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Abstract

This paper considers the selection of players in a common hockey pool. The selection

strategy is based on the statistical modelling of the points scored by hockey players

and the number of games played. A key feature of the approach is the introduction

of an optimality criterion which allows drafting to be done in real time. A simulation

study suggests that the approach is superior to a number of ad-hoc strategies.
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1 INTRODUCTION

In Canada and in some of the northern states of the USA, there is a general excitement

each spring, not only with the change in weather but also with the advent of the Stanley

Cup Playoffs. A popular activity amongst friends and co-workers is the participation in

a Stanley Cup Playoff pool.

A common Stanley Cup Playoff pool proceeds along the following lines. Amongst K

drafters (participants in the pool), an order is determined from which drafter 1 selects a

hockey player from any of the 16 teams in the National Hockey League (NHL) that have

qualified for the Stanley Cup Playoffs. Drafter 2 then selects a player but is not allowed

to select the player chosen by drafter 1. The drafting continues until the first round is

complete (i.e. drafter K has made a selection). The order of drafting is then reversed for

the second round, and the process continues for m rounds. At the completion of the draft,

each drafter has selected a lineup of m players where each player accumulates points (i.e.

goals plus assists) during the playoffs. The drafter whose lineup has the greatest number

of total points is declared the winner. Typically, a monetary prize is given to the winner.

Now, the question arises as to how one should select hockey players. Clearly, players

who are able to generate lots of points in a game have some appeal. However, this must

be tempered by the strength of a player’s team. For example, a weak team is likely to be

eliminated early in the Stanley Cup Playoffs, and therefore, a good player on a weak team

may not be as valuable as a weaker player on a stronger team. One might also consider

the effect of the “eggs in one basket” syndrome. By choosing players predominantly from

one team, a drafter’s success is greatly influenced by the success of the team. It is fair to

say that it is not obvious how to best select hockey players in a draft.

Although we have not come across any previous work concerning drafting in hockey

pools, there is a considerable literature on the related problems of rating sports teams
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and predicting the outcome of sporting events. For example, Berry, Reese and Larkey

(1999) compare players of different eras in the sports of professional hockey, golf and

baseball. Carlin (1996) uses point spreads to estimate prediction probabilities for the

NCAA basketball tournament. More generally, the volume edited by Jay Bennett (1998)

covers a wide range of topics related to statistical issues in sport.

This paper considers a statistical approach to the player selection problem in playoff

hockey pools. More detail on all aspects of the proposed approach can be found in Sum-

mers (2005). In section 2, some statistical modelling is proposed for the number of points

scored and the number of games played by hockey players. Together with Sportsbook

odds, subjective probabilities, connected graphs, Newton-Raphson optimization and sim-

ulation, expectations concerning the total points by lineups are obtained. A key point is

that the expectations are calculated in advance of the draft so that drafting may be done

in real time. Friends and co-workers may not be entirely understanding if they need to

wait long periods of time for a drafter to make a selection. In section 3, an optimality

criterion is introduced for the selection of hockey players, and the optimality criterion is

a simple function of the expectations derived in section 2. In section 4, we conduct a

simulation study to assess the proposed selection strategy against some common ad-hoc

strategies. We observe that the proposed selection strategy is arguably the best strategy.

The results of an actual Stanley Cup playoff pool using our methodology are reported in

section 5. We conclude with a short discussion in section 6.
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2 STATISTICAL MODELLING

2.1 Distribution of Points

Consider a hockey player who is on the ice and whose team is in possession of the puck.

We let p denote the probability that the team scores and the player accumulates a point

during the possession. If there are n such possessions during the game, then it may be

reasonable to model the number of points X obtained by the player during the game

as a Binomial(n, p) random variable. Naturally, this is a simplification which assumes

independence of possesions, does not take account of power plays, does not take account

of teammates and opposition, etc. When n is large and p is small, we apply the standard

approximation

X ∼ Poisson(θ)

where θ = np. The Poisson distribution has been previously used for modelling goals

scored in hockey games and has provided a good fit (Berry 2000). The Poisson is preferable

to the Binomial as it is characterized by a single parameter.

A straightforward method for estimating θ is

θ =
number of points obtained by the player in the regular season

number of games played by the player in the regular season
. (1)

A drafter may choose to modify the estimator (1) in various ways such as assigning a

greater weight to recent performance. From this point on, we assume that θ has been

determined for each eligible player in the draft.

