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Abstract

Multivariate Student importance sampling is a com-
monly used technique for Bayesian integration prob-
lems. For many problems, for example, when the inte-
grand has ellipsoidal symmetry, it is a feasible and per-
haps preferable, integration strategy. It is widely rec-
ognized, however, that the methodology suffers from
limitations. We examine the methodology in con-
junction with various variance reduction techniques;
e.g. control variates, stratified sampling and system-
atic sampling, to determine what improvements can
be achieved.

1 Introduction

It is only in the simplest Bayesian models where pos-
terior quantities can be evaluated in closed form. For
most Bayesian problems we are faced with the need to
approximate integrals of the form

I(m) = /Rk m(x) f(x) da

for some m : R¥ — R and f : R*¥ — R. Here f >
0 1s the product of the likelihood and the prior and
m determines the posterior quantity of interest. For
example, I(1) is the norming constant and I(x)/I(1)
is the vector of posterior means.

There exist a wide array of methods available for
the approximation of I(m) and the ratios R(m) =
I(m)/I(1). Evans and Swartz (1995a) provide a
survey of the major integration techniques currently
in use; namely asymptotic approximations, impor-
tance sampling, adaptive importance sampling, mul-
tiple quadrature and Markov chain methods. In prob-
lems where f has a dominant peak and approximate
ellipsoidal symmetry, importance sampling, based on
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the multivariate Student distribution centered at the
mode of f and scaled by the inverse Hessian matrix
of —log f at the mode, proves to be a very compet-
itive algorithm and in some ways is even preferable.
For example, Markov chain methods require the de-
termination of the attainment of stationarity. Further
once stationarity has been achieved, error estimation
is complicated by the correlation which exists between
variates. These problems are avoided with importance
sampling provided that we have a good importance
sampler.

In this paper we discuss importance samplingin con-
junction with variance reduction techniques. In partic-
ular, we are interested in the extent to which easily im-
plemented variance reduction techniques can improve
a possibly poor importance sampler. The general im-
portance sampling algorithm proceeds as follows: gen-
erate ® ~ w and estimate I(m) by

w(z)
This estimate is then averaged over a sample of size
N from w. We estimate the ratio R(m) by R(m) =
I(m)/1(1).

Importance sampling methodology has limitations.
For example, in a given problem, we need to choose an
importance sampler that ensures estimates with finite
variances. Moreover, an importance sampler should
adequately mimic the integrand so that the variances
are small. It is also necessary that the importance
sampler permit efficient variate generation.

The importance sampling approach which we con-
sider in this paper is that based on the multivariate
Student importance sampler. The asymptotic normal-
ity of posterior distributions suggests that the multi-
variate Student will often be a reasonable choice as an
importance sampler. Our goal here is to see whether
meaningful variance reductions can be obtained when



we tailor some common variance reduction techniques
to work in tandem with Student importance sampling.
In Section 2 we develop and investigate the use of ad-
ditive and ratio control variates. Section 3 is devoted
to stratified sampling and Section 4 to systematic sam-
pling. Concluding remarks are given in Section 5.

For Student importance sampling we first use an op-
timization routine to obtain the value w which max-
imizes f. This serves to appropriately locate the im-
portance sampler. For the appropriate scaling we cal-
culate ¥ = (=07 log f(w)/8z;0x;)~". The importance
sampler is then given by
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where #;, » is the standard k-dimensional Student dis-
tribution with A degrees of freedom. The choice of
the parameter A is unclear but the general idea is to
choose it low so that hopefully, all estimates have fi-
nite variance. If the variances of both f(m) and f(l)
are finite then the asymptotic variance of R(m), based
on a sample of size N, is

v O +(E) _Q(Z)(E)plz] (2)
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where p is the mean of I(m), ps is the mean of I(1),
o}/N is the variance of I(m), 03/N is the variance of
f(l) and p12/N is the correlation between f(m) and
f(l) The asymptotic variance (2) is easily estimated
from the generated data.

