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SUMMARY

Multivariate normal or Student importance sampling is a commonly used
technique for integration problems in statistical inference. This integration ap-
proach is easy to implement, has straight-forward error estimates and 1s effective
in a number of problems. A variety of variance reduction techniques can be con-
sidered with importance sampling. Stratified sampling is one of these and in
fact, is about the only guaranteed variance reducer. We consider the implemen-
talon of stratified sampling in the context of spherically symmetric importance
samplers.
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1. INTRODUCTION

The general problem we are concerned with is the approximation of an in-
tegral

I(f)y={ flx)de
Rk
for some function f : R* — R. While there are many methods for addressing this
problem, see for example Evans and Swartz (1995a, 2000) for a fairly complete
coverage of these, we focus here on the use of independent importance sampling.
For this we suppose that we have a probability density w such that the support
of |f] is contained in the support of w and such that we can easily generate
samples from w. Then the importance sampling algorithm based on w proceeds
by generating a sample 1, ..., 2z, from w and reporting the estimate
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i.e. we average the values of f at the generated points weighted by the inverse
of the importance sampling density at these points. By the strong law of large
numbers this quantity converges almost surely to 7 (f) as n — co. The variance
of the estimate is given by o2 /n where
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If o2 is finite then we can estimate it by
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Further if o2, is finite then a Central Limit Theorem, see for example Evans and

Swartz (2000), establishes that

Lun (F) = 1(f)
sw/v/n

where Z ~ N(0,1) and this gives us the basic method of assessing the accuracy
of Iy n (f) -

The central issue with importance sampling is the choice of the importance
sampler w. If a poor choice is made o2 may be large or even infinite. Of
course we want to choose w so that ¢2, is as small as possible. Actually when
k > 1 there are not many candidates for the choice of w, at least when actual
practice is considered. A typical strategy is to transform the integral so that
all variables vary without restriction over R' and then choose a multivariate
Studenty (A, s, X2) distribution for w for some choice of p € R* X € RF** pos-
itive definite and A > 0 with A = oo indicating the Ny (u, ¥) distribution. We
try to match this choice as closely as possible to the integrand f. For example,
if f is nonnegative and unimodal then we first calculate the mode i of f and
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the inverse Hessian matrix of log f at p. Taking w to be a

Atk
Studenty (x\, i %E)

distribution matches the mode and the Hessian matrix of the log of the im-
portance sampler to the corresponding quantities for f. In some statistical con-
texts f may be thought of as being asymptotically multivariate normal and
so Laplace’s approximation would be appropriate for approximating [; see, for
example, Evans and Swartz (2000) for a discussion of this approximation. A
deficiency in asymptotic approximations is that they provide no means of as-
sessing accuracy. So a natural alternative to Laplace’s approximation, which



allows for error assessment, is to use importance sampling via a
A—2
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distribution for w where now we are matching approximate means and variance
matrices. Of course this choice requires that A > 2 whereas matching Hessian
matrices does not impose such a restriction. In neither case have we discussed
how to choose A. Basically the idea is to choose A low enough so that, hopefully,
the variances of all our estimators are finite. The only method available for
ensuring that an appropriate value of A has been chosen is to study the tail
behavior of f and this is typically quite difficult. So it is customary to simply
choose A fairly low. We note that in both of these cases we can make the
transformation v — y = ©71/2 (x — jt) in I(f) so that the relevant importance
sampler is now a Studenty (A, 0, ¢f) density for some choice of A and ¢. This class
of importance samplers is spherically symmetric; i.e. if X ~ w and Q € RF**
is orthogonal then also ¥ = QX ~ w.

When f is not nonnegative we try to obtain a factorization f = mg where
g > 0 is integrable and choose w as above but use g instead of f to guide our
choice of w; e.g. g could be the unnormalized posterior in a Bayesian integration
problem. When f is multimodal then a different strategy must be employed;
see Evans and Swartz (2000) for a discussion of this situation.

