
Random Variable Generation Using ConcavityProperties of Transformed DensitiesM. Evans�and T. Swartz�U. of Toronto and Simon Fraser U.AbstractAlgorithms are developed for constructing random variable gener-ators for families of densities. The generators depend on the concavitystructure of a transformation of the density The resulting algorithmsare rejection algorithms and the methods of this paper are concernedwith constructing good rejection algorithms for general densities.Keywords: random variate generator, T -concavity and T -convexity,points of inection, adaptive rejection sampling.1 IntroductionGood algorithms for generating from univariate distributions are a necessarypart of many applications where approximations to integrals or expectationsare required. For a wide class of commonly used distributions there exist ex-cellent algorithms and for many non-standard distributions there are classesof tools that can be applied to construct good algorithms; see for example,Devroye (1986). But this is not always the case. In many situations analgorithm can be constructed by sheer brute force inversion; i.e. tabulatethe distribution function at many points, but this is inelegant and rarelyresults in a satisfactory solution. By this we mean that the time taken togenerate many independent realizations can be considerable. Further, oftenwe want an algorithm that can generate from a family of distributions andthe speci�c distribution in the family cannot be prespeci�ed; e.g. it may�Partially supported by a grant from the Natural Sciences and Engineering ResearchCouncil of Canada. 1



depend on data that varies from application to application, or the distribu-tion may be changing dynamically as the simulation progresses, as in Gibbssampling. In such contexts the brute force algorithm is not feasible.In spite of the extensive amount of development in this area the authorshave still encountered numerous situations where there is no obvious algo-rithm available beyond brute force inversion. We describe some of these insection 5. The purpose of this paper is to describe a general black-box algo-rithm that is capable of handling a wide variety of situations. In essence theuser is required to input a minimal amount of information about densitiesbelonging to a family of distributions and then the algorithm constructs ane�cient generator. This is not a universal black-box as certain informationis required to be available, or at least easily computed, and sometimes thisis not the case. Basically, the information required is at most the �rst threederivatives, and the roots of the �rst and second derivatives, of some sim-ple transformations of the density. This information is readily available formany univariate densities. A strong point of the algorithm described here isthat excellent algorithms for speci�c distributions can be easily constructedand this does not demand deep insight into the properties of the distribu-tions or great amounts of development time. The computer does all thework.The algorithm we develop can be thought of as a generalization in severalways of the adaptive rejection algorithm developed in Gilks and Wild (1992).We will refer to this algorithm hereafter as the Gilks-Wild algorithm. TheGilks-Wild algorithm is a black-box algorithm for distributions with log-concave densities. For example, the N(0; 1); Gamma(�) for � > 1 andBeta(a; b) for a; b � 1 all have log-concave densities. Further log-concavityis maintained under location-scale transformations and truncation. On theother hand the Student(�) and the F(a; b) densities are not log-concave.While there are simple good algorithms for generating from the full Studentor F distributions this is not the case for truncations. The algorithm wedescribe here leads to new, good algorithms for the full distributions andalso easily handles truncations.In Gilks, Best and Tan (1993) a Markov chain algorithm is developedthat combines the Gilks-Wild algorithm with the Metropolis algorithm togive an approximate generator for a general univariate density. In additionto only being approximate this algorithm also su�ers from the existenceof correlation between realizations. The algorithms developed here are ex-act and generate independent realizations. The Gilks-Wild algorithm is anadaptive rejection algorithm and this is particularly suitable in a number ofapplications of Gibbs sampling when the full conditional densities are log-2



