
Bayesian Integration Using Multivariate StudentImportance SamplingMichael Evans Tim SwartzDepartment of Statistics Department of Mathematics and StatisticsUniversity of Toronto Simon Fraser UniversityToronto, Ontario Burnaby, British ColumbiaCanada M5S 1A1 Canada V5A 1S6AbstractMultivariate Student importance sampling is a com-monly used technique for Bayesian integration prob-lems. For many problems, for example, when the inte-grand has ellipsoidal symmetry, it is a feasible and per-haps preferable, integration strategy. It is widely rec-ognized, however, that the methodology su�ers fromlimitations. We examine the methodology in con-junction with various variance reduction techniques;e.g. control variates, strati�ed sampling and system-atic sampling, to determine what improvements canbe achieved.1 IntroductionIt is only in the simplest Bayesian models where pos-terior quantities can be evaluated in closed form. Formost Bayesian problems we are faced with the need toapproximate integrals of the formI(m) = ZRk m(x)f(x) dxfor some m : Rk ! R and f : Rk ! R. Here f �0 is the product of the likelihood and the prior andm determines the posterior quantity of interest. Forexample, I(1) is the norming constant and I(x)=I(1)is the vector of posterior means.There exist a wide array of methods available forthe approximation of I(m) and the ratios R(m) =I(m)=I(1). Evans and Swartz (1995a) provide asurvey of the major integration techniques currentlyin use; namely asymptotic approximations, impor-tance sampling, adaptive importance sampling, mul-tiple quadrature and Markov chain methods. In prob-lems where f has a dominant peak and approximateellipsoidal symmetry, importance sampling, based on

the multivariate Student distribution centered at themode of f and scaled by the inverse Hessian matrixof � log f at the mode, proves to be a very compet-itive algorithm and in some ways is even preferable.For example, Markov chain methods require the de-termination of the attainment of stationarity. Furtheronce stationarity has been achieved, error estimationis complicated by the correlation which exists betweenvariates. These problems are avoided with importancesampling provided that we have a good importancesampler.In this paper we discuss importance sampling in con-junction with variance reduction techniques. In partic-ular, we are interested in the extent to which easily im-plemented variance reduction techniques can improvea possibly poor importance sampler. The general im-portance sampling algorithm proceeds as follows: gen-erate x � w and estimate I(m) byÎ(m) = m(x)f(x)w(x) :This estimate is then averaged over a sample of sizeN from w. We estimate the ratio R(m) by R̂(m) =Î(m)=Î(1).Importance sampling methodology has limitations.For example, in a given problem, we need to choose animportance sampler that ensures estimates with �nitevariances. Moreover, an importance sampler shouldadequately mimic the integrand so that the variancesare small. It is also necessary that the importancesampler permit e�cient variate generation.The importance sampling approach which we con-sider in this paper is that based on the multivariateStudent importance sampler. The asymptotic normal-ity of posterior distributions suggests that the multi-variate Student will often be a reasonable choice as animportance sampler. Our goal here is to see whethermeaningful variance reductions can be obtained when



