability of having obtained k1 false positives and k2 false negatives isI(1)�1 nXk=0 XA�Ak(k1;k2)Z 10 Z 10 Z 1��0 pk(1� p)n�k�k2 (1� �)t(A) �k1(1� �)m(Ac)�t(Ac) ��p(p)��;�(�; �)d�d�dp (7)where Ak(k1; k2) � Ak contains those subsets A for which m(A) � t(A) = k2 and t(Ac) = k1. Hence tocalculate (7) we must �rst determine the Ak(k1; k2) for k = 0; : : : ; n and this may be di�cult for largen, k1 and k2. For low values of k1 and k2, however, (7) can be easily and exactly evaluated using thepreviously discussed transformation and quadrature methods.6. ExamplesExample 1: We generated x1; : : : ; x20 with p = :12; � = :05; � = :2 and mi = 10; i = 1; : : : ; 20. Thegenerated data, with their frequencies recorded in parentheses, are given by 10(1), 9(1), 5(1), 4(2), 3(2),2(5), 1(7) and 0(1). Note that if these data were generated without repeated measurements the asymptoticrelative bias would have been [P (X = 1)� p]=p = [(1� �)p + (1 � p)�� p]=p = 1:417. Using these dataand the restriction � + � < 1, the maximum likelihood (ML) and noninformative Bayes estimates ofthe parameters were obtained. For the Bayes estimates a Uniform(0,1) prior was placed on p and anindependent Dirichlet(1,1,1) prior was placed on (�; �). The following ML estimates were obtained fromthese data: pML = :1000 �ML = :0500 �ML = :2000:The posterior means, for the noninformative prior, are recorded in column 1 of Table 1 as well as theirposterior standard deviations. In column 1 of Table 2 we have recorded the prior means and standarddeviations of these quantities. As expected the posterior means are convex combinations of the priormeans and the ML estimates. The marginal posterior densities for p; � and � and the joint density for(�; �) are given in Figures 1, 2, 3 and 4 and were computed using Gauss-Jacobi quadrature.In this example the quadrature approach for computing posterior quantities was quite successful.For example, in calculating the posterior mean of p, we require (n1; n2; n3) = (11; 101; 101) for exactcomputations. We �nd that with (n1; n2; n3) = (10; 22; 22) we obtain at least 5 digit accuracy andrequire only .25 minutes of computing time on a Sun Sparcstation.The Gibbs sampling algorithm was also implemented and several di�erent choices of M and N weretried. When uniform priors were employed and we asked for approximately 3 decimals of accuracy the8



following results were obtained. With M = 1, and N = 50; 000 Gibbs sampling required approximately55 minutes of computing time and produced the estimate .13824 of the posterior mean of p with estimatedstandard error .00033. With M = 5 and N = 10; 000 again 55 minutes of computing time were requiredand gave the estimate .13835 with estimated standard error .00072. The estimates of the standarderror indicate that very little autocorrelation is present. Hence a considerable amount of computation isnecessary to obtain a reasonable level of accuracy.While Gibbs sampling is much less e�cient than Gauss-Jacobi quadrature in this example, it has thevirtue of being much simpler to implement. In many contexts this is a signi�cant argument in its favour.If the computation time is a relevant consideration, however; e.g. we have many such analyses to do orwe are putting together a package of subroutines which will be accessed by many users, then clearly it isworth the extra e�ort to implement the quadrature approach. Another argument that might be advancedin favour of the Gibbs sampling algorithm is the dependence of the Gauss-Jacobi approach on the classof priors we have used. The Gibbs algorithm has the appearance of being more exible as the basicalgorithm is applicable no matter what prior is selected. This somewhat overstates the case, however, ase�cient algorithms to generate from the conditionals, which we have with the priors used in this paper,are not necessarily available and, more seriously, the convergence of the algorithm can be a di�culty. Forexample, early experimentation with this model when particular, independent Beta priors were placed oneach of p, � and �, without the restriction � + � < 1, lead to a multimodal posterior and the consequentlack of convergence within meaningful computation times for Gibbs sampling. As is well-known, Gibbssampling can have di�culty when the posterior is multimodal, see for example Evans, Guttman andOlkin(1993). By contrast the Gauss-Jacobi approach is again applicable and has no di�culty with sucha posterior.Of course we are not arguing in favour of a quadrature approach generally