concave. The algorithms developed here are adaptive and do not require thelog-concave restriction on densities.In section 2 we discuss T -concavity and speci�c examples of transforma-tions T: In section 3 we indicate how these concepts are used to constructgenerators. In section 4 we consider the design of good generators and insection 5 we present examples. Conclusions are given in section 6.Other authors have developed black-box approaches to constructing gen-erators for distributions. For example, Marsaglia and Tsang (1984), Devroye(1986), Zaman (1991) and H�ormann (1995) all contain developments rele-vant to this problem. In particular H�ormann (1995) �rst introduced the ideaof T -concavity, on which much of the development in this paper is based.We have extended this development in a number of signi�cant ways. Weshow that a much wider class of transformations is useful and introduce T -convexity. Densities are not required to be unimodal or bounded. Furtherthe entire density is not required to be T -concave or T -convex provided thatthe inection points of the transformed density are available. Finally adap-tation is introduced together with a useful stopping rule. In section 5 weprovide examples of generators that could not have been developed usingprevious results.2 T -ConcavityThe Gilks-Wild algorithm is based on the log-concavity of a density f ; i.e.the function ln �f is concave. In fact there is no reason to restrict just tothe logarithm transformation and there is no reason to restrict to concavity.With appropriate restrictions on transformations T : (0;1) ! R; similaralgorithms can be constructed.Accordingly we say f : D ! R is T -concave , where D is a convex subsetof R, if T � f is concave. If T �f is smooth then f is T -concave if and onlyif (T � f)00 = (T 00 � f)(f 0)2 + (T 0 � f)f 00 � 0: Further we say that f is T -convex if �(T � f ) is concave. We call a convex subset C of D a domainof T-concavity of f if T � f is concave or convex there. We will restrict ourdiscussion hereafter to functions f with a �nite partition fD1; : : : ; Dmg of Dby domains of T -concavity. For such an f there is a coarsest such partition,which we call the T -partition of f , and note that this can be constructedby �nding the inection points of T � f: The T -partition together withthe concavity of T � f on each partition element will be referred to as theT -concavity structure of f: It is clear that T -concavity or T -convexity ispreserved under location-scale transformations and truncations.3



We recall some elementary facts about inection points for smooth func-tions g de�ned on an open interval. First x is a point of inection for g ifand only if g00(x) = 0 and g000(x) 6= 0: Further, if x is a point of inectionof g and g000(x) > 0 then g changes from concave to convex as we proceedfrom left to right through x: Similarly g changes from convex to concave ifg000(x) < 0: The inection points of T � f , perhaps for several T transfor-mations, is typically the information needed to construct a generator usingthe methods of this paper. For many distributions and transformations thisinformation is readily available.For the transformations T considered here the T -concavity structureof a function does not change under positive multiples of f . A su�cientcondition to ensure this is that T 0 be homogeneous of degree � 2 R: ForT 0 homogeneous of degree � implies that T 00 is homogeneous of degree � �1 and then the above expression for (T � f)00 shows that the sign of thisquantity does not change under positive multiples of f . In such a caseour algorithm does not require that the density be normalized. This ispractically signi�cant, as often determining a norming constant can be asubstantial computation. Further, it allows for great convenience in ourdevelopment as we will ignore norming constants. As such, when referringto a density f , hereafter,we will only require that it be nonnegative andintegrable.As might be imagined an arbitrary T does not su�ce for the constructionof good, or even feasible, generators. For convenience we list what seem tobe necessary characteristics. The necessity of these will become apparentwhen we present the algorithm.1. T : (0;1) ! R is smooth, monotone and T 0 is homogeneous ofsome degree,2. T and its derivatives and T�1 are easy to compute,3. the anti-derivative of T�1 (�+ �x) is easy to compute for x 2 Dand is integrable on D; i.e. T�1 (�+ �x) is a density on D4. it is easy to generate from the distribution with density T�1 (�+�x) via inversion.We now present some examples of transformations that satisfy items 1-4.2.1 Logarithm transformationIf we take T = ln then T is smooth and increasing, T 0 is homogeneousof degree -1, T�1(x) = exp(x) and R T�1 (� + �x) dx = 1� exp(� + �x):4



