
STRATIFIED SAMPLING WITH SPHERICALLY SYMMETRICIMPORTANCE SAMPLERSMICHAEL EVANS TIM SWARTZUniversity of Toronto Simon Fraser UniversitySUMMARYMultivariate normal or Student importance sampling is a commonly usedtechnique for integration problems in statistical inference. This integration ap-proach is easy to implement, has straight-forward error estimates and is e�ectivein a number of problems. A variety of variance reduction techniques can be con-sidered with importance sampling. Strati�ed sampling is one of these and infact, is about the only guaranteed variance reducer. We consider the implemen-taion of strati�ed sampling in the context of spherically symmetric importancesamplers.Keywords and phrases: numerical intergration, importance sampling, strati�edsampling, envelope generators.1. INTRODUCTIONThe general problem we are concerned with is the approximation of an in-tegral I (f) = ZRk f(x) dxfor some function f : Rk ! R. While there are manymethods for addressing thisproblem, see for example Evans and Swartz (1995a, 2000) for a fairly completecoverage of these, we focus here on the use of independent importance sampling.For this we suppose that we have a probability density w such that the supportof jf j is contained in the support of w and such that we can easily generatesamples from w: Then the importance sampling algorithm based on w proceedsby generating a sample x1; : : : ; xn from w and reporting the estimateÎw;n (f) = 1n nXi=1 f (xi)w (xi) ;1



i.e. we average the values of f at the generated points weighted by the inverseof the importance sampling density at these points. By the strong law of largenumbers this quantity converges almost surely to I (f) as n!1: The varianceof the estimate is given by �2w=n where�2w = V arw � fw� = ZRk f2(x)w(x) dx� I (f)2 :If �2w is �nite then we can estimate it bys2w = 1n nXi=1 � f (xi)w (xi) � Îw;n (f)�2 :Further if �2w is �nite then a Central Limit Theorem, see for example Evans andSwartz (2000), establishes thatÎw;n (f) � I (f)sw=pn !D Zwhere Z � N (0; 1) and this gives us the basic method of assessing the accuracyof Îw;n (f) :The central issue with importance sampling is the choice of the importancesampler w: If a poor choice is made �2w may be large or even in�nite. Ofcourse we want to choose w so that �2w is as small as possible. Actually whenk > 1 there are not many candidates for the choice of w; at least when actualpractice is considered. A typical strategy is to transform the integral so thatall variables vary without restriction over R1 and then choose a multivariateStudentk (�; �;�) distribution for w for some choice of � 2 Rk;� 2 Rk�k pos-itive de�nite and � > 0 with � = 1 indicating the Nk (�;�) distribution: Wetry to match this choice as closely as possible to the integrand f: For example,if f is nonnegative and unimodal then we �rst calculate the mode �̂ of f and�̂ = ��@2 logf(�̂)@xi@xj ��1the inverse Hessian matrix of logf at �̂: Taking w to be aStudentk��; �̂; � + k� �̂�distribution matches the mode and the Hessian matrix of the log of the im-portance sampler to the corresponding quantities for f: In some statistical con-texts f may be thought of as being asymptotically multivariate normal andso Laplace's approximation would be appropriate for approximating I; see, forexample, Evans and Swartz (2000) for a discussion of this approximation: Ade�ciency in asymptotic approximations is that they provide no means of as-sessing accuracy. So a natural alternative to Laplace's approximation, which2