Of course there is generally no guarantee that the choice of a particular w will
work in the sense of giving adequate approximations in reasonable computing
times. But we suppose for the remainder of this discussion that such a choice has
been made and then consider how we can improve on the algorithm. This leads
us to the consideration of various variance reduction techniques. The three main
variance reduction methods are systematic sampling (sometimes referred to as
antithetic variates), control variates and stratified sampling. Of these stratified
sampling is the only one that guarantees a reduction in variance so it is a natural
approach to consider first. Despite this there is little literature on using stratified
sampling with Student importance sampling and we subsequently point out a
plausible reason for this. This paper presents a significant improvement of some
developments with respect to stratified sampling that were first presented in
Evans and Swartz (1995b). For a full discussion of variance reduction methods
see Evans and Swartz (2000).

It is important to note that in many statistical problems; e.g. Bayesian
inference, our interest lies in approximating a ratio of integrals of the form

I(mf)
I(f)
where f > 0 and m : R* — R!;ie. R(m) is the posterior expectation of m.

Typically there are many such functions m of interest and so it makes sense to
choose a single importance sampler w matched to the unnormalized posterior

R(m) =




f. Then based on a sample 1, ..., z, from w we estimate R(m) by
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An application of the delta theorem together with some conditions, see Evans
and Swartz (2000), gives that R, , (m) is asymptotically normal with mean
R(m) and asymptotic variance
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This quantity is estimated by substituting the sample analogues of the various
quantities into the formula.
In Section 2 we discuss stratified sampling in general. In Section 3 we discuss
the implementation of stratified sampling when using spherically symmetric
importance samplers. In Section 4 we discuss the relationship between stratified

sampling with spherically symmetric importance samplers and other approaches
to integration.

2. STRATIFIED SAMPLING

The technique of stratified sampling 1s based on a decomposition of the
importance sampler w as

w=prwi + -+ pw

where wy, ..., w; are densities for which we have generating algorithms, with
supp (w) = Ut_;supp (w;) ,supp (w;) N supp (w;) = ¢ when i # j and

i :/ w(z) dx
supp(w;)

for ¢ = 1,...,l. The sets supp (w;) are the strata and of course Zi’:1pi =1
Stratified sampling occurs when we sample a predetermined number n; times
from w; and then estimate

/ f(z) dw
supp(wi)

by fw“m. The estimate of I is then given by
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By the strong law of large numbers Totrat (f) converges almost surely to ka f(z) dw
as min(ny, ..., n;) — co. We have that
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and we estimate this using
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where 52 is the sample estimate of o2 . Provided that each o2, < oo we have
that
jstrat (f)_l(f) —)DZ
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where 7 ~ N(0,1) as min(ny,...,n;) = oo.

The 1dea behind stratified sampling is that we can allocate sample resources
more carefully by deciding ahead of time to place more sample values in regions
where the importance sampler w is not very good at mimicking f and so improve
the accuracy of the approximation. In practice it is difficult to determine a
suitable stratification but if we choose any particular stratification we have the
following result. For a given overall sample size n = 22:1 n;, if we take n; = np;
then
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This choice of the n; is known as proportional allocation. So we need never do
any worse than importance sampling based on w if we allocate the n sample
values appropriately amongst the strata. This is the basis for our statement that
stratified sampling is a guaranteed variance reducer. In contrast the other vari-
ance reduction methods mentioned in Section 1 can result in increased variance
when compared to straight importance sampling.
It is easy to show, see Evans and Swartz (2000), that with proportional
allocation,
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Therefore to get the maximum benefit of stratification with proportional allo-
cation we want to decompose w so that Var[F [f(X)/w(X)|i]] is as large as
possible. This is just the variance of the [ numbers



with respect to the probability distribution given by the p;.

In fact with a particular stratification one can do better than proportional
allocation. A well-known result establishes that the smallest variance is achieved
by the Tschuprow-Neyman allocation given by
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For a proof of these results see, for example, Evans and Swartz (2000). This
does not lead directly to a practical algorithm, however, as the oy, are typically
unknown. There are several approaches to getting around this problem. One
possibility is to estimate the o, in a pilot study, say based on proportional
allocation, before running importance sampling.