Consider now the number of points Yki obtained during the entire Stanley Cup Playoffs

by the ith player selected by drafter k. If the player’s θ value is θki and he plays in gki

playoff games, it follows that

Yki | gki ∼ Poisson(gkiθki).
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We then define the total number of points obtained by lineup k

Tk ≡ Yk1 + · · · + Ykm

and note that the unconditional distribution of Tk (i.e. unconditional with respect to

gk1, . . . , gkm) is the sum of m dependent Poisson mixture distributions. Using the condi-

tional expectation formulae and assuming that Yki and Ylj are conditionally independent

given gki and glj for all k, i, l, j, we obtain

E(Tk) =
m
∑

i=1

θkiE(gki), (2)

V ar(Tk) =
m
∑

i=1

θkiE(gki) +
m
∑

i=1

θ2

kiV ar(gki) + 2
∑

i<j

θkiθkjCov(gki, gkj) (3)

and

Cov(Tk, Tl) =
m
∑

i=1

m
∑

j=1

θkiθljCov(gki, glj). (4)

The expressions (2), (3) and (4) are used in section 3 to determine an optimal player

selection strategy. The terms in the expressions are all known except for the expectations

involving the number of games played, and these expectations are obtained via simulation

in section 2.2. Admittedly, the conditional independence assumption may be somewhat

questionable in the case of two players from the same line on the same team.

2.2 Distribution of Games

If we are able to assign probabilities for each of the playoff teams defeating each of the

other playoff teams in all potential playoff games, then it is possible to simulate the

entire NHL playoffs. The simulation matches teams in the first round as dictated by the
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1 2 78 3 6 4 5

1 8 2 7 3 6 4 5

Western Conference

Eastern Conference

Figure 1: First round format.

actual NHL playoff matchups, and depending on which teams win the simulated series,

team matchups are determined for the second round, and so on, leading to the two Stanley

Cup finalists. By repeating the playoff simulation many times, the expectations appearing

in the expressions (2), (3) and (4) can be estimated accurately using simple averages.

We now use Sportsbook odds, subjective probabilities, connected graphs and Newton-

Raphson optimization to assign the individual game probabilities. We begin with the

preliminary task of assigning the series probabilities P (i, j), i 6= j where P (i, j) denotes

the probability that team i defeats team j in a best of seven series. A good way to

assign series probabilities is to utilize Sportsbook odds as these are known to reflect

the collective wisdom of the betting public (Insley, Mok and Swartz 2004). Sportsbook

odds are reported in the form Odds(i, j) : 1 where Odds(i, j) is the payout in dollars

on a winning one dollar bet on team i and P (i, j) = 1/(Odds(i, j) + 1). Observe that

Odds(i, j) · Odds(j, i) = 1. A difficulty is that prior to the Stanley Cup Playoffs (when

the draft takes place), Sportsbook odds are only available for actual first round matchups,

and not all of the hypothetical matchups that may occur later in the playoffs. Figure 1

gives the layout for the first round of the playoffs where the numbers correspond to the

seedings of the 8 teams in both the Eastern and Western conferences. Each line in the

graph indicates that the probability P (i, j) between the two connected teams is available

via Sportsbook odds.

To complete the unspecified probabilities P (i, j) where P (j, i) = 1 − P (i, j), we use
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the drafter’s subjective hockey knowledge. The bold lines in Figure 2 represent two of

the drafter’s subjective probabilities. Fortunately, it is not necessary for the drafter to

assign all of the (16

2
) − 8 = 112 remaining series probabilities. By assuming that the

probabilities P (i, j) are “transitive”, we can use the Sportbook odds and the drafter’s

subjective probabilities to determine the probabilities of other matchups. For example,

referring to Figure 2, P (8E, 7W ) can be obtained by following the line from 8E to 7W

whereby

Odds(8E, 7W ) = Odds(8E, 2W ) ·Odds(2W, 7W ).

The goal is to create a connected graph; a graph is connected if there exists a path between

each pair of vertices. In this situation, the drafter must specify a minimum of 7 subjective

probabilities in order to connect the graph and thereby complete all probabilities P (i, j),

i 6= j.

1 2 78 3 6 4 5

1 8 2 7 3 6 4 5

Western Conference

Eastern Conference

Figure 2: Drafter’s probabilities in bold.