allows for error assessment, is to use importance sampling via aStudentk ��; �̂; � � 2� �̂�distribution for w where now we are matching approximate means and variancematrices. Of course this choice requires that � > 2 whereas matching Hessianmatrices does not impose such a restriction. In neither case have we discussedhow to choose �: Basically the idea is to choose � low enough so that, hopefully,the variances of all our estimators are �nite. The only method available forensuring that an appropriate value of � has been chosen is to study the tailbehavior of f and this is typically quite di�cult. So it is customary to simplychoose � fairly low. We note that in both of these cases we can make thetransformation x! y = �̂�1=2 (x� �̂) in I(f) so that the relevant importancesampler is now a Studentk (�; 0; cI) density for some choice of � and c: This classof importance samplers is spherically symmetric; i.e. if X � w and Q 2 Rk�kis orthogonal then also Y = QX � w:When f is not nonnegative we try to obtain a factorization f = mg whereg � 0 is integrable and choose w as above but use g instead of f to guide ourchoice of w; e.g. g could be the unnormalized posterior in a Bayesian integrationproblem. When f is multimodal then a di�erent strategy must be employed;see Evans and Swartz (2000) for a discussion of this situation.Of course there is generally no guarantee that the choice of a particularw willwork in the sense of giving adequate approximations in reasonable computingtimes. But we suppose for the remainder of this discussion that such a choice hasbeen made and then consider how we can improve on the algorithm. This leadsus to the consideration of various variance reduction techniques. The three mainvariance reduction methods are systematic sampling (sometimes referred to asantithetic variates), control variates and strati�ed sampling. Of these strati�edsampling is the only one that guarantees a reduction in variance so it is a naturalapproach to consider �rst. Despite this there is little literature on using strati�edsampling with Student importance sampling and we subsequently point out aplausible reason for this. This paper presents a signi�cant improvement of somedevelopments with respect to strati�ed sampling that were �rst presented inEvans and Swartz (1995b). For a full discussion of variance reduction methodssee Evans and Swartz (2000).It is important to note that in many statistical problems; e.g. Bayesianinference, our interest lies in approximating a ratio of integrals of the formR(m) = I (mf)I (f)where f � 0 and m : Rk ! R1; i.e. R(m) is the posterior expectation of m:Typically there are many such functions m of interest and so it makes sense tochoose a single importance sampler w matched to the unnormalized posterior3



f: Then based on a sample x1; : : : ; xn from w we estimate R(m) byR̂w;n (m) = Îw;n (mf)Îw;n (f) :An application of the delta theorem together with some conditions, see Evansand Swartz (2000), gives that R̂w;n (m) is asymptotically normal with meanR(m) and asymptotic variance�2R(m);wn = 1nI2(f) 8<: V arw hmfw i+ I2(mf)I�2(f)V arw h fwi�2I(mf)I�1(f)Covw hmfw ; fwi 9=; :This quantity is estimated by substituting the sample analogues of the variousquantities into the formula.In Section 2 we discuss strati�ed sampling in general. In Section 3 we discussthe implementation of strati�ed sampling when using spherically symmetricimportance samplers. In Section 4 we discuss the relationship between strati�edsampling with spherically symmetric importance samplers and other approachesto integration. 2. STRATIFIED SAMPLINGThe technique of strati�ed sampling is based on a decomposition of theimportance sampler w as w = p1w1 + � � �+ plwlwhere w1; : : : ; wl are densities for which we have generating algorithms, withsupp (w) = [li=1supp (wi) ; supp (wi) \ supp (wj) = � when i 6= j andpi = Zsupp(wi) w(x) dxfor i = 1; : : : ; l: The sets supp (wi) are the strata and of course Pli=1 pi = 1.Strati�ed sampling occurs when we sample a predetermined number ni timesfrom wi and then estimate Zsupp(wi) f(x) dxby Îwi;ni : The estimate of I is then given byÎstrat (f) = lXi=1 Îwi;ni :4



By the strong law of large numbers Îstrat (f) converges almost surely to RRk f(x) dxas min(n1; : : : ; nl)!1: We have that�2strat = lXi=1 �2winiand we estimate this using s2strat = lXi=1 s2winiwhere s2wi is the sample estimate of �2wi : Provided that each �2wi < 1 we havethat Îstrat (f) � I(f)sstrat !D Zwhere Z � N (0; 1) as min(n1; : : : ; nl)!1.The idea behind strati�ed sampling is that we can allocate sample resourcesmore carefully by deciding ahead of time to place more sample values in regionswhere the importance samplerw is not very good at mimicking f and so improvethe accuracy of the approximation. In practice it is di�cult to determine asuitable strati�cation but if we choose any particular strati�cation we have thefollowing result. For a given overall sample size n =Pli=1 ni; if we take ni = npithen �2strat = 1n lXi=1 �2wipi � �2wn :This choice of the ni is known as proportional allocation. So we need never doany worse than importance sampling based on w if we allocate the n samplevalues appropriately amongst the strata. This is the basis for our statement thatstrati�ed sampling is a guaranteed variance reducer. In contrast the other vari-ance reduction methods mentioned in Section 1 can result in increased variancewhen compared to straight importance sampling.It is easy to show, see Evans and Swartz (2000), that with proportionalallocation, �2wn = �2strat + V ar [E [f(X)=w(X)ji]]n :Therefore to get the maximum bene�t of strati�cation with proportional allo-cation we want to decompose w so that V ar [E [f(X)=w(X)ji]] is as large aspossible. This is just the variance of the l numbers1pi Zsupp(wi) f(x) dx5