It is also possible to estimate a ratio of integrals R using stratification. Using
the same stratification for the numerator and denominator let

Li(mf) = /supp(w )m(a:)f(x) dx

with estimate I, ,,(mf). Then we estimate R(m) by
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If I(f) # 0 then, under certain conditions as outlined in Evans and Swartz

(2000), Rstrat(n1,...,n;) has asymptotic variance
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We estimate this by substituting in the appropriate sampling analogues.

3. STRATIFIED SAMPLING WITH SPHERICALLY
SYMMETRIC IMPORTANCE SAMPLERS

Of immediate practical importance in the implementation of stratified sam-
pling is the choice of the stratification. For several reasons we cannot choose
this arbitrarily. For example, we must have an algorithm to generate from the
w; and moreover we require the values of the p; to implement the proportional
allocation. Clearly when using a Studenty (A, 0,¢l) distribution it would be
very difficult to use a stratification based upon rectangles for these reasons. As



we will see, however, after overcoming one significant problem, it is relatively
straight-forward to stratify this distribution using its spherical symmetry.

We now discuss how to implement stratified sampling for a general spheri-
cally symmetric importance sampler w. For such a density there is a function
g : R* — R! such that

wle) = gl
and
k12
bl = gy

is a density on [0,00). Further if U is distributed uniformly on S*~!  the unit
sphere in R”, statistically independent of 7 ~ h then X = rl/ ~ w.

Now we decompose w using the spherical symmetry. For this we choose
O=rg<r < - <r_1 <r =o0 and let

Ay =Hz iro < ||z < 7},
Az =H{z :r < ||z < 72},

Ap=Az o <ol < ek

i.e. a sequence of annular rings centered at 0 that partition R¥. Then wj; is just
w conditioned to the annulus A; and, making the transformation z — (r,U),
we have that

i :/A w(z) dz

:/ *=lg(r) dU dr
ri_y J Sk

9 k/2 ri
_ - / = 1g(r) dr.
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This requires us to evaluate [ one-dimensional integrals to obtain the p; for the
proportional allocation. This is not a significant computational problem. In
fact if we choose w to be in the multivariate Student family then these integrals
are available to us from tabulations of the Chisquare distribution when A = oo
and from tabulations of the F distribution otherwise.

To implement stratified sampling for w, however, we must also have an
algorithm to generate from each w;. We can do this by generating U uniform
on S*~1 statistically independent of + which is generated from h conditioned
to the interval (r;_1,7;). Generating U is straight-forward as we can generate
7 ~ N (0,I) and put U = Z/||7Z||; see, for example, Eaton (1983). It is the
generation of r, however, where the essential difficulty in implementing this



procedure lies. In general this is not an easy generating problem even when
w 18 multivariate normal. The naive method of generating r according to h,
which presumes the existence of such an algorithm as well, and then selecting
only those values that fall in (r;_1,r;) to reflect the conditioning, is hopelessly
inefficient for even moderate [.

In the past few years, however, good methods have been developed for gen-
erating from a fairly general density h. These are called envelope methods in
Evans and Swartz (2000) and their origins lie in the methods developed for log-
concave densities in Gilks and Wild (1992) and extended in Hormann (1995)
and Evans and Swartz (1998). For this we break the density A into s parts on
(=00, 1), [c1,¢2), ..., [cs—1,00) and suppose that we have monotone transfor-
mations 7; : [0,00) — R fori = 1,... s and such that T; o h is concave when 7T;
is increasing or 7T; o h is convex when 7; is decreasing. The concavity or convexity
of the transformed density leads to easily constructed upper and lower envelopes
for h. There are also some restrictions placed on the transformations so that the
upper and lower envelopes lead to densities that can be easily generated from
via inversion but there is a rich class of possible transformations; e.g. power
transformations. As shown in Evans and Swartz (1998, 2000) these conditions
lead to an easy to implement, highly efficient rejection generator for h and also
for h conditioned to an interval with no additional difficulty. For example, for
Chisquare(«) distributions with & > 2 we can take s = 1 and 7T} = log and
when o < 2 we can find a single power transformation 71 (f) = f? that suffices.
For F («, f) distributions two power transformations, one for each tail, suffice
to construct the generator. The reader is referred to Evans and Swartz (2000)
for more details on the construction of these generators. In effect these methods
permit the relatively easy implementation of stratified sampling with spherically
importance samplers. Of course the density & cannot be just anything but all
of the standard choices can be handled by this approach.