Of course, if one is going to complete the probabilities via transitivity, there should

not exist different paths that lead to different probability calculations. The drafter should

be “transitivity coherent” in his or her subjective probability assignments. For example,

P (1, 4) = 0.4 and P (4, 5) = 0.5 imply Odds(1, 4) = 1.5 and Odds(4, 5) = 1.0 which

is transitivity incoherent with respect to P (1, 5) = 0.8 (i.e. Odds(1, 5) = 0.25). Note

that transitivity is a strong assumption that is not always applicable in sports, partic-

ularly when style of play and individual player matchups are paramount. However, we
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believe that transitivity is fairly sensible in hockey. If a drafter is adamant that transi-

tivity is inappropriate with respect to some teams, the drafter should simply assign the

corresponding entries P (i, j) rather than impute the P (i, j) entries via transitivity.

Having determined the series probabilities P (i, j), it is now necessary to calculate

individual game probabilities. To this end, let pij denote the probability that team i

defeats team j in a game on neutral ice and let ǫ denote the home ice advantage. Therefore,

with respect to team i defeating team j, pij + ǫ is the probability of a home win, and

pij − ǫ is the probability of an away win. We obtain an estimate of ǫ common to the

league by considering the results of the regular season where

ǫ =
(number of home team wins) + 1

2
(number of tied games)

total number of regular season games
. (5)

Keeping in mind the 2-2-1-1-1 home/away format for NHL playoff series, let team i

denote the higher seeded team for whom the first two games in the series are played at

home. Then

P (i, j) = Prob(i wins in 4 games) + Prob(i wins in 5 games)

+ Prob(i wins in 6 games) + Prob(i wins in 7 games)
(6)

where

Prob(i wins in 4 games) = (pij + ǫ)2(pij − ǫ)2, (7)

Prob(i wins in 5 games) = 2(pij + ǫ)2(pij − ǫ)2(1 − (pij + ǫ))

+ 2(pij + ǫ)3(pij − ǫ)(1 − (pij − ǫ)),
(8)

Prob(i wins in 6 games) = 3(pij + ǫ)(pij − ǫ)3(1 − (pij + ǫ))2

+ (pij + ǫ)3(pij − ǫ)(1 − (pij − ǫ))2

+ 6(pij + ǫ)2(pij − ǫ)2(1 − (pij + ǫ))(1 − (pij − ǫ)),

(9)
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and

Prob(i wins in 7 games) = (pij + ǫ)(pij − ǫ)3(1 − (pij − ǫ))3

+ (pij + ǫ)4(1 − (pij − ǫ))3

+ 9(pij + ǫ)2(pij − ǫ)2(1 − (pij + ǫ))2(1 − (pij − ǫ))

+ 9(pij + ǫ)3(pij − ǫ)(1 − (pij + ǫ))(1 − (pij − ǫ))2.

(10)

Substituting (7), (8), (9) and (10) in (6), we have an equation with only one unknown

pij , and pij can be calculated using the Newton-Raphson algorithm. Substituting pij back

into (7), (8), (9) and (10) gives us the four probabilities corresponding to team i winning

the series against team j. Noting that pji = 1 − pij and using formulae (7)-(10), we can

directly calculate the four probabilities corresponding to team j winning the series against

team i.

In summary, probability distributions with 8 outcomes are obtained for all 120 possible

series. Using these distributions, the playoffs are simulated in advance of the draft to

estimate the expectations appearing in the expressions (2), (3) and (4). The expressions

(2), (3) and (4) can then be rapidly calculated for various lineups during the draft.

3 AN OPTIMALITY CRITERION

Without loss of generality, suppose that drafter j uses the following player selection strat-

egy. For the first round of the draft, we suggest that drafter j select the player amongst

those available whose expected number of points in the playoffs θE(g) is greatest. Re-

call that θ and E(g) have been determined in advance of the draft for each player, and

therefore, the decision can be made in real time.

In round n of the draft, 2 ≤ n ≤ m, we propose that drafter j choose the player whose
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selection maximizes

Opt =
1

K − 1

∑

i6=j

Prob(Tj > Ti) (11)

where T1, . . . , TK correspond to the current (yet incomplete) lineups in round n. We refer

to Opt in (11) as the optimality criterion and interpret Opt as the average probability that

lineup j accumulates more points than one of the other lineups. Alternatively, (K−1)Opt

can be thought of as the expected number of lineups that are beaten by lineup j. Although

maximizing the function

Prob





⋂

i6=j

(Tj > Ti)





may also seem appealing, we have a simple approximation of Opt, and we are able to

maximize the approximation of Opt in real time.