we tailor some common variance reduction techniquesto work in tandem with Student importance sampling.In Section 2 we develop and investigate the use of ad-ditive and ratio control variates. Section 3 is devotedto strati�ed sampling and Section 4 to systematic sam-pling. Concluding remarks are given in Section 5.For Student importance sampling we �rst use an op-timization routine to obtain the value û which max-imizes f . This serves to appropriately locate the im-portance sampler. For the appropriate scaling we cal-culate �̂ = (�@2 log f(û)=@xi@xj)�1. The importancesampler is then given byx � û +r�� 2� �̂1=2 tk;� (1)where tk;� is the standard k-dimensional Student dis-tribution with � degrees of freedom. The choice ofthe parameter � is unclear but the general idea is tochoose it low so that hopefully, all estimates have �-nite variance. If the variances of both Î(m) and Î(1)are �nite then the asymptotic variance of R̂(m), basedon a sample of size N , is1N (�1�2 )2[(�1�1 )2 + (�2�2 )2 � 2(�1�1 )(�2�2 )�12] (2)where �1 is the mean of Î(m), �2 is the mean of Î(1),�21=N is the variance of Î(m), �22=N is the variance ofÎ(1) and �12=N is the correlation between Î(m) andÎ(1). The asymptotic variance (2) is easily estimatedfrom the generated data.We remark that when Student importance sam-pling is successful it is often possible to obtain vari-ance reductions through the related strategy of adap-tive Student importance sampling. The basic idea isto consider the class of Student importance samplersparametrized by the mean vector and covariance ma-trix. As sampling continues, the Student importancesampler is updated to agree more closely with the inte-grand of interest with respect to these characterisitics.Typically this results in improvements; see Evans andSwartz (1995a).Throughout the paper, we illustrate the discussionwith an example. We apply each of the proposedmethods to the Bayesian analysis of the linear modely = �1z1 + � � �+ �9z9 + �e where the zi are dummyvariables, e � Student(3)=p3 and we use the at prioron the unknown parameter (�1; : : : ; �9; log�). We usesimulated data, generating 5 observations from each of9 populations, prescribed by setting � = 1, �1 = 1 and�i = 0 for i 6= 1. See Example 1 of Evans and Swartz(1995a) for more details. This is a 10-dimensional in-tegration problem. We set the degrees of freedom � in

the Student importance sampler equal to 5 and exam-ine the approximation of the posterior expectations ofvarious functions of the parameters.2 Control VariatesFor a control variate we use a function g that resem-bles f and is such that RRk m(x)g(x) dx can be eval-uated in closed form. The idea is that some of thevariation in f can be removed via g. As a naturalchoice, we let g(x) = Ilap(1)�(x) where Ilap(1) is theLaplace approximation of I(1) and � is the Nk(�̂; �̂)density. This control variate was suggested in Evansand Swartz (1995a). Using the Student importancesampler given by (1), the estimator of I(m) based onusing g as an additive control variate is1N NXi=1m(xi) (f(xi)� g(xi))w(xi) +ZRk m(x)g(x) dx: (3)Similarly, the estimator of I(m) based on using g as aratio control variate, when RRk m( x )g(x )d x 6= 0,is�ZRk m(x)g(x) dx�PNi=1m(xi)f(xi)=w(xi)PNi=1m(xi)g(xi)=w(xi) : (4)Assuming Corr(mf=w;mg=w) � 1, it is straightfor-ward to show that the absolute value of the coe�cientof variation of (3) is approximately equal to1N ����CV (mf=w) � E(mg=w)E(mf=w)CV (mg=w)���� (5)where CV denotes the coe�cient of variation and allexpectations are taken with respect to the importancesampler w. Also, for large sample sizes, the absolutevalue of the coe�cient of variation of (4) is approxi-mately equal to1N jCV (mf=w) � CV (mg=w)j : (6)From (5) and (6) it is possible to deduce circumstanceswhen the additive control variate is better than theratio control variate and vice-versa.For the additive approach, standard errors for R(m)can be calculated by using the asymptotic variance for-mula (2) with f replaced by f �g. With the ratio con-trol variate, we have a ratio of ratios, and the asymp-totic variance is h0V h=N where the vector h is given