We now consider a specific numerical example.

Example Stratified Student importance sampling.

For this example we consider a Bayesian analysis of a linear statistical model
which requires that integrals of dimension 10 be approximated. The particu-
lar Bayesian analysis we consider coincides with the conditional analysis of the
model as presented in Fraser (1979). The statistical model that we use is spec-
ified as follows. Suppose that we observe the data (X,y) where X € R**? has
z;j =1for5(j — 1)+ 1< i <5j and 0 otherwise, and y € R*. The statistical
model is then specified by the equation

y=XpB+ oz

where 3 € R?, 0 € (0,00) and the error = € R* is a sample of 45 from a
distribution in the family {Student™(v) : v € (2, 00)} where Student™(v) denotes
the Student(v) distribution standardized to have variance 1. Therefore the

density of z is given by




for —oco < z < oco. Therefore we have 9 location parameters 5;, 1 << 9, a
scale parameter o and a shape parameter v. In an application all these param-
eter values are unknown but we will treat v as being known here and make the
assignment v = 3. The restriction in the degrees of freedom for the Student dis-
tribution ensures that all response variables y; have a mean and finite variance.
We note that this model corresponds to 5 independent observations from each
of the 9 distributions specified by (5;, o) for i = 1,...,9. We denote the j-th
observation from the ¢-th distribution by y;;.

We place the improper prior 7 (8,0) = 1/6 on (3,0). Then the posterior
density for the 10-dimensional parameter (5,0) is proportional to
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and we note that this is a reasonably complicated function. Actually in this par-
ticular case some integrations can be carried out in closed form but we choose
to ignore this here as this is not characteristic of such problems. The integrals
we are approximating are therefore 10-dimensional. It makes sense to make
the transformation from o to logo so that the variable in the integration is
unconstrained in R'. This more closely conforms to the behavior of an approx-
imating multivariate Student density. With this transformation, and letting
0 =1(01,...,09,010) = (B1,...,09,logo), we see that we want to approximate
integrals of the form

I(mf) = / / m0r, - 010) (O, ., 610) dby - by,

/ / 91,... ,Hlo)exp{—9n910} X

i (35) o o
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with

f(O1, .. 010) = exp{— 9”910}HH9U (M)

i=1j=1 CXp 910)

To obtain a specific numerical example we constructed a data set by fixing values
for the parameters and then generating the z;;. For this we specified 3; = 0
for every 1 # 1, f1 = 1.8, ¢ = 1 and generated the z; from a Student”(3)
distribution.

For these integration problems we used a

Studenty (x\, 0, %I)

importance sampler with A = b after standardizing via the mode j of the poste-
rior and the inverse of the Hessian matrix X of log f. Representative results for



R (0;) R (0;)
2.043 | 2.043 (.001)
(-
(

1
1
2 | 0.095 | 0.096 (.023)
4 | 0.018 | 0.017 (.127)
10 | -0.073 | -0.073 (.017)

Table 1: Importance sampling estimates and estimated absolute coefficients of
variation for the Example where R denotes the exact value and R denotes the
importance sampling estimate.

approximating the posterior expectations of several of the #; using importance
sampling with this w are reported in Table 1 for a Monte Carlo sample size of
N = 10°. These computations require about 50 seconds of CPU time. The esti-
mates are accurate but the estimated absolute coefficient of variation for R (64)
is quite high. We tried these computations with different choices for A in the
range 1 to 20 but not much difference was noticed in the results. Overall this
importance sampler was reasonably successful here.