with respect to the probability distribution given by the pi:In fact with a particular strati�cation one can do better than proportionalallocation. A well-known result establishes that the smallest variance is achievedby the Tschuprow-Neyman allocation given byni = n �wiPlj=1 �wjand the minimized variance is�Plj=1 �wj�2n � �2wn :For a proof of these results see, for example, Evans and Swartz (2000). Thisdoes not lead directly to a practical algorithm, however, as the �wi are typicallyunknown. There are several approaches to getting around this problem. Onepossibility is to estimate the �wi in a pilot study, say based on proportionalallocation, before running importance sampling.It is also possible to estimate a ratio of integrals R using strati�cation. Usingthe same strati�cation for the numerator and denominator letIi(mf) = Zsupp(wi)m(x)f(x) dxwith estimate Îwi ;ni(mf): Then we estimate R(m) byR̂strat(m) = Pli=1 Îwi;ni(mf)Pli=1 Îwi ;ni(f) :If I(f) 6= 0 then, under certain conditions as outlined in Evans and Swartz(2000), R̂strat(n1; : : : ; nl) has asymptotic varianceI�2(f) lXi=1 1ni 8<: V arwi hmfwi i+ I2i (mf)I�2i (f)V arwi h fwi i�2Ii(mf)I�1i (f)Covwi h fwi ; mfwi i 9=; :We estimate this by substituting in the appropriate sampling analogues.3. STRATIFIED SAMPLING WITH SPHERICALLYSYMMETRIC IMPORTANCE SAMPLERSOf immediate practical importance in the implementation of strati�ed sam-pling is the choice of the strati�cation. For several reasons we cannot choosethis arbitrarily. For example, we must have an algorithm to generate from thewi and moreover we require the values of the pi to implement the proportionalallocation. Clearly when using a Studentk (�; 0; cI) distribution it would bevery di�cult to use a strati�cation based upon rectangles for these reasons. As6



we will see, however, after overcoming one signi�cant problem, it is relativelystraight-forward to stratify this distribution using its spherical symmetry.We now discuss how to implement strati�ed sampling for a general spheri-cally symmetric importance sampler w: For such a density there is a functiong : Rk ! R1 such that w(x) = g(kxk)and h(r) = 2�k=2� �k2 �rk�1g(r)is a density on [0;1): Further if U is distributed uniformly on Sk�1; the unitsphere in Rk; statistically independent of r � h then X = rU � w:Now we decompose w using the spherical symmetry. For this we choose0 = r0 < r1 < � � � < rl�1 < rl =1 and letA1 = fx : r0 � kxk < r1g ;A2 = fx : r1 � kxk < r2g ;...Al = fx : rl�1 � kxk < rlg ;i.e. a sequence of annular rings centered at 0 that partition Rk. Then wi is justw conditioned to the annulus Ai and, making the transformation x ! (r; U ) ;we have that pi = ZAi w(x) dx= Z riri�1 ZSk�1 rk�1g(r) dU dr= 2�k=2� � k2� Z riri�1 rk�1g(r) dr:This requires us to evaluate l one-dimensional integrals to obtain the pi for theproportional allocation. This is not a signi�cant computational problem. Infact if we choose w to be in the multivariate Student family then these integralsare available to us from tabulations of the Chisquare distribution when � =1and from tabulations of the F distribution otherwise.To implement strati�ed sampling for w; however, we must also have analgorithm to generate from each wi. We can do this by generating U uniformon Sk�1 statistically independent of r which is generated from h conditionedto the interval (ri�1; ri): Generating U is straight-forward as we can generateZ � Nk (0; I) and put U = Z= kZk ; see, for example, Eaton (1983): It is thegeneration of r; however, where the essential di�culty in implementing this7