In Appendix A, we suggest the approximation

Tj − Tk ∼ Normal(µjk, σ
2

jk) (12)

where µjk = E(Tj) − E(Tk), σ
2

jk = V ar(Tj) + V ar(Tk) − 2Cov(Tj, Tk) and we refer to

expressions (2), (3) and (4) which are easily modified for rounds 2 ≤ n ≤ m of the draft.

Therefore Opt in (11) is approximated by

1

K − 1

∑

j 6=i

Φ

(

µji

σji

)

(13)

where Φ is the cumulative distribution function of the standard normal distribution. A

key point is that (13) can be evaluated (by computer software) for each of the unselected

hockey players in round n, and in real time, we can choose that hockey player whose

selection maximizes (13).

A further simplification may be possible in terms of the search over the remaining

pool of hockey players. If we order the players on each of the 16 playoff hockey teams
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in decreasing order according to their θ values, then our intuition suggests that only the

highest player remaining on each of the 16 teams need to be considered in the selection

process. This reduces the search to a set of only 16 players. The idea is that we never

prefer a player over a teammate if the first player’s ability to score points is less than the

second player’s ability to score points. The conjecture is addressed in Appendix B.

4 A SIMULATION STUDY

We consider an NHL playoff hockey pool with K = 10 drafters and m = 10 rounds of

drafting. Our pool is based on results from the 2003-2004 NHL regular season where we

obtain the player characteristics θ using (1) and we estimated the home ice advantage

ǫ = 0.05 as in (5). For convenience, we restrict our attention to the 10 players per playoff

team having the highest θ values. This provides 160 eligible players amongst whom 100

are selected in the draft. The series win probabilities P (i, j) for all i 6= j are obtained using

the transitivity assumption based on the subset of Sportsbook and subjective probabilities

given in Table 1.

Using the series win probabilities P (i, j), the corresponding single game win probabili-

ties pij are then calculated. We then simulate the playoffs to obtain the quantities E(gki),

V ar(gki) and Cov(gki, glj) appearing in (2), (3) and (4). These quantities relate to the

number of games played by each player in the playoffs and are needed to implement our

optimal drafting strategy. Table 2 gives the top 10 players according to their expected

number of playoff points where we recall that this quantity is a product of the player’s θ

and E(g) values. We note that the top 10 players belong to only four different teams.

To simulate a playoff pool, we need to create “virtual” drafters. The drafters adhere

to the following rules in selecting their lineups.
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Table 1: Sportsbook and subjective series win probabilities P (i, j) for team i defeating
team j.

Team i Team j P (i, j)
Detroit Nashville 0.84
San Jose St. Louis 0.58
Vancouver Calgary 0.56
Colorado Dallas 0.55
Tampa Bay NY Islanders 0.69
Boston Montreal 0.60
Philadelphia New Jersey 0.52
Toronto Ottawa 0.48
Detroit Vancouver 0.61
Vancouver Colorado 0.52
Tampa Bay Boston 0.52
Boston Vancouver 0.53
Calgary Ottawa 0.43
Detroit San Jose 0.56
Calgary New Jersey 0.45

Table 2: Top 10 hockey players according to their expected number of playoff points.

Player Team θ Expected Points
Robert Lang Detroit 1.15 17.21
Peter Forsberg Colorado 1.41 15.35
Martin St. Louis Tampa Bay 1.15 14.89
Pavel Datsyuk Detroit 0.91 13.63
Cory Stillman Tampa Bay 0.99 12.83
Brett Hull Detroit 0.84 12.62
Brad Richards Tampa Bay 0.96 12.52
Alex Tanguay Colorado 1.15 12.46
Markus Naslund Vancouver 1.08 12.15
Joe Sakic Colorado 1.07 11.69
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• Drafter 1 ∼ chooses players according to the optimality criterion (13).

• Drafter 2 ∼ chooses players with the largest θ values.

• Drafter 3 ∼ chooses players with the largest expected number of playoff points.

• Drafter 4 ∼ is an advocate of numerology. The drafter believes that the numbers

8 and 9 are lucky and chooses players with the most regular season points that are

divisible by 8 or 9.

• Drafter 5 ∼ roots for the underdog by choosing players with the most points alter-

nating between the lowest seeded teams in the Eastern and Western conferences.

• Drafter 6 ∼ roots for the favourite by choosing players with the most points alter-

nating between the highest seeded teams in the Eastern and Western conferences.

• Drafter 7 ∼ chooses players with the most regular season points.