by h0 = (�2�3)�1(�4; ��1�4=�2; ��1�4=�3; �1), thematrix V = (�ij) and the indices 1; 2; 3 and 4 referto the estimators mf=w, mg=w, f=w and g=w respec-tively.Introducing control variates to our linear model ex-ample resulted in minor savings. For example, theaverage e�ciency of the control variate technique inestimating the vector of posterior means is 1.1 whencompared to straight Student importance sampling.For the ratio variate technique, the average e�ciencyis 1.2. These small savings are the result of a poor ap-proximation of the function f by the Laplace approxi-mation. Indeed, when we modify the example to have20 replicates instead of 5, the posterior becomes morenormal and the e�ciencies become greater. For exam-ple, the average e�ciency in estimating the vector ofposterior means is 4.7 using the additive control vari-ate and 5.1 using the ratio control variate. In termsof computing overhead, we observe that the controlvariate methods require only slightly more computingtime than Student importance sampling. Thus thesecontrol variates are primarily useful when the Laplaceapproximation is good, and when this is the case, wealso expect the Student importance sampler to per-form well.3 Strati�ed SamplingFor strati�ed sampling, suppose that the importancesampler w can be decomposed asw(x) = p1w1(x) + � � �+ pmwm(x)where wi is a density with support Si and fS1; : : : ; Smgis a partition of Rk. Then pi = RSi w(x) dx andp1+� � �+pm = 1. Referring to the Si as strata, we gen-erate xj1; : : :xjnj from wj and calculate the strati�edestimatormXj=1 1nj njXi=1m(xji)f(xji)=wj(xji): (7)The variance of the strati�ed estimator (7) is given bymXj=1 1nj V arwj [mf=wj ]and can be estimated from the Monte Carlo samples.Natural questions concern the choice of the strataand the choice of the nj given the strata. It is wellknown that the optimal choice of the nj, given thestrata, is the Neyman allocation withnj = N SDwj (mf=wj)Pmi=1 SDwi (mf=wi) :

This requires knowledge of the SDwi (mf=wi), how-ever, and is therefore impractical. It is also wellknown that proportional allocation; i.e. nj = pjN ,always leads to a variance reduction when comparedto straight importance sampling based on w. A rea-sonable strategy then is to begin with proportionalallocation, estimate the SDwi (mf=wi) based on a pre-liminary sample, and then use the Neyman allocation.We now consider the selection of the strata for Stu-dent importance sampling. For this, suppose that wehave transformed from x to y = �̂�1=2(x � û) in theoriginal expression for I(m). Then for the importancesampler we use the density w of y � q��2� tk;�. Be-cause of the spherical symmetry of w it is natural todecompose w by choosing the strata to be a set ofannular rings that partition Rk. That is, wi is thedensity proportional to w on li � y0y � li+1 wherethe (li; li+1) are speci�ed constants, i = 1; : : : ;m withl1 = 0 and lm+1 =1.To sample from the rotationally symmetric densitywi, we �rst generate v � Unif(Sk�1). This can be ac-complished by generating a sample z1; : : : ; zk from thestandard normal distribution and setting v = z=kzk.We then generate r2 � k ��2� F (k; �) conditioned to(li; li+1) and set y = rv.An optimal choice for the boundary points l2; : : : ; lmis an open problem. We have chosen the boundarypoints such that each annular ring in the Student den-sity has equal probability.Using an obvious notation we estimate R(m) byPmj=1 Îj(m)Pmi=1 Îj(1) :The asymptotic variance is then given by Pmj=1 �1jPmj=1 �2j!2 mXj=1 1nj "�(j)11�21j + �(j)22�22j � 2 �(j)12�1j�2j #where �1j is the mean of Îj(m), �2j is the mean ofÎj(1), �(j)11 =nj is the variance of Îj(m), �(j)22 =nj is thevariance of Îj(1) and �(j)12 =nj is the covariance betweenÎj(m) and Îj(1).We applied strati�ed sampling to our linear modelexample using m = 25 strata. Using proportional allo-cation, we �rst generated a small sample of size 100 ineach stratum. We then switched to Neyman allocationusing the estimates obtained from the initial sample.We again observed variance reductions. For example,the average e�ciency of strati�ed sampling in estimat-ing the vector of posterior means is 2.8 when comparedto Student importance sampling.