Therefore T�1 (� + �x) is a density on (a; b) whenever a; b 2 R; a densityon (�1; b) when � > 0 and is a density on (a;1) when � < 0: Furtherthe inverse cdf of any of these distributions is easily obtained using the logfunction so that generating using inversion is easy.2.2 Power transformationsWe de�ne Tp for p 6= 0 by Tp(f) = fp: Then Tp is smooth, increasing whenp > 0, decreasing when p < 0 and T 0 is homogeneous of degree p � 1.Further T�1p (x) = x1=p for x > 0 and, provided that � and � are chosen sothat �+ �x � 0 on D; thenZ T�1p (�+ �x) dx = ( 1� pp+1(�+ �x) p+1p if p 6= 0;�11� ln(�+ �x) if p = �1 :>From this we see that, provided that �+�x � 0 on the interval in question,T�1p (�+�x) is a density on (a; b) for every p 6= 0 and is a density on (�1; b)or (a;1) whenever p 2 (�1; 0) . In all of these cases the inverse cdf is easilyobtained and so it easy to generate from these distributions via inversion.As we will see the requirement that � + �x � 0 on an interval, is typicallyeasy to satisfy as part of the algorithm.We note that another family of transformations given by T �p (f) = (fp�1)=p for p 6= 0 and T �0 (f) = ln(f) includes the log and power transformationsin a continuous family. There seems to be no apparent advantage to thisfamily, however, and it ignores the fundamental di�erence in the restrictionplaced on � + �x between the log and power transformations. Also whileTp � f and T �p � f have the same concavity structure they lead to di�erentgenerators.3 The AlgorithmWe restrict ourselves initially to the situation where D = [a; b] is a boundedinterval and suppose that we have chosen T; satisfying 1-4, so that f is T -concave or T -convex on D and T � f is smooth. We note, however, thatin general we can use di�erent T transformations on di�erent parts of thesupport of f . Further we suppose that we have chosen points a � x1 <: : : < xm � b: In section 4 we will discuss how to choose these points.Now let ti(x) = (T � f)(xi) + (T � f)0(xi)(x � xi) be the equation ofthe tangent line to T � f at xi: Let zi 2 (xi; xi+1) be a point satisfyingti(zi) = ti+1(zi) for i = 1; : : : ; m � 1 and put z0 = a; zm = b: Note that5



the T -concavity or T -convexity ensures that zi exists and if (T � f)0(xi) 6=(T � f)0(xi+1) then it is unique. If (T � f)0(xi) = (T � f)0(xi+1) then T � f= ti on (xi; xi+1): In this case we will see that there is no bene�t to havingboth xi and xi+1 in the partition and so we can delete one. Henceforth wewill assume that this has been done and thenzi = [(T � f)0(xi)xi � (T � f)0(xi+1)xi+1]� [(T � f)(xi)� (T � f)(xi+1)][(T � f)0(xi)� (T � f)0(xi+1)] :Further let ci (x) = (T � f)(zi)+ [(T � f)(zi)� (T � f)(zi�1)] (x� zi)=(zi� zi�1) be the equation of the secant from (zi�1; (T �f)(zi�1)) to (zi; (T �f)(zi))for i = 1; : : : ; m:Now de�ne the upper envelope function byu(x) = 8>>><>>>: ti(x) if zi�1 � x � zi, T � f concave,T increasing or T � f convex ,T decreasingci (x) if zi�1 � x � zi, T � f concave,T decreasing or T � f convex ;T increasingand the lower envelope function byl(x) = 8>>><>>>: ci(x) if zi�1 � x � zi, T � f concave,T increasing or T � f convex ,T decreasingti (x) if zi�1 � x � zi, T � f concave,T decreasing or T � f convex,T increasing :We then have that T�1(l(x)) � f(x) � T�1(u(x)) for every x 2 (a; b)and on ( zi�1; zi), T�1(u(x)) = T�1(� + �x) for some �; �. De�ne themixture density g(x) = T�1(u(x))= R ba T�1(u(z)) dz = Pmi=1 pigi(x) wherepi = di=(d1 + � � �+ dm); di = R zizi�1 T�1(u(x)) dx and gi(x) = T�1(u(x))=dion [ zi�1; zi] and is equal to 0 otherwise. We can generate from g since itis easy to calculate the pi and easy to generate from component gi usinginversion. We use the aliasing algorithm; see Devroye (1986), to generatefrom the discrete distribution (p1;���;pm): Thus generating from g only re-quires the generation of 2 uniforms. Then the rejection sampling algorithmfor f proceeds by (i) generating X � g; (ii) generating V � U(0; 1); (iii)if f(X) � V T�1(u(X)) then return X else go to (i). In contexts wherethe computation of f(X) is expensive we can add a squeezer step, between(ii) and (iii), by �rst testing T�1(l(X)) � V T�1(u(X)) and returning X ifthis holds, otherwise carrying out step (iii). In the adaptive version of thisalgorithm the point X is added to fx1; : : : ; xmg and a new l and u computedwhenever f(X) < V T�1(u(X)): 6