• Drafter 8 ∼ is a Vancouver Canucks “Superfan”. The drafter chooses only Canucks

and chooses Canucks according to the highest number of regular season points.

• Drafter 9 ∼ chooses players with the most regular season points whose first name

begins with the letter S.

• Drafter 10 ∼ chooses players with the highest θ values from the top four seeded

teams in the first four rounds of the draft. For the remaining six rounds, the drafter

chooses players with the highest θ values.

Both drafter 1 (who uses the optimality criterion) and drafter 3 have an advantage.

The advantage is that they have exact knowledge of an aspect of the simulation, namely

the number of expected playoff points for each player. We suspect that it would be
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unlikely for an office colleague to go to the extreme lengths of implementing the selection

strategy of drafter 3. Nevertheless, we want to include a drafter who is “smart” for the

sake of assessing the optimality criterion. We also remark that many of the above drafters

are fairly sophisticated in their selection strategies. Our experience is that drafters are

generally not this sophisticated. Therefore, our proposed approach may work better in

practice than in the following test simulation.

We now consider a simulation where each drafter drafts in the position according to

their number. The playoffs were simulated 10000 times and the order of finish in each

simulation was recorded for each of the drafters. In Table 3, we provide the cumulative

probabilities for finishing in positions 1, . . . , 10 in the playoff pool. We also provide E(LD),

the expected number of lineups that each drafter defeats. We observe that E(LD) = 6.54

for drafter 1 and this is the largest expectation amongst all drafters. This might be

expected as the optimality criterion attempts to maximize the number of lineups defeated.

However, we note that drafter 1 does not have the highest probability of finishing first in

the hockey pool. This honour belongs to drafter 2, followed by drafters 8, 6 and 3. In

this regard, the success of drafter 8 (the Canucks Superfan) provides some evidence that

“putting all of one’s eggs in one basket” has some merit. When the Canucks go deep into

the playoffs, drafter 8 does very well, and conversely, when the Canucks are eliminated

early in the playoffs, drafter 8 does poorly. We also note that the probability of “being

in the money” (i.e. first, second or third) is the greatest for drafter 3 followed closely

by drafter 1. Drafter 3 (1) is in the money 57% (56%) of the time. As many hockey

pools have prizes for first, second and third place finishes, this provides further appeal for

taking into account the number of games played.

We now consider the impact of draft position. We repeat the simulation where all

of the drafters maintain the same order of selection except drafter 1 who is moved from
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Table 3: Cumulative probabilities for order of finish and E(LD) in a playoff pool where
drafter 1 selects first.

Drafter
Finish 1 2 3 4 5 6 7 8 9 10

1st 0.11 0.21 0.15 0.02 0.01 0.16 0.07 0.19 0.00 0.06
2nd 0.32 0.32 0.36 0.10 0.03 0.29 0.20 0.24 0.01 0.15
3rd 0.56 0.40 0.57 0.16 0.05 0.36 0.34 0.26 0.02 0.27
4th 0.77 0.50 0.72 0.24 0.06 0.45 0.50 0.30 0.04 0.45
5th 0.88 0.61 0.81 0.34 0.09 0.55 0.67 0.33 0.07 0.66
6th 0.94 0.75 0.88 0.50 0.11 0.65 0.81 0.39 0.13 0.84
7th 0.98 0.87 0.94 0.72 0.14 0.73 0.92 0.47 0.30 0.94
8th 0.99 0.95 0.98 0.93 0.20 0.82 0.98 0.53 0.64 0.99
9th 1.00 1.00 1.00 0.99 0.44 0.91 1.00 0.71 0.96 1.00
10th 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E(LD) 6.54 5.60 6.40 3.99 1.12 4.92 5.49 3.41 2.17 5.35

the first to the last position. This means, for example, that drafter 1 has the 10th and

the 11th selections in the draft. The results of the simulation are provided in Table 4.

We observe that drafter 1 does about as well selecting in the last position as in the first

position. For example, drafter 1 finishes second to drafter 3 in E(LD) and drafter 1

is second according to being in the money. Again, we are not too disappointed by the

E(LD) result as drafter 3 uses specialized knowledge that would not be typically available

to drafters. Our explanation for this is that drafting in the 10th position is too far away

from the beginning of the draft to select one of the few really outstanding hockey players.