We remark that when Student importance sam-
pling is successful it is often possible to obtain vari-
ance reductions through the related strategy of adap-
tive Student importance sampling. The basic idea is
to consider the class of Student importance samplers
parametrized by the mean vector and covariance ma-
trix. As sampling continues, the Student importance
sampler is updated to agree more closely with the inte-
grand of interest with respect to these characterisitics.
Typically this results in improvements; see Evans and
Swartz (1995a).

Throughout the paper, we illustrate the discussion
with an example. We apply each of the proposed
methods to the Bayesian analysis of the linear model
y = B1z1 + -+ Pozg + oe where the z; are dummy
variables, e ~ Student(3)/+/3 and we use the flat prior
on the unknown parameter (51, ..., 3, logo). We use
simulated data, generating b observations from each of
9 populations, prescribed by setting o = 1, 8 = 1 and
B; = 0 for ¢ # 1. See Example 1 of Evans and Swartz
(1995a) for more details. This is a 10-dimensional in-
tegration problem. We set the degrees of freedom A in

the Student importance sampler equal to 5 and exam-
ine the approximation of the posterior expectations of
various functions of the parameters.

2 Control Variates

For a control variate we use a function g that resem-
bles f and is such that [g, m(z)g(x)dx can be eval-
uated in closed form. The idea is that some of the
variation in f can be removed via ¢g. As a natural
choice, we let g(®) = Iiqp(1)¢(@) where Ijop(1) is the
Laplace approximation of I(1) and ¢ is the Ny (ji, i])
density. This control variate was suggested in Evans
and Swartz (1995a). Using the Student importance
sampler given by (1), the estimator of I(m) based on
using ¢ as an additive control variate is

L& ) —gle)
N; (@) w(®;) +

/Rk m(z)g(x) de. (3)
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Similarly, the estimator of I(m) based on using g as a
ratio control variate, when [, m( ® )g(x )d ® # 0,
is

o) da | izt S (i) ()
(/R (2)g(2)d ) S gt o)

Assuming Corr(mf/w, mg/w) = 1, it is straightfor-
ward to show that the absolute value of the coefficient
of variation of (3) is approximately equal to

1 E(mg/w)

— |CV - ——=CV 5
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where C'V denotes the coefficient of variation and all
expectations are taken with respect to the importance
sampler w. Also, for large sample sizes, the absolute
value of the coefficient of variation of (4) is approxi-
mately equal to

SOV OmTfw) = CVimg/w)]. (6)

From (5) and (6) it is possible to deduce circumstances
when the additive control variate is better than the
ratio control variate and vice-versa.

For the additive approach, standard errors for R(m)
can be calculated by using the asymptotic variance for-
mula (2) with f replaced by f—g. With the ratio con-
trol variate, we have a ratio of ratios, and the asymp-
totic variance is K’V h/N where the vector h is given



by b = (pops)™ (pa, —apa/pa, —papa/ps, 1), the
matrix V' = (o0y;) and the indices 1,2,3 and 4 refer
to the estimators mf/w, mg/w, f/w and g/w respec-
tively.

Introducing control variates to our linear model ex-
ample resulted in minor savings. For example, the
average efficiency of the control variate technique in
estimating the vector of posterior means is 1.1 when
compared to straight Student importance sampling.
For the ratio variate technique, the average efficiency
1s 1.2. These small savings are the result of a poor ap-
proximation of the function f by the Laplace approxi-
mation. Indeed, when we modify the example to have
20 replicates instead of b, the posterior becomes more
normal and the efficiencies become greater. For exam-
ple, the average efficiency in estimating the vector of
posterior means is 4.7 using the additive control vari-
ate and 5.1 using the ratio control variate. In terms
of computing overhead, we observe that the control
variate methods require only slightly more computing
time than Student importance sampling. Thus these
control variates are primarily useful when the Laplace
approximation is good, and when this is the case, we
also expect the Student importance sampler to per-
form well.