We then considered the use of stratified sampling with this importance sam-
pler. When X ~ Studenty (/\, 0, %I)We have that

A—2
P |IXI ~ kS (),

Therefore, because of the rotational symmetry of the Studentk (/\ 0, %I) dis-
tribution, we can generate a value from the Studenty (/\ 0,2 I) conditioned
to A; by generating r? from the kF(k, \) distribution condltloned to ( i1, rf) ,
generating U ~ Uniform (Sk 1) and setting X = rU. To generate from the
kF(k,A) distribution conditioned to (riz_l, rf) we used the envelope methods
discussed above. For the specific transformations employed see Evans and
Swartz (1998). We chose | = 25 strata with p; = ps = -+ = pas. We started
with the proportional allocation with a sample of 100 being taken from each stra-
tum and then switched to the Tschuprow-Neyman allocation for the remaining
sampling. In this example, the average efficiency increase when estimating the
R(0;) over i = 1,...,10 using stratified sampling was 2.8 when compared to
straight Student importance sampling. So stratified sampling was quite useful
in improving the performance of the importance sampler here.

In this same example we also tried different boundary points based on the
observation that the estimators of the component strata fj (m) had greatly differ-
ent standard errors. We therefore began with 2 strata having equal probability
and generated a small sample of size 100 in each stratum. We then split the
stratum having the largest standard error into 2 sub-strata of equal probability.
This splitting process was continued until [ = 25 strata were constructed. At
this point we switched to Tschuprow-Neyman allocation. However, this strategy
did not result in any meaningful variance reductions.
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4. CONCLUSIONS

We have shown that approximate integration via spherical stratified sam-
pling is now a feasible technique and moreover that it leads to meaningful im-
provements in computational efficiencies when compared to straight importance
sampling. The more the integrand deviates from the spherical symmetry of the
importance sampler w the more useful the technique will be. Still in high-
dimensional situations where the integrand deviates sharply from w we can
expect that importance sampling, with or without spherical stratification, will
not lead to accurate approximations within feasible computation times. In such
a context there are other variance reduction techniques that can be combined
with spherical stratification to improve performance. In particular symmetriz-
ing an integrand with respect to a finite subgroup of the orthogonal group has
the effect of making the integrand more like the importance sampler while leav-
ing the value of the integral invariant. Full details concerning this technique
can be found in Evans and Swartz (2000).

There are alternative approaches to approximate integration that are very
close 1n spirit to spherical stratified sampling. For example, in many such prob-
lems most of the variation in the behavior of the integrand occurs radially; i.e.
the standardized integrand is roughly spherically symmetric. In such a context
it would seem to make sense to use a more accurate integration approach for
the radial direction. For example, we could employ Simpson’s rule or a more
accurate Gauss-Laguerre rule for the radial direction. A disadvantage of this
is that it introduces a small systematic error in the Monte Carlo estimates; i.e.
they are no longer consistent. If this error is small relative to the accuracy
desired in our approximation then of course this is not a problem. The tech-
nique of randomized quadrature avoids this inconsistency. With this technique
the points and weights of a quadrature rule are randomly generated from some
distribution such that the randomly generated rule integrates polynomials up to
a certain degree (or some other class of functions) exactly. Genz and Monahan
(1998a, 1998b, 1999) discuss randomized spherical-radial rules. A disadvantage
of this technique is that it requires the solution to an increasingly difficult gen-
eration problem as the maximum degree of the polynomials integrated exactly
increases. Further for all the higher-order quadrature approaches it is not clear
how well they handle discontinuous integrands; e.g. when computing probabil-
ities of regions, whereas stratified sampling seems better adapted for this. Still
there i1s nothing definitive that can be said here at this point about the best
approach and this warrants further investigation.
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