Now recall the discussion where it was pointed out that drafter 1 and drafter 3 were

advantaged by their knowledge of the expected number of playoff points. It therefore

might be asked whether there is a meaningful difference in their selection strategies. In

other words, does it make sense to invoke the optimality criterion when a similar lineup

might be achieved by the simpler criterion of maximizing the expected number of playoff
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Table 4: Cumulative probabilities for order of finish and E(LD) in a playoff pool where
drafter 1 selects last.

Drafter
Finish 1 2 3 4 5 6 7 8 9 10

1st 0.13 0.13 0.18 0.02 0.01 0.22 0.07 0.18 0.00 0.05
2nd 0.31 0.25 0.46 0.08 0.03 0.32 0.19 0.23 0.01 0.14
3rd 0.50 0.36 0.64 0.15 0.05 0.39 0.34 0.27 0.01 0.29
4th 0.67 0.51 0.75 0.24 0.06 0.46 0.49 0.30 0.03 0.48
5th 0.79 0.66 0.84 0.36 0.09 0.54 0.64 0.34 0.07 0.69
6th 0.87 0.83 0.90 0.51 0.12 0.62 0.77 0.40 0.14 0.85
7th 0.93 0.94 0.95 0.72 0.15 0.70 0.88 0.47 0.33 0.94
8th 0.97 0.98 0.98 0.93 0.20 0.80 0.97 0.53 0.65 0.99
9th 0.99 1.00 1.00 0.99 0.44 0.91 1.00 0.71 0.97 1.00
10th 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E(LD) 6.16 5.66 6.70 3.99 1.14 4.96 5.33 3.43 2.21 5.42

points? To investigate this, we consider whom drafter 3 would have selected had drafter

3 been in the position of drafter 1. In the simulation where drafter 1 chose first, drafter

3 would have picked the same player as drafter 1 in 8 of the 10 draft positions. In the

simulation where drafter 1 chose last, drafter 3 would have picked the same player as

drafter 1 in only 6 of the 10 draft positions. Hence, the strategy of drafter 1 based on the

optimality criterion does differ meaningfully from the simplified (but intelligent) strategy

of drafter 3.

5 AN ACTUAL STANLEY CUP PLAYOFF POOL

Although a particular instance of a hockey pool does not address the long term properties

of a drafting strategy, it is instructive to review our approach in a realistic setting. For

the 2006 NHL playoffs, we conducted a pool with K = 10 drafters and m = 10 rounds
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Table 5: Sportbook odds for the favourite in the first round series (underdog in parenthe-
ses).

Teams Odds
Detroit (Edmonton) 0.37
Dallas (Colorado) 0.61
Calgary (Anaheim) 0.61
Nashville (San Jose) 0.92
Ottawa (Tampa Bay) 0.41
Carolina (Montreal) 0.56
New Jersey (New York) 0.54
Buffalo (Philadelphia) 0.67

of drafting. Our strategy was implemented by one of the authors (Amy), who by chance,

drafted in the first position.

In Table 5, we provide the Sportsbook odds (adjusted for vigorish) for each of the

favourites in the eight first round series. The odds were taken from www.vegasinsider.com

two days prior to the beginning of the playoffs. The underdog is listed in parentheses.

In Table 6, we provide Amy’s subjective odds for seven hypothetical matchups. Some of

the odds may seem extreme but this demonstrates the flexibility of the approach. All of

the odds in Table 5 and Table 6 were then used to complete the graph and populate the

probability matrix.

For the sake of brevity, in Table 7, we show the first 3 draft picks for each of the

drafters, the draft order, playoff points accumulated by the draft picks and the total

number of playoff points for the entire lineup. The 2006 playoffs were marked by upsets

with Carolina defeating Edmonton in the Stanley Cup finals. However, by skill and good

fortune, Amy won the hockey pool with 113 points followed by Willy with 97 points.
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Table 6: Subjective odds for the favourite in hypothetical matchups (underdog in paren-
theses).

Teams Odds
Dallas (Detroit) 0.54
Calgary (Detroit) 0.43
Calgary (Nashville) 0.25
Anaheim (New York) 0.18
Anaheim (Philadelphia) 0.82
Carolina (Ottawa) 0.92
Calgary (Carolina) 0.75

Table 7: Some summary results from the 2006 NHL playoff pool.