3 Stratified Sampling

For stratified sampling, suppose that the importance
sampler w can be decomposed as

w(@) = prwi(@) + -+ ppwn ()

where w; is a density with support .S; and {51, ..., Sn}
is a partition of R¥. Then p; = Js w(x)dx and
p1+--+pm = 1. Referring to the S; as strata, we gen-

erate ®;1,...®;,, from w; and calculate the stratified
estimator
m nj
> — 2 mlwji) i)/ wj(@j:). (7)
j=1 7 i=1

The variance of the stratified estimator (7) is given by
o1
Z —Vary, [mf/w;]
— T
ji=1

and can be estimated from the Monte Carlo samples.

Natural questions concern the choice of the strata
and the choice of the n; given the strata. It is well
known that the optimal choice of the nj;, given the
strata, i1s the Neyman allocation with

SDw, (mf/w;)
Yoim1 Dy, (mf [wi)

n]':N

This requires knowledge of the SDy, (mf/w;), how-
ever, and is therefore impractical. It is also well
known that proportional allocation; i.e. n; = p; N,
always leads to a variance reduction when compared
to straight importance sampling based on w. A rea-
sonable strategy then is to begin with proportional
allocation, estimate the SDy,,(mf/w;) based on a pre-
liminary sample, and then use the Neyman allocation.

We now consider the selection of the strata for Stu-
dent importance sampling. For this, suppose that we
have transformed from « to y = 2_1/2(:13 — ) in the
original expression for I(m). Then for the importance
A/ % tky)\. Be-
cause of the spherical symmetry of w it 1s natural to
decompose w by choosing the strata to be a set of
annular rings that partition R*. That is, w; is the
density proportional to w on l; < y'y < l;41 where
the ({;,l;11) are specified constants, i = 1,...,m with
Iy =0 and l41 = 0.

To sample from the rotationally symmetric density
w;, we first generate v ~ Unif(S*~1). This can be ac-
complished by generating a sample z1, .. ., z; from the
standard normal distribution and setting v = z/||z||.
We then generate r? ~ k252F(k,A) conditioned to
(l;,li41) and set y = rv.

An optimal choice for the boundary points s, ..., I,
is an open problem. We have chosen the boundary
points such that each annular ring in the Student den-
sity has equal probability.

Using an obvious notation we estimate R(m) by

sampler we use the density w of y ~

The asymptotic variance is then given by

2 . . .
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m
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where ju1; is the mean of [;(m), ps; is the mean of
(1), 05]1)/71]' is the variance of I;(m), Ugé)/nj is the
variance of I;(1) and 05]2)/71]' is the covariance between
f](m) and fj(l).

We applied stratified sampling to our linear model
example using m = 25 strata. Using proportional allo-
cation, we first generated a small sample of size 100 in
each stratum. We then switched to Neyman allocation
using the estimates obtained from the initial sample.
We again observed variance reductions. For example,
the average efficiency of stratified sampling in estimat-
ing the vector of posterior means is 2.8 when compared

to Student importance sampling.



In this same example we also tried different bound-
ary points based on the observation that the estimators
of the component strata fj (m) have greatly different
standard errors. We therefore began with 2 strata hav-
ing equal probability and generated a small sample of
size 100 in each stratum. We then split the stratum
having the largest standard error into 2 sub-strata of
equal probability. This splitting process was continued
until m = 25 strata were constructed. At this point we
switched to Neyman allocation. However, this strategy
did not result in any meaningful variance reductions.