In this same example we also tried di�erent bound-ary points based on the observation that the estimatorsof the component strata Îj(m) have greatly di�erentstandard errors. We therefore began with 2 strata hav-ing equal probability and generated a small sample ofsize 100 in each stratum. We then split the stratumhaving the largest standard error into 2 sub-strata ofequal probability. This splitting process was continueduntilm = 25 strata were constructed. At this point weswitched to Neyman allocation. However, this strategydid not result in any meaningful variance reductions.We remark that it is extremely important that agood algorithm be used to generate from the con-ditional distributions of r2. For example, using acrude inversion technique and factoring in the ad-ditional computational times that this requires, thee�ciency of strati�ed sampling over Student impor-tance sampling reduces from 2.8 to 1.3. Therefore toachieve the full e�ciencies inherent in this strati�edalgorithm a much better generator is required. An al-ternative approach is to use a variation of adaptiverejection sampling due to Gilks and Wild (1992) toconstruct a more e�cient generator. While the Gilksand Wild algorithm is applicable to log-concave den-sities, and in general F (k; �) densities are not log-concave, we note that the log of the density of theF (k; �) distribution has a single point of inectionat ~x = (�=k)pk � 2=(pk + � � pk � 2). Thus bychoosing one of the boundary points l2; : : : ; lm equalto k(�� 2)~x=�, we are faced with sampling from den-sities which are either log-concave or log-convex. TheGilks and Wild (1992) algorithm can be modi�ed tohandle log-convex densities.4 Systematic SamplingThe use of systematic sampling for the integrationproblem leads to many di�erent algorithms; see, forexample, Hammersley and Morton (1956), Fishmanand Huang (1983) and Geweke (1988). Basically all ofthese algorithms take the form of generating a valuex from some w and then computing(mf)T (x)w(x) = 1m mXi=1 m(Ti(x)f(Ti(x)JTi(x)w(x)where T = fT1; : : : ; Tmg is a class of transforma-tions Ti : Rk ! Rk. The bene�t in this techniqueis that, with an appropriate choice of T , substantialvariance reductions can occur. Choosing T to be asubgroup of the group of volume-preserving symme-tries of w ensures that (mf)T and w are more alike as

(mf)T is also invariant under this subgroup. This canbe viewed as the primary motivation for the method.Thus we require that the Jacobian determinant of Tiis 1, w � Ti = w, and Ti � Tj 2 T for all i and j.We restrict attention here to the application of thistechnique to Student importance sampling. A moregeneral treatment can be found in Evans and Swartz(1995b).Again suppose that we have made the transforma-tion to y = �̂�1=2(x� û) in the original expression forI(m). Let f� and m� denote the transformed func-tions f and m respectively and use the importancesampler given by y � q��2� tk;�. We then make thepolar transformation r = kyk, v = y=kyk and writeI(m) = ZSk�1 Z 10 rk�1m�(rv)f�(rv) drdvwhere Sk�1 is the surface of the (k � 1)-dimensionalunit sphere and dv is Lebesgue measure on Sk�1. No-tice that the above Student distribution for y is equiv-alent to v � Unif(Sk�1) statistically independent ofr2 � k ��2� F (k; �).Let the density and distribution function of r bedenoted by h and H respectively. Then making thechange of variables s = H(r), we have that Studentimportance sampling is equivalent to generating s �Unif(0; 1), v � Unif(Sk�1) and averaging(H�1(s))k�1m�(H�1(s)v)f�(H�1(s)v)h(H�1(s))(2�k=2=�(k=2))�1 : (8)Now consider a �nite group T consisting of symme-tries of the importance sampler w de�ned on (s;v).We specify a group formed as the direct productT = T1(m1) � T2(m2) of a group T1(m1) of sym-metries of the U (0; 1) distribution for s and a groupT2(m2) of symmetries of the Unif(Sk�1) distributionfor v. For s, let T1(m1) = fT11; : : : ; T1m1g, whereT1;i(s) = i�1m1 � s and � denotes addition modulo1, as this group leaves the U (0; 1) distribution in-variant. This group is essentially rotation samplingas discussed in Fishman and Huang (1983). For v,let T2(m2) = fT21; : : : ; T2m2g be a �nite subgroup ofO(k), the group of k�k orthogonal matrices and notethat O(k) leaves the distribution of v invariant. Thesystematic sampling estimator is given by1m1m2 m1Xi1=1 m2Xi2=1 q(T1i1(s); T2i2(v)) (9)where s � Unif(0; 1), v � Unif(Sk�1) and the func-tion q is given by (8). The estimator (9) is then aver-aged over subsequent samples.