procedure lies. In general this is not an easy generating problem even whenw is multivariate normal. The naive method of generating r according to h;which presumes the existence of such an algorithm as well, and then selectingonly those values that fall in (ri�1; ri) to reect the conditioning, is hopelesslyine�cient for even moderate l:In the past few years, however, good methods have been developed for gen-erating from a fairly general density h: These are called envelope methods inEvans and Swartz (2000) and their origins lie in the methods developed for log-concave densities in Gilks and Wild (1992) and extended in H�ormann (1995)and Evans and Swartz (1998). For this we break the density h into s parts on(�1; c1) ; [c1; c2); : : : ; [cs�1,1) and suppose that we have monotone transfor-mations Ti : [0;1)! R1 for i = 1; : : : ; s and such that Ti�h is concave when Tiis increasing or Ti�h is convex when Ti is decreasing. The concavity or convexityof the transformed density leads to easily constructed upper and lower envelopesfor h: There are also some restrictions placed on the transformations so that theupper and lower envelopes lead to densities that can be easily generated fromvia inversion but there is a rich class of possible transformations; e.g. powertransformations. As shown in Evans and Swartz (1998, 2000) these conditionslead to an easy to implement, highly e�cient rejection generator for h and alsofor h conditioned to an interval with no additional di�culty. For example, forChisquare(�) distributions with � � 2 we can take s = 1 and T1 = log andwhen � < 2 we can �nd a single power transformation T1(f) = fp that su�ces.For F (�; �) distributions two power transformations, one for each tail, su�ceto construct the generator. The reader is referred to Evans and Swartz (2000)for more details on the construction of these generators. In e�ect these methodspermit the relatively easy implementation of strati�ed sampling with sphericallyimportance samplers. Of course the density h cannot be just anything but allof the standard choices can be handled by this approach.We now consider a speci�c numerical example.Example Strati�ed Student importance sampling.For this example we consider a Bayesian analysis of a linear statistical modelwhich requires that integrals of dimension 10 be approximated. The particu-lar Bayesian analysis we consider coincides with the conditional analysis of themodel as presented in Fraser (1979). The statistical model that we use is spec-i�ed as follows. Suppose that we observe the data (X; y) where X 2 R45�9 hasxij = 1 for 5(j � 1) + 1 � i � 5j and 0 otherwise, and y 2 R45: The statisticalmodel is then speci�ed by the equationy = X� + �zwhere � 2 R9; � 2 (0;1) and the error z 2 R45 is a sample of 45 from adistribution in the family fStudent�(�) : � 2 (2;1)g where Student�(�) denotesthe Student(�) distribution standardized to have variance 1. Therefore thedensity of z is given byg� (z) = � ��+12 �� ��2 �� �12� �1 + z2� � 2�� �+12 1p� � 28



for �1 < z < 1: Therefore we have 9 location parameters �i, 1 � i � 9, ascale parameter � and a shape parameter �: In an application all these param-eter values are unknown but we will treat � as being known here and make theassignment � = 3. The restriction in the degrees of freedom for the Student dis-tribution ensures that all response variables yi have a mean and �nite variance.We note that this model corresponds to 5 independent observations from eachof the 9 distributions speci�ed by (�i; �) for i = 1; : : : ; 9: We denote the j-thobservation from the i-th distribution by yij:We place the improper prior � (�; �) = 1=� on (�; �). Then the posteriordensity for the 10-dimensional parameter (�;�) is proportional to9Yi=1 5Yj=1 1�g� �yij � �1xi1 � � � � � �9xi9� �and we note that this is a reasonably complicated function. Actually in this par-ticular case some integrations can be carried out in closed form but we chooseto ignore this here as this is not characteristic of such problems. The integralswe are approximating are therefore 10-dimensional. It makes sense to makethe transformation from � to log� so that the variable in the integration isunconstrained in R1: This more closely conforms to the behavior of an approx-imating multivariate Student density. With this transformation, and letting� = (�1; : : : ; �9; �10) = (�1; : : : ; �9; log�) ; we see that we want to approximateintegrals of the formI(mf) = Z 1�1 � � �Z 1�1m(�1; : : : ; �10)f(�1; : : : ; �10) d�1 � � � d�10= Z 1�1 � � �Z 1�1m(�1; : : : ; �10) expf�9n �10g �9Yi=1 nYj=1 g� � yij � �iexp(�10)� d�1 � � � d�10with f(�1; : : : ; �10) = expf�9n �10g 9Yi=1 nYj=1 g� � yij � �iexp(�10)� :To obtain a speci�c numerical example we constructed a data set by �xing valuesfor the parameters and then generating the zij. For this we speci�ed �i = 0for every i 6= 1, �1 = 1:8, � = 1 and generated the zij from a Student�(3)distribution.For these integration problems we used aStudentk��; 0; � � 2� I�importance sampler with � = 5 after standardizing via the mode �̂ of the poste-rior and the inverse of the Hessian matrix �̂ of log f: Representative results for9