We remark that it is extremely important that a
good algorithm be used to generate from the con-
ditional distributions of r?. For example, using a
crude inversion technique and factoring in the ad-
ditional computational times that this requires, the
efficiency of stratified sampling over Student impor-
tance sampling reduces from 2.8 to 1.3. Therefore to
achieve the full efficiencies inherent in this stratified
algorithm a much better generator is required. An al-
ternative approach is to use a variation of adaptive
rejection sampling due to Gilks and Wild (1992) to
construct a more efficient generator. While the Gilks
and Wild algorithm is applicable to log-concave den-
sities, and in general F'(k,A) densities are not log-
concave, we note that the log of the density of the
F(k,A) distribution has a single point of inflection
at @ = (Ak)WVk—2/(Vk+ X —Vk—2). Thus by
choosing one of the boundary points I3, ..., equal
to k(A —2)&/A, we are faced with sampling from den-
sities which are either log-concave or log-convex. The
Gilks and Wild (1992) algorithm can be modified to

handle log-convex densities.

4 Systematic Sampling

The use of systematic sampling for the integration
problem leads to many different algorithms; see, for
example, Hammersley and Morton (1956), Fishman
and Huang (1983) and Geweke (1988). Basically all of
these algorithms take the form of generating a value
@ from some w and then computing

(mf)T( 1 i m(

_ Ti()J1, (x)

(az m & (z)

where T = {T,...,T,n} is a class of transforma-
tions 7; : R* — RF. The benefit in this technique
is that, with an appropriate choice of 7, substantial
variance reductions can occur. Choosing 7 to be a
subgroup of the group of volume-preserving symme-
tries of w ensures that (mf)T and w are more alike as

(mf)T is also invariant under this subgroup. This can
be viewed as the primary motivation for the method.
Thus we require that the Jacobian determinant of 7;
is1l, wol; = w, and T; o T; € 7T for all ¢ and j.
We restrict attention here to the application of this
technique to Student importance sampling. A more
general treatment can be found in Evans and Swartz
(1995b).

Again suppose that we have made the transforma-
tion toy = X~ 1/2(2 —a) in the original expression for
I(m). Let f* and m* denote the transformed func-

tions f and m respectively and use the importance
We then make the

polar transformation r = ||y||, v = y/||y|| and write

= [

where S¥~1 is the surface of the (k — 1)-dimensional
unit sphere and dv is Lebesgue measure on S*~!. No-
tice that the above Student distribution for y is equiv-
alent to v ~ Unif(S*~!) statistically independent of
r?~ k%F(/@, A).

Let the density and distribution function of r be
denoted by h and H respectively. Then making the
change of variables s = H(r), we have that Student
importance sampling is equivalent to generating s ~

Unif(0,1), v ~ Unif(S*~!) and averaging

(= (5))" L (= (s)) f (1T~
h(HT=T () (2752 T (k/2)) !

Now consider a finite group 7 consisting of symme-
tries of the importance sampler w defined on (s, v).
We specify a group formed as the direct product
T = Ti(m1) x Ta(ms) of a group 7y(m1) of sym-
metries of the U(0,1) distribution for s and a group
T2(ms) of symmetries of the Unif(S*~1) distribution
for v. For 5 let 7y(my) = {Ti1,...,Tim, }, where
Ti4(s) = _ =L ¢ 5 and @ denotes addition modulo
1, as this group leaves the U(0,1) distribution in-
variant. This group 1s essentially rotation sampling
as discussed in Fishman and Huang (1983). For wv,
let Ta(ma) = {751, ..., Tam, | be a finite subgroup of
O(k), the group of k x k orthogonal matrices and note
that O(k) leaves the distribution of » invariant. The
systematic sampling estimator is given by

sampler given by y ~ ,/%tk)\.

ro) f* (rv) drdv

G

mi1 Mo

myms Z Z lel

i1=1i;=1

); Toiy (v)) (9)

where s ~ Unif(0,1), v ~ Unif(S*~!) and the func-
tion ¢ is given by (8). The estimator (9) is then aver-
aged over subsequent samples.



When compared to (8) the systematic sampling es-
timator (9) can be shown to always provide a variance
reduction. However (9) requires mjms times as many
function evaluations as (8). Thus we say that sys-
tematic sampling gives a true variance reduction only
when it’s variance multiplied by mims is less than the
variance of (8).