We recall here the requirement that � + �x � 0 whenever T is a powertransformation. Consideration of the above shows that this restriction willautomatically be satis�ed piecewise by u and l whenever we require thatx 2 fx1; � � � ; xmg if (T � f)0(x) = 0:There are several assumptions associated with the above development.First we assumed that there exists a T such that f is T -concave or T -convexon D. This is clearly not necessarily the case but this problem is easily dealtwith when D = [a; b] by using the T -partition of f and constructing u and lpiecewise on each element of the partition. More serious are the assumptionsof bounded support and of no singularities at the end-points. As we will seein the examples, both of these problems can be dealt with in very generalfamilies of densities by making a judicious choice of a T transformation for atail interval or an interval with a singularity as an end-point. For example,it turns out that when a tail is not log-concave then there is often a powertransformation Tp such that the tail is Tp-convex and p 2 (�1; 0) so that Tpis decreasing. In particular, in�nite intervals are easily handled, in the sensethat we can construct a rejection sampler g on the whole interval, wheneverf is T -concave on the interval with T increasing or whenever f is T -convexon the interval with T decreasing. In these cases u is de�ned exactly as inthe case of a bounded interval while l must be modi�ed so that the squeezerT�1(l(x)) takes the value 0 on in�nite intervals; e.g. in the log-concave casel(x) takes the value �1 on such intervals.4 Selecting the PointsGiven a speci�c density f it is natural to ask which transformation T shouldbe used, say from amongst those described in section 2. It turns out, how-ever, that a single T is sometimes not su�cient as we will require di�erenttransformations for the tails and the central region; e.g. see section 5. Inthe situation where a single transformation su�ces then we would like tochoose that T and the points fx1; : : : ; xmg which maximizes the probabilityof acceptance; namelyP (f(X) � V T�1(u(X))) = R f(x) dxR T�1(u(x)) dx:This is not a tractable problem, however, even in very simple contexts. Onething we can say, based on the developments in section 3, is that choosingT so that T � f is approximately linear seems appropriate. Accordingly, wewill suppose that T has been chosen for a particular interval and considerthe choice of the points fx1; : : : ; xmg in this interval.7



While optimal selection of the points may be a reasonable approach fordistributions that are used very frequently, in general the following seemslike an e�ective way to proceed as it demands minimal input and designof the algorithm. We start with some initial set fx1; : : : ; xmg containing atleast all the criticial and inection points of T � f and typically it pays toinclude more than these: For example, if the largest x value is a critical pointand the distribution has an in�nite right tail then we must include one morepoint in the right tail else g will not be integrable. A similar considerationarises if the smallest x value is a critical point and the distribution hasan in�nite left tail. We then let the algorithm run adaptively; i.e. everytime an X generated from the rejection sampler is rejected, we add X tofx1; : : : ; xmg and update the envelopes. We can either let the adaptationrun inde�nitely or stop after the probability of acceptance is su�ciently closeto 1. Given that integrating f may be di�cult, it makes sense to insteaduse the closeness of �� = R T�1(l(x)) dxR T�1(u(x)) dxto 1 as our stopping rule asR T�1(l(x)) dxR T�1(u(x)) dx � R f(x) dxR T�1(u(x)) dx � 1and we expect �� to be close to 1 for a good generator as well.We note that the time needed to generate from a particular g is inde-pendent of the number of components in the mixture. So provided thatstorage is not an issue, and it rarely is, we can continue the adaptation formany adaptive steps. The only computational cost is the need to updatethe envelopes. Adaptation is only carried out, however, when there is a re-jection and, otherwise, we are generating values from f:. This only requiresthat the algorithm retain a memory of its structure between calls if we aregenerating many values. With a typical application of Gibbs sampling a sin-gle value from the distribution is all that is required. Even in this extremesmall sample setting the adaptive approach often provides a very e�cientgenerator as has been observed many times with the Gilks-Wild algorithm.For illustrative purposes we consider applying this algorithm to theN(0; 1) distribution. Of course there are many excellent algorithms for thisdistribution but many of these require a considerable amount of design workin contrast to the approach taken here. Note that the N(0; 1) density is log-concave so that the tails are easily handled and we can use the Gilks-Wildalgorithm. Therefore we put T = ln and start with fx1; : : : ; x61 g obtained8