Drafter Pick Points Drafter Pick Points
Amy (1) P Elias (NJ) 16 Jen (2) J Jagr (NY) 1

D Briere (Buf) 19 P Schaefer (Ott) 7
C Stillman (Car) 26 J Iginla (Cgy) 8

Total Points = 113 Total Points = 51
Darcy (3) D Heatley (Ott) 12 Leslie (4) E Staal (Car) 28

P Kariya (Nsh) 7 B Gionta (NJ) 7
M Modano (Dal) 4 R Lang (Det) 6

Total Points = 51 Total Points = 93
Linda (5) J Thornton (SJ) 9 AJ (6) B Shanahan (Det) 2

N Lidstrom (Det) 2 J Spezza (Ott) 14
T Holmstrom (Det) 3 R Smyth (Edm) 16

Total Points = 49 Total Points = 80
Beth (7) A McDonald (Ana) 9 Willy (8) H Zetterberg (Det) 6

A Tanguay (Col) 6 P Datsyuk (Det) 3
A Hemsky (Edm) 17 P Marleau (SJ) 14

Total Points = 57 Total Points = 97
Art (9) D Alfredsson (Ott) 10 Rory (10) J Cheechoo (SJ) 9

T Selanne (Ana) 14 M Afinogenov (Buf) 8
S Gomez (NJ) 9 P Forsberg (Phi) 8

Total Points = 93 Total Points = 67
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6 DISCUSSION

We have proposed a method of player selection in a common NHL hockey pool. With

the aid of a computer and some preliminary simulations, player selections can be made

in real time. It appears that the approach is better than a number of ad-hoc strategies.

It is clear that the approach could also be implemented for other hockey leagues (eg.

junior hockey), and it might also be tweaked for pools with slightly different rules and

also for different sports (eg. soccer).
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8 APPENDIX A

In this section we discuss conditions under which the normal approximation to Tj − Tk

might be expected to be reasonable. Under our model, given the numbers of games played

in the playoffs by each player on a drafter’s roster, the total number of points scored T , has

a Poisson distribution. When the Poisson parameter is large, and we expect this when
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many players are drafted, the conditional distribution of T will be reasonably normal.

However, due to the correlation in the numbers of games played by different players, it is

clear that the unconditional distribution of T may be distinctly non-normal.

Consider round n of the draft and focus on one drafter. Let θi denote the expected

goals per game for the ith player drafted and let gi be the number of games played by this

player. Put

G =
∑

giθi.

Let T be the points obtained by the players drafted through round n. Given the gi the

quantity T has a Poisson distribution with mean G. We now give conditions under which

T is approximately normally distributed. Denote

µ = E(G) =
∑

E(gi)θi

and

σ2 = Var(G).

Then

E(T ) = E(G) =
∑

E(gi)θi

and

Var(T ) = E(G) + Var(G).

The basic theoretical result is this:

Theorem: Suppose that (Tn, Gn) is a sequence of random variables such that

• Given Gn, the conditional distribution of Tn is Poisson with mean Gn.

• The mean µn of Gn tends to infinity with n.

• The variance σ2

n of Gn is finite.

Assume either:
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1. Gn is asymptotically normal, that is,

Gn − µn

σn
⇒ N(0, 1)

OR

2. Variability in Gn is asymptotically negligible in the sense that

σ2

n

µn + σ2
n

=
σ2

n

Var(Tn)
→ 0.

Then
Tn − µn
√

Var(Tn)
⇒ N(0, 1).

Proof: Let φ(·;λ) be the characteristic function of a standardized Poisson variate with

mean λ, that is, if Y has a Poisson(λ) distribution then

φ(t;λ) = E[exp{it(Y − λ)/
√
λ}] = exp

[

λ{exp(itλ−1/2) − itλ−1/2 − 1}
]

.

Write

τ 2

n = Var(Tn) = µn + σ2

n

and

Zn ≡ Tn − µn

τn
=

√
Gn

Tn−Gn√
Gn

+Gn − E(Tn)

τn
.

Then

E {exp(itZn)} = E
(

φ(t
√
Gn/τn;Gn) exp [it {(Gn − µn)/τn}]

)

= E (exp {−t2Gn/(2τ
2

n)} exp [it {(Gn − µn)/τn}])
+ E

([

φ(t
√
Gn/τn;Gn) − exp {−t2Gn/(2τ

2

n)}
]

exp [it {(Gn − µn)/τn}]
)

.