The immediate question concerns the choice of the
groups 71(my) and 72(ma). The theory in Evans and
Swartz (1995b) suggests that we should attempt to
find groups under which (8) is “far” from being in-
variant. Hopefully in a given problem, the structure
is such that insight 1s available on the choice of the
group. For example, when a high correlation exists be-
tween two variables it makes sense to consider groups
of rotations on the cross-sectional plane as such rota-
tions remove the correlations; see Evans and Swartz

(1995b).

Systematic sampling does not always lead to true
variance reductions. For example, if for fixed v the
integrand (8) varies little as s changes, then 7;(mq)
just wastes function evaluations. The real value of the
technique arises when this 1s not the case; i.e. when
the importance sampler is poor. In general, systematic
sampling can be viewed as a kind of insurance against
poor choices of importance samplers. It may lead to
a degradation of performance, bounded above by the
size of the group, but it can lead to unboundedly large
improvements in contexts where the importance sam-
pler 1s not very good.

We tried various systematic sampling estimators
in our linear model example. Keeping in mind the
asymptotics that suggest approximate normality for
the posterior, it is perhaps not reasonable to expect
huge variance reductions in this problem. Table 1
provides estimated efficiencies of systematic sampling
compared to (8) based on equivalent numbers of func-
tion evaluations. The three efficiency readings refer to
the estimation of I(1), R(x10) and R(xZ — 22). The
group 71(mq) is an attempt to integrate the radial
component of the integrand and the table indicates
only modest asymmetry for this component from the
uniform. The group 73(4) acting on » was introduced
with the idea that the 10-th coordinate in the lin-
ear model is somewhat problematic. For example, the
Laplace approach has a relative error of 218% in esti-
mating R(z19). The group 72(4) consists of the iden-
tity, a reflection in the 10th coordinate axis, a reflec-
tion through the origin and a simultaneous reflection in
the first 9 axes. Effectively this group symmetrizes ¢
and integrates all spherical harmonics of odd degree;
see Evans and Swartz (1995b). We also considered the

group 73(mz) acting on v which keeps all coordinates
fixed except for v7 and vg which are rotated through
mso equally spaced angles. This group was developed
as being appropriate for the estimation of R(z% — z2)
as it can be shown, see Evans and Swartz (1995b), that
such a group exactly integrates such a quadratic form
under certain circumstances. As expected, this group
did extremely well.

Efficiencies

1.13 1.02 1.70

Group

Ti(2) < To(1)
71(10) x To(1) | 45 .43 .61
T1(50) x To(1) | .09 .08 .13
T1(1) x T3(4) .64 .70 1.53
Ti( )
Ti( )

2) x Ty(4 89 70 144
1) x T3(3 36 .39 5.36

Table 1

Experience with these groups and others suggests
that only low order groups be used unless there is a
specific reason to do otherwise. The natural alter-
native of sampling from high-order groups has been
shown in Evans and Swartz (1995b) to lead to no true
variance reductions whatsoever. Evans and Swartz
(1995b) discuss the construction of other low-order
subgroups of O(k) to integrate out specific spherical
harmonics. While the technique is promising it cannot
be used blindly as it can be substantially deleterious.
Further research is warranted on this issue.

5 Conclusions

There are many situations in applied Bayesian in-
ference where Student importance sampling is not
only adequate but preferable over other methods such
as asymptotics or Markov chain methods; see Evans
and Swartz (1995a) for further discussion of this is-
sue. This argues for the inclusion of Student impor-
tance sampling as part of any general purpose software
for Bayesian integration problems. As indicated, the
standard variance reduction techniques can be helpful
when applied to Student importance sampling but this
cannot be said without caveats. At the very least, any
general purpose software package should therefore of-
fer these as options for the practitioner. We note that
there is one further general class of variance reduction
methods that we have not discussed; namely, random-
ized quadrature rules. This technique is discussed in

Genz and Monahan (1994).
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