by dividing each of the intervals [-4,-1], [-1,0], [0,1] and [1,4] into 15 subinter-vals and then let the xi equal the endpoints. We obtained �� =.9974 as aninitial lower bound on the probability of acceptance. Other than including0 as an initial point, as it is a critical point of ln �f; the xi were chosenin what seemed a reasonable way to span the support of the distribution.We compared the performance of this algorithm with the IMSL algorithmdrnnoa, which is based on developments in Kinderman and Ramage (1976).The accompanying documentation cites this as the fastest normal generatoravailable in that package of routines. Based on 106 calls to our routine andto drnnoa we found that the Gilks-Wild algorithm was 51% slower. Also the�nal value of �� was .9998. Given that the total generation time for our rou-tine was 132 seconds on a Sparc workstation this di�erence can be viewed asnot very substantial. Note that this includes the computation time neededto construct the initial envelopes and we did not turn o� the adaptationwhen �� achieved some desired value. We stress, however, that we are notadvocating our approach for distributions that already have good generatorsand present this only as an example of how e�ective the approach can bewith relatively little e�ort. One distinct advantage of the approach takenhere, however, is that it is easy to modify the algorithm for truncations bysimply truncating the envelopes.5 ExamplesIn this section we consider a number of examples where the techniques ofthis paper have been found to be useful as good generators for these distri-butions are not known. Many of the algebraic computations in this sectionleading to exact expressions were carried out using Maple and this avoideda considerable amount of tedious and error-prone algebra. The basic ideain these examples is to use the T -concavity structure of the density to sub-divide the support of the density into a �nite set of subintervals. On eachof these intervals the methods of section 3 can then be applied. The choiceof T is not entirely clear but we generally follow the principle of choosinga transformation that handles the tails and then using this T for the entiredistribution. In some cases this is not possible as the left and right tail mustbe treated di�erently and then we use two transformations. While we de-scribe how to construct algorithms for the entire distribution we recall thatthe same algorithm also applies to truncations of the distributions.9



5.1 Makeham's distributionThe (normalized) density of this distribution is given byf(x) = (a+ bcx) exp(�ax� bln(c)(cx � 1))where b > 0; c > 1; a > �b; x � 0: This distribution has applications inactuarial science. Scollnik (1996) discusses generating from this distributionand notes that it is not always log-concave and so recommends the Markovchain algorithm described in Gilks, Best and Tan (1993). Our methods leadto an exact generator that gives independent realizations.We have thatf 0(x) = � exp��ax ln c+ bcx � bln c � (b2 (cx)2 � b (ln c) cx + 2abcx + a2)f 00(x) = exp��ax ln c+ bcx � bln c �h(cx)with h(y) = b3y3 + 3b2 (a � ln c)y2 + b �3a2 � 3 (ln c)a+ ln2 c� y + a3and f 000(x) = � exp��ax ln c+ bcx � bln c �k(cx)withk(y) = b4y4 + 2b3 (�3 ln c+ 2a) y3 + b2 �6a2 + 7 ln2 c� 12 (ln c)a� y2 +b (2a� ln c)�2a2 � 2 (ln c)a+ ln2 c� y + a4:Note that h(y) � 0 when y is large and this implies that the tail is convex.Roots of h(y) can be solved for symbolically but these expressions are toocomplicated for coding so it is better to �nd these numerically. Those rootsthat are greater than 1 give inection points for f(x) via the transformationx = ln(y)= ln(c). The sign of k(y) at these points determines the concavitystructure of f .We must determine a method for handling the tail. For this put g(x) =ln(f(x)) and theng0(x) = � �b2 (cx)2 � b (ln c) cx + 2abcx + a2� (a+ bcx)�110