to the integration problemsfaced in implementing Bayesian inference. In many cases, e.g. characterized by high-dimensionality,quadrature is out of the question and a Monte Carlo integration algorithm is an absolute necessity.Implementing any integration algorithm so that it produces reliable results over a wide class of situationsis di�cult. When the structure of the problem can be exploited to avoid such di�culties then it seemsnatural to exploit this. For this reason we advocate the Gauss-Jacobi approach for the class of integrationproblems we have been discussing.Next we experimented with di�erent choices of prior means and variances of (p; �; �) by appropriatechoices of the parameters v1; : : : ; v5. The posterior means and standard deviations, as calculated usingGauss-Jacobi quadrature, are listed in columns 2-9 of Table 1. The prior means and standard deviationsof these quantities are given in the corresponding columns of Table 2. Note that we can recover theparameters of the Beta for p and the Dirichlet for (�; �) from these quantities.The contents of Table 1 show, as expected, that higher prior means produced higher posterior means.For instance a value of prior mean for p equal to 1/2 produced posterior means in the range of .1364-.1393,while a prior mean of 1/9 produced posterior means in the range of .1035-.1097. Likewise, for a givenprior mean of 1/2 or 1/9 for p, the smaller the prior mean placed on �, the smaller the posterior mean for�. The same is true for �. Note that the posterior means are convex combinations of the ML estimatesand the corresponding prior means with the minor exception of E(�) in column (4). Also the smaller theprior variance, the closer is the posterior mean to the corresponding prior mean.Example 2: We consider the two-sample problem where 5 patients are diagnosed sick in a sample of9



(1) (2) (3) (4) (5) (6) (7) (8) (9)E(p) .1393 .1049 .1372 .1366 .1364 .1035 .1095 .1091 .1097SD(p) .0734 .0565 .0721 .0717 .0716 .0556 .0296 .0296 .0251E(�) .0990 .0963 .0666 .0507 .0500 .0500 .0962 .0500 .0500SD(�) .0703 .0667 .0462 .0349 .0172 .0172 .0664 .0172 .0172E(�) .2023 .2027 .1948 .2000 .2000 .2000 .2027 .2000 .2000SD(�) .0300 .0297 .0287 .0283 .0224 .0224 .0297 .0224 .0224Table 1: Posterior means and standard deviations for example 1.(1) (2) (3) (4) (5) (6) (7) (8) (9)E(p) .5000 .1111 .5000 .5000 .5000 .1111 .1111 .1111 .1111SD(p) .2887 .0994 .2887 .2887 .2887 .0994 .0329 .0329 .0269E(�) .3333 .3333 .1000 .0500 .0500 .0500 .3333 .0500 .0500SD(�) .2357 .2357 .0905 .0476 .0184 .0184 .2357 .0184 .0184E(�) .3333 .3333 .1000 .2000 .2000 .2000 .3333 .2000 .2000SD(�) .2357 .2357 .0905 .0873 .0337 .0337 .2357 .0337 .0337Table 2: Prior means and standard deviations for example 1.8 from population 1 and 3 patients are diagnosed sick in a sample of 11 from population 2. For bothpopulations we specify a Beta(2,2) prior for p and a Dirichlet(1,1,9) prior for (�; �).We calculated several posterior quantities of interest for  = p1 � p2. Here the Gauss-Jacobi quadra-ture approach gives instantaneous and accurate results. For example, the posterior mean and standarddeviation of  are given by .24688 and .21813 respectively and P ( � :2 j x1; x2) is given by .40252.These values were obtained following the method of the discussion of section 4 and by noting that theprior parameters v1 and v2 are integers for both populations. Experimentation with di�erent priors leadto conclusions similar to those in Example 1.7. ConclusionsIt is seen that the analysis of binary data subject to misclassi�cation is well handled by Bayesianmethods with the prior structure we have speci�ed. Further the calculations associated with this aree�ciently carried out using Gauss-Jacobi quadrature. Exact expressions are available for both posteriormoments and posterior probability contents. When very high order rules are required for exact expres-sions, it is often the case that lower order rules provide adequate approximations. A feature of quadratureis that the accuracy of a particular rule can be assessed by repeating the calculations with a higher orderrule. The Gibbs sampling algorithm is easily implemented for this class of problems. Our analysis hereindicates that Gibbs sampling works well in these problems but is considerably less e�cient than theGauss-Jacobi approach. Fortran software used in the analysis of binary data subject to misclassi�cationis available from the authors upon request. 10
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