i R (�i) R̂ (�i)1 2.043 2.043 (.001)2 0.095 0.096 (.023)4 0.018 0.017 (.127)10 -0.073 -0.073 (.017)Table 1: Importance sampling estimates and estimated absolute coe�cients ofvariation for the Example where R denotes the exact value and R̂ denotes theimportance sampling estimate.approximating the posterior expectations of several of the �i using importancesampling with this w are reported in Table 1 for a Monte Carlo sample size ofN = 105: These computations require about 50 seconds of CPU time. The esti-mates are accurate but the estimated absolute coe�cient of variation for R̂ (�4)is quite high. We tried these computations with di�erent choices for � in therange 1 to 20 but not much di�erence was noticed in the results. Overall thisimportance sampler was reasonably successful here.We then considered the use of strati�ed sampling with this importance sam-pler. When X � Studentk ��; 0; ��2� I�we have thatr2 = kXk2 � k�� 2� F (k; �):Therefore, because of the rotational symmetry of the Studentk ��; 0; ��2� I� dis-tribution, we can generate a value from the Studentk ��; 0; ��2� I� conditionedto Ai by generating r2 from the kF (k; �) distribution conditioned to �r2i�1; r2i � ;generating U � Uniform �Sk�1� and setting X = rU: To generate from thekF (k; �) distribution conditioned to �r2i�1; r2i � we used the envelope methodsdiscussed above. For the speci�c transformations employed see Evans andSwartz (1998). We chose l = 25 strata with p1 = p2 = � � � = p25: We startedwith the proportional allocation with a sample of 100 being taken from each stra-tum and then switched to the Tschuprow-Neyman allocation for the remainingsampling. In this example, the average e�ciency increase when estimating theR(�i) over i = 1; : : : ; 10 using strati�ed sampling was 2.8 when compared tostraight Student importance sampling. So strati�ed sampling was quite usefulin improving the performance of the importance sampler here.In this same example we also tried di�erent boundary points based on theobservation that the estimators of the component strata Îj(m) had greatly di�er-ent standard errors. We therefore began with 2 strata having equal probabilityand generated a small sample of size 100 in each stratum. We then split thestratum having the largest standard error into 2 sub-strata of equal probability.This splitting process was continued until l = 25 strata were constructed. Atthis point we switched to Tschuprow-Neyman allocation. However, this strategydid not result in any meaningful variance reductions.10



4. CONCLUSIONSWe have shown that approximate integration via spherical strati�ed sam-pling is now a feasible technique and moreover that it leads to meaningful im-provements in computational e�ciencies when compared to straight importancesampling. The more the integrand deviates from the spherical symmetry of theimportance sampler w the more useful the technique will be. Still in high-dimensional situations where the integrand deviates sharply from w we canexpect that importance sampling, with or without spherical strati�cation, willnot lead to accurate approximations within feasible computation times. In sucha context there are other variance reduction techniques that can be combinedwith spherical strati�cation to improve performance. In particular symmetriz-ing an integrand with respect to a �nite subgroup of the orthogonal group hasthe e�ect of making the integrand more like the importance sampler while leav-ing the value of the integral invariant. Full details concerning this techniquecan be found in Evans and Swartz (2000).There are alternative approaches to approximate integration that are veryclose in spirit to spherical strati�ed sampling. For example, in many such prob-lems most of the variation in the behavior of the integrand occurs radially; i.e.the standardized integrand is roughly spherically symmetric. In such a contextit would seem to make sense to use a more accurate integration approach forthe radial direction. For example, we could employ Simpson's rule or a moreaccurate Gauss-Laguerre rule for the radial direction. A disadvantage of thisis that it introduces a small systematic error in the Monte Carlo estimates; i.e.they are no longer consistent. If this error is small relative to the accuracydesired in our approximation then of course this is not a problem. The tech-nique of randomized quadrature avoids this inconsistency. With this techniquethe points and weights of a quadrature rule are randomly generated from somedistribution such that the randomly generated rule integrates polynomials up toa certain degree (or some other class of functions) exactly. Genz and Monahan(1998a, 1998b, 1999) discuss randomized spherical-radial rules. A disadvantageof this technique is that it requires the solution to an increasingly di�cult gen-eration problem as the maximum degree of the polynomials integrated exactlyincreases. Further for all the higher-order quadrature approaches it is not clearhow well they handle discontinuous integrands; e.g. when computing probabil-ities of regions, whereas strati�ed sampling seems better adapted for this. Stillthere is nothing de�nitive that can be said here at this point about the bestapproach and this warrants further investigation.REFERENCESEaton, M.L. (1983). Multivariate Statistics. John Wiley, New York.Evans, M. and Swartz, T. (1995a). Methods for approximating integrals instatistics with special emphasis on Bayesian integration problems. Statis-tical Science, 10, 254-272. 11
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