g00(x) = �b (ln c)�b2 (cx)3 + 2ab (cx)2 � (ln c)acx + a2cx� (a+ bcx)�2g000(x) = �b �ln2 c� b3 (cx)4 + 3b2a (cx)3 + b (ln c)a (cx)2+3a2b (cx)2 + a3cx � (ln c)a2cx ! (a+ bcx)�3 :Then making the transformation to y = cx the third factor of g00(x) be-comes l(y) = y �b2y2 + 2aby � (ln c)a+ a2� : The roots of l(y) are 0 and1b ��a �pa ln c�and the roots greater than 1 give the inection points ofthe log-density. Observe that l(y) � 0 for large y and this implies g00(x) � 0for large x so that the tail of f is inevitably log-concave. If we let m(y)denote the third factor of g000(x), after transforming to y; then the sign ofm(y) at these inection points determines the concavity structure of thelog-density.So to construct a generating algorithm we could determine the concavitystructure of f and then determine the log-concavity structure for the tail.We notice, however, that to determine the concavity structure of f is un-necessary as we can use ln �f for the construction of the entire generator. Infact this is simpler because calculating the concavity structure of f requires�nding the roots of a cubic polynomial while for ln �f we need only calcu-late the roots of a quadratic. This is straightforward and gives a black-boxalgorithm for Makeham's distribution for all parameter values. Notice thatwhenever a < 0 ( i.e. the non-zero roots are imaginary) or if the largest rootof l(y) is less than 1, then the density is log-concave.>From the expression for g0 we see that g0(x) = 0 for x > 0 if and onlyif the polynomial b2y2 + (�b ln c+ 2ab)y + a2 has a root greater than 1.The roots of this quadratic are given by 12b �ln c� 2a�pln c (ln c� 4a)� :We then use the transformation x = ln(y)= ln(c) on these values and onthe values 1b ��a �pa ln c� to determine the starting set of points for theadaptive algorithm; namely those x values that are greater than 0. The signof g000(x) at each of the inection points determines the change of concavity.As a speci�c example consider generating from this distribution witha = :01; b= :01 and c = e: Then the log-density has a single local maximumat 4.585, no local minima and a single inection point at 2.197; i.e. in par-ticular the density is not log-concave. To construct the initial envelopes wedivided the intervals [0,2.197], [2.197,4.585], [4.585,2(4.585)] into 15 subin-tervals each and used the end-points for the initial xi values. The initialvalue for �� was .9888 and after generating 104 values it was .9979. It took103 seconds of CPU time to generate 106 values. We considered a number ofother cases. It consistently proved to be useful to place a value in the righttail of the density and twice the largest critical or inection point generally11



proved satisfactory. This is why the point 2(4.585) was used above. Forsome choices of the parameters there were no critical or inection pointsand in such cases we used an approximation to the median of the distribu-tion and twice this value to give the initial intervals that were subdividedas above.5.2 Polynomial-normal distributionsLet �(x) = exp(�12x2) and p(x) = Qmi=1(x � �i)(x � ��i), where the �iare possibly complex, be a general nonnegative polynomial. Then f(x) =p(x)�(x) can be treated as a density on R . Many calculations can be carriedout exactly for this class of densities; see Evans and Swartz (1995) for anextensive discussion of this family. As discussed there it is extremely di�cultto obtain an e�cient generator for this family. We apply the methods ofthis paper to build a general generator.We have that the derivatives take the formf 0(x) = �p0(x)� xp(x)��(x)f 00(x) = �p00(x)� p(x)� 2xp0(x) + x2p(x)��(x)= q(x)�(x)f 000(x) = �p000(x)� 3p0(x)� 2xp00(x) + 2xp(x) + x2p0(x)� xq(x)��(x)= r(x)�(x):To determine the points of inection we must calculate the real roots ofq(x) and use r(x) to determine the concavity structure of the density. Notethat computing the derivatives of p is simple once we have computed thecoe�cients of p and these can easily be computed recursively by multiplyingone quadratic factor at a time into the product.It is clear that the tails of f are convex. Putting g(x) = ln(f(x)) =ln(p(x))� 12x2 we haveg0(x) = �p0(x)� xp(x)�p�1(x)g00(x) = �(p00(x)� p(x)� xp0(x))p(x)� (p0(x)� xp(x))p0(x)� p�2(x)= t(x)p�2(x)g000(x) = ht0(x)p2(x)� 2t(x)p(x)p0(x)ip�4(x)= s(x)p�4(x)wheret0(x) = (p000(x)� 2p0(x)� xp00(x))p(x) + (p00(x)� p(x)� xp0(x))p0(x)�12