When compared to (8) the systematic sampling es-timator (9) can be shown to always provide a variancereduction. However (9) requires m1m2 times as manyfunction evaluations as (8). Thus we say that sys-tematic sampling gives a true variance reduction onlywhen it's variance multiplied by m1m2 is less than thevariance of (8).The immediate question concerns the choice of thegroups T1(m1) and T2(m2). The theory in Evans andSwartz (1995b) suggests that we should attempt to�nd groups under which (8) is \far" from being in-variant. Hopefully in a given problem, the structureis such that insight is available on the choice of thegroup. For example, when a high correlation exists be-tween two variables it makes sense to consider groupsof rotations on the cross-sectional plane as such rota-tions remove the correlations; see Evans and Swartz(1995b).Systematic sampling does not always lead to truevariance reductions. For example, if for �xed v theintegrand (8) varies little as s changes, then T1(m1)just wastes function evaluations. The real value of thetechnique arises when this is not the case; i.e. whenthe importance sampler is poor. In general, systematicsampling can be viewed as a kind of insurance againstpoor choices of importance samplers. It may lead toa degradation of performance, bounded above by thesize of the group, but it can lead to unboundedly largeimprovements in contexts where the importance sam-pler is not very good.We tried various systematic sampling estimatorsin our linear model example. Keeping in mind theasymptotics that suggest approximate normality forthe posterior, it is perhaps not reasonable to expecthuge variance reductions in this problem. Table 1provides estimated e�ciencies of systematic samplingcompared to (8) based on equivalent numbers of func-tion evaluations. The three e�ciency readings refer tothe estimation of I(1), R(x10) and R(x27 � x29). Thegroup T1(m1) is an attempt to integrate the radialcomponent of the integrand and the table indicatesonly modest asymmetry for this component from theuniform. The group T2(4) acting on v was introducedwith the idea that the 10-th coordinate in the lin-ear model is somewhat problematic. For example, theLaplace approach has a relative error of 218% in esti-mating R(x10). The group T2(4) consists of the iden-tity, a reection in the 10th coordinate axis, a reec-tion through the origin and a simultaneous reection inthe �rst 9 axes. E�ectively this group symmetrizes x10and integrates all spherical harmonics of odd degree;see Evans and Swartz (1995b). We also considered the

group T3(m2) acting on v which keeps all coordinates�xed except for v7 and v9 which are rotated throughm2 equally spaced angles. This group was developedas being appropriate for the estimation of R(x27 � x29)as it can be shown, see Evans and Swartz (1995b), thatsuch a group exactly integrates such a quadratic formunder certain circumstances. As expected, this groupdid extremely well.Group E�cienciesT1(2)� T2(1) 1.13 1.02 1.70T1(10)� T2(1) .45 .43 .61T1(50)� T2(1) .09 .08 .13T1(1)� T2(4) .64 .70 1.53T1(2)� T2(4) .89 .70 1.44T1(1)� T3(3) .36 .39 5.36Table 1Experience with these groups and others suggeststhat only low order groups be used unless there is aspeci�c reason to do otherwise. The natural alter-native of sampling from high-order groups has beenshown in Evans and Swartz (1995b) to lead to no truevariance reductions whatsoever. Evans and Swartz(1995b) discuss the construction of other low-ordersubgroups of O(k) to integrate out speci�c sphericalharmonics. While the technique is promising it cannotbe used blindly as it can be substantially deleterious.Further research is warranted on this issue.5 ConclusionsThere are many situations in applied Bayesian in-ference where Student importance sampling is notonly adequate but preferable over other methods suchas asymptotics or Markov chain methods; see Evansand Swartz (1995a) for further discussion of this is-sue. This argues for the inclusion of Student impor-tance sampling as part of any general purpose softwarefor Bayesian integration problems. As indicated, thestandard variance reduction techniques can be helpfulwhen applied to Student importance sampling but thiscannot be said without caveats. At the very least, anygeneral purpose software package should therefore of-fer these as options for the practitioner. We note thatthere is one further general class of variance reductionmethods that we have not discussed; namely, random-ized quadrature rules. This technique is discussed inGenz and Monahan (1994).
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