(14)

Since µn = E(Gn) ≤ τ 2

n we find Gn/τ
2

n = OP (1). By the central limit theorem it follows

that as n tends to infinity we have

[

φ(t
√

Gn/τn;Gn) − exp
{

−t2Gn/(2τ
2

n)
}

]

→ 0
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in probability. Moreover this quantity is bounded, and therefore the second term in (14)

tends to 0. That is

E {exp(itZn)} = E
(

exp
{

−t2Gn/(2τ
2

n)
}

exp [it {(Gn − µn)/τn}]
)

+ o(1). (15)

Rewrite the leading term in (15) as

E
(

exp
[

{it− t2/(2τn)}(Gn − µn)/τn
])

exp(−t2/2) exp(t2σ2

n/(2τ
2

n)). (16)

Notice that τn → ∞ so that t2/τn → 0. Under the second condition the last factor in (16)

converges to 1, and
Gn − µn

τn
=
Gn − µn

σn

σn

τn
→ 0

in probability so that the first factor in (16) also converges to 1 leaving

E {exp(itZn)} → e−t2/2

as desired. On the other hand if the first condition holds then

E
(

exp
[

{it− t2/(2τn)}(Gn − µn)/τn
])

− E (exp [it(Gn − µn)/τn]) → 0

(because τn → ∞). Now

E (exp [it(Gn − µn)/τn]) = ψn(tσn/τn)

where ψn is the characteristic function of (Gn − µn)/σn. The first condition guarantees

that

ψn(tσn/τn) − exp{−t2(σ2

n/(2τ
2

n))} → 0

for each fixed t. It follows that

E {exp(itZn)}
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has the same limit as

exp{−t2(σ2

n/(2τ
2

n))}e−t2/2 exp(t2σ2

n/(2τ
2

n)) = e−t2/2

which proves the Theorem.

It remains to interpret this result in terms of our context. The condition that µn → ∞
means that we need the expected number of points scored in the playoffs by the first n

players drafted to be large. This amounts to a requirement that the players score many

points or play many games or that there be many players on a lineup.

Looking at the case where the variability in Gn is negligible amounts to considering

cases where there is little randomness in the linear combination
∑

giθi. When players are

drafted from a variety of teams we expect that the average correlations between pairs of

gi will be negative. Though an individual gi is highly variable because a team may be

eliminated early or play all the rounds the total number of games played
∑

gi is clearly

much less variable: the number of playoff series is fixed.

Finally we have not examined closely cases in which G itself is nearly normal. Clearly,

if all players are picked from the same team, this is unlikely to be the case. If, however,

players are picked from a variety of teams then we suspect that there will be enough

independence amongst the gi to produce approximate normality.

Our arguments indicate that the normal approximation should improve as rounds

of drafting continue – when only 1 player has been drafted a normal approximation is

unlikely to be effective.

Finally we note that the distribution of a single Tj is likely to be skewed to the right

since the Poisson distributions involved are right skewed and G seems likely to be right

skewed. Under these conditions it is likely that Tj − Tk will be less skewed than an

individual Tj , improving the resulting normal approximation to the difference.
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9 APPENDIX B

We put forward the following conjecture which is intuitive and held true in all of our sim-

ulations including those of Section 4. Consider player 1 and player 2 from the same team

with characteristics θ1 and θ2 respectively where θ1 > θ2. According to the optimality

criterion (13), in a given round of the draft, we would never select player 2 if player 1

were available.

Unable to establish the conjecture, we prove a restricted version. Consider the n-th

round of the draft where drafter k has selected a lineup with total points Tk. Drafter j

considers two lineups which differ only in the n-th player selected. Let Tj be the total

points corresponding to the first lineup under consideration where the n-th player selected

has characteristic θjn. Let T ′
j be the total points corresponding to the second lineup under

consideration where the n-th player selected has characteristic θjn − ∆ where ∆ > 0.

Proposition: In a neighbourhood of E(Tj) = E(Tk),

Prob(Tj > Tk) > Prob(T ′
j > Tk)

where Prob refers to the normal approximation in (12).

Proof: Using (2) and the notation of Section 3, we need to establish

Φ

(

E(Tj) −E(Tk)

SD(Tj − Tk)

)

> Φ

(

E(Tj) − E(Tk) − ∆E(gjn)

SD(T ′
j − Tk)

)

in a neighbourhood of E(Tj) = E(Tk). The inequality holds if

f(x) =
x

SD(Tj − Tk)
− (x− ∆E(gjn))

SD(T ′
j − Tk)

> 0

where x = E(Tj)−E(Tk). Noting that f(0) > 0 and f ′(x) = SD−1(Tj −Tk)−SD−1(T ′
j −

Tk), the proposition is proved. We remark that when the derivative is close to zero (as

might be expected), the neighbourhood is large.
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