(p00(x)� p(x)� xp0(x))p0(x)� (p0(x)� xp(x))p0(x)and these are all easily evaluated. For large x we have that g00(x) � 0 andthus the tails are always inevitably log-concave. So once we have evalu-ated the roots of p0(x) � xp(x) and t(x) we construct the generator for apolynomial-normal exactly as described for Makeham's distribution.As an example we consider p(x) = (x��1)(x� ��1)(x��2)(x� ��2) where�1 = 1 + :5i , �2 = �3 + :5i: Figure 1 is a plot of f(x) and Figure 2 is aplot of ln(f(x)): We see immediately from Figure 2 that the density is notlog-concave and that apparently ln(f(x)) has 3 critical points and 4 pointsof inection. This is indeed the case and these points were determined viaa simple calculation using Maple. Evaluating g000(x) at each of the pointsof inection con�rmed the changes of concavity observed in the plot. Sincethe largest of these 7 values was a relative maximum we added one furtherpoint in the right tail. These 8 values give 8 compact subintervals andeach of these were further subdivided into 2 subintervals and the endpointsprovided the initial xi values for the adaptive algorithm. The initial valueof �� was .7714 and after 104 generations this became .9954. It required 106seconds of CPU time to generate 106 values.5.3 Truncated Student(�) distributionThere are many algorithms for generating from a Student distribution. Wenote, however, that this statement does not extend to truncated versions ofthese distributions. We consider generating from the entire Student distri-bution and then use the truncated envelopes to generate from a truncatedStudent. The Student(�) density is f(x) = ��+ x2�� 12�� 12 for � > 0 and itsderivatives aref 0(x) = � (�+ 1)��+ x2�� 12�� 32 xf 00(x) = (�+ 1)��+ x2�� 12�� 52 ��x2 + 2x2 � �� :Then letting h(x) = �x2 + 2x2 � � we see that the inection points of thedensity occur at x = �p�= (�+ 2) and that the tails are convex. A similarcomputation shows that the tails are also log-convex so we need a di�erenttransformation for the tails.To handle the tails we consider an appropriate choice of p in h(x) =13



(Tp � f)(x) = (f(x))p = ��+ x2��( 12�� 12 )p : The derivatives equalh0(x) = �px (�+ 1)��+ x2�(� 12�� 12)p�1h00(x) = p (�+ 1) h(p�+ p+ 1)x2 � �i ��+ x2�(� 12�� 12)p�2h000(x) = �p (�+ 1) (�p+ p+ 2)x h(p�+ p+ 1)x2 � 3�i ��+ x2�(� 12�� 12)p�3 :Then from h00(x) we see that the tails of f are inevitably Tp-convex wheneverp 2 [�1=(�+ 1); 0) and inevitably Tp-concave for p 2 (�1;�1=(�+ 1)] [(0;1). Noticing that �1 < �1=(�+1) for all � > 0 and therefore T�1=(�+1)is decreasing, we see that taking p = �1=(�+ 1) gives an algorithm for thetails. Moreover, with this choice of p we have that h00(x) > 0 for every xand thus the Student(�) distribution is T�1=(�+1)-convex and this makes fora simple generating algorithm. This would appear to be a new algorithm forthe Student family and truncations of Students.As a particular example we consider generating from a Student(.5) dis-tribution truncated to (-1,2). The initial envelopes for this distribution wereconstructed by truncating the initial envelopes constructed for the full Stu-dent(.5) distribution. These in turn were based on dividing the intervals[-4,-1], [-1,0], [0,1], [1,4] into 15 subintervals each and using the endpoints asthe initial xi values. This gave an initial value for �� of .9991 for the trun-cated distribution and .6776 for the full distribution. After generating 104values from the truncated distribution we obtained �� = :9992. Similarlyafter generating 104 values from the full distribution we obtained �� = :9691and the adaptation proved far more useful here. Generating 106 values fromthe truncated and full distributions required 111 and 118 seconds of CPUtime respectively.5.4 Truncated F(a; b) distributionThere are many good ways to generate from the full F distribution but notfrom truncated versions. An important class of applications of the truncatedF distribution arises when strati�ed sampling is implemented in conjunctionwith multivariate Student importance sampling; e.g. see Evans and Swartz(1995). The density is given by f(x) = (x)12 a�1 (b+ ax)� 12a� 12 b for a > 0; b >0 and x > 0: Note that when 0 < a < 2 the density has a singularity at 0 andin this case we refer to this as the left tail. A simple computation shows thatthe tails are convex and log-convex so we need alternative transformations14



for the tails. We consider then a power transformation h(x) = (Tp � f)(x) =(f(x))p and try to choose p conveniently. We have thath0(x) = �12p (2ax+ abx� ab+ 2b)x p2 a�p�1 (b+ ax)� p2 a� p2 b�1h00(x) = 14pk(x)x p2 a�p�2 (b+ ax)� p2 a� p2 b�2h000(x) = �18pl(x)x p2 a�p�3 (b+ ax)� p2 a� p2 b�3wherek(x) = a2 (2 + b) (bp+ 2p+ 2)x2 � 2ab (bp+ 2p+ 2) (a� 2)x+b2 (a� 2) (ap� 2p� 2)and l(x) = �18a3 (b+ 2) (pb+ 2p+ 4) (pb+ 2p+ 2)x3 +38a2b (pb+ 2p+ 4) (pb+ 2p+ 2) (a� 2)x2 �38b2a (a� 2) (pa� 2� 2p) (pb+ 2p+ 4)x+18b3 (a� 2) (pa� 2p� 2) (pa� 2p� 4) :The leading coe�cient of pk(x) determines the inevitable concavity ofthe right-tail and the sign of this quantity is determined by the sign of(b+ 2)p2 + 2p. Thus the right-tail of f is inevitably Tp-concave when p 2[� 2b+2 ; 0) and inevitably Tp-convex when p 2 (�1;� 2b+2 ][(0;1). Observe,however, that �1 < � 2b+2 and if p 2 ( �1;� 2b+2 ] then Tp is decreasing andwe have a simple algorithm for the right-tail. Moreover when p = � 2b+2and a � 2 it is immediate that h00(x) � 0 everywhere and so the F (a; b)distribution is T�2=(b+2)-convex and there is a simple algorithm for the entiredistribution.When 0 < a < 2 the concavity of the left-tail; i.e. when x is close to 0,is inevitably determined by the sign of the constant term in pk (x) and thesign of this is determined by the sign of (a� 2) p (ap� 2p� 2). Therefore inthis situation the left-tail is Tp-concave for p 2 [ 2a�2 ; 0) and Tp-convex forp 2 (�1; 2a�2 ][ (0;1). When p = 2a�2 then Tp is decreasing and, since the15



left-tail interval is bounded, this gives a valid generator even though 2a�2 <�1. Further if p = 2a�2 then pk(x) / 4a (b+ a)x ((2a+ ba)x� 2ba+ 4b)and this implies that h00(x) > 0 for every x > 0: Therefore to constructa generator we use the transformation T2=(a�2) on (0; c) for some c > 0:For the interval (c;1) we use Tp where p 2 (�1;� 2b+2) as the density isTp-convex on this interval and Tp is decreasing. Note that we cannot usep = � 2b+2 . For a and p in the indicated ranges it is clear that a� 2 < 0 andbp+ 2p+ 2 < 0: Thus the largest root of pk(x) is given byba a� 2b+ 2  1�s 2 (a+ b)(a� 2) (bp+ 2p+ 2)! :Then provided p and c are chosen so that this root is less than or equal to cwe can use Tp in (c;1): Note that this largest root is a monotone increasingfunction of p 2 (�1;� 2b+2) and goes to 1 as p! � 2b+2 and goes tocl = ba a� 22 + b  1�s�� 2(a+ b)(a� 2) b�!as p! �1: Simple manipulations show that cl > 0 for all a 2 (0; 2), b > 0:So if c > cl we can �nd p so that the largest root of pk(x) equals c: This pis given byp(c) = �2�a2b+ 2a2� c2 + ��2a2b+ 4ba� c� b2a + 2b2((2a+ ba) c� ba+ 2b)2and note that p(c)! � 2b+2 as c!1 and p(cl )= �1: Thus c = dcl for anyd > 1 is appropriate.6 ConclusionsWe have presented a general black-box algorithm for the construction ofa random variable generator based on the concavity properties of simpletransformations of densities. This generalizes the Gilks-Wild algorithm inseveral ways. Provided there is minimal information available about thedensity then the construction of excellent rejection algorithms is easy andautomatic. A number of examples have demonstrated the utility of thisapproach in contexts where �nding good generators has proven di�cult.Further these examples demonstrate that it is possible to use these methodsfor families of distributions with little added complexity.16
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