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Abstract

This paper investigates the fouling time distribution of players in the National Bas-

ketball Association. A Bayesian analysis is presented based on the assumption that

fouling time distributions follow a gamma distribution. Various insights are obtained

including the observation that players accumulate fouls at a rate that increases with

the current number of fouls. We demonstrate possible ways to incorporate the foul-

ing time distributions to provide decision support to coaches in the management of

playing time.
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1 INTRODUCTION

In the National Basketball Association (NBA), a player fouls out of the game and is ineligible

to play after committing their sixth personal foul. Coaches therefore tend to “sit” players

(i.e., temporarily remove them from the game) when their fouls accumulate. The intention

of the coach is to have key players available later in the game.

A rough guideline that has been followed by NBA coaches is that a player is instructed

to sit when their number of fouls reaches Q + 1 where Q = 1, 2, 3 is the quarter of the

match. For example, when a player attains two fouls in the first quarter of a match, the

coach will remove the player from the game. Similarly, when a player attains three fouls

during the second quarter of a match, the coach will remove the player from the game.

The above coaching tradition does not appear to be informed by data, and does not take

into account specific player tendencies. For example, it may be possible that a particular

player can continue to be effective and avoid fouling. In sporting practice, there exist tra-

ditions that are on the level of folklore, and upon closer inspection, do not appear optimal.

For example, in hockey, the tradition had been for a team to pull its goalie when trailing

with about one minute remaining in a match. However, it has been suggested through

statistical modelling and simulation that goalies should be pulled with approximately three

minutes remaining (Beaudoin and Swartz 2010). The new recommendations appear to have

made an impact in NHL practice (Davis and Lopez 2015). Another example of a misguided

sporting tradition involves the over-reliance on popular baseball statistics such as batting

average. As is well known, the Moneyball phenomenon (Lewis 2013) highlighted alternative

baseball measures such as on-base percentage which serve as better predictors of success.

In the sport of football, Yam and Lopez (2018) use methods of causal inference to assess

the impact of punting on fourth down in the National Football League.

In this paper, we use data and statistical modelling to investigate various questions

associated with foul accumulation in the NBA. For example, do all players foul at the same

rate? Does the distribution of playing time between the (n − 1)st foul and the nth foul,

n = 1, . . . , 6 depend on n? Are there differences in the time-between-fouls (fouling time)
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distributions according to playing position? With respect to foul accumulation, can we

advise coaches when to sit their players?

The topic of NBA substitution patterns is a topic that has been mostly discussed on

blog sites. For example, Rochford (2017) use item response theory and Bayesian modelling

to draw various insights with respect to NBA fouls. In particular, Rochford (2017) draws

attention to the relationship between fouling and salary with the suggestion that higher

paid players are treated preferentially with respect to foul calls. Klobuchar (2018) investi-

gates the impact on win shares from the “early” substitution of players due to fouls. Falk

(2018) examines playing minutes when a coach employs a foul management strategy. The

investigation suggests different strategies, including changing a player’s defensive assign-

ment to decrease a player’s foul rate and rearranging the player’s minutes. In the journal

article by Maymin, Maymin and Shen (2012), the impact of early foul trouble is assessed

using tools from finance. Of note, Maymin, Maymin and Shen (2012) suggest that teams

exhibit poorer performance if they continue to play foul-plagued starters. Evans (2017b)

propose a conditional risk set model for ordered events to model a player’s time-to-foul

while including covariates such as the point differential, and time remaining in the game

among others.

In Section 2, we begin with an exploratory data analysis where we assess the conjecture

that the fouling time is exponentially distributed. We suggest that the gamma distribu-

tion provides a more realistic fouling time distribution. We also investigate the impact of

player position and the impact of foul level on the fouling time distribution. In Section 3,

we use the gamma distribution to build a stochastic model which incorporates unknown

parameters. The model is Bayesian and requires the specification of prior distributions and

computational strategies to assess the parameters. The exploratory analysis in Section 2

helps us specify the prior distribution in Section 3. A predictive distribution is then intro-

duced which may be used to address the practical intentions of coaches. The models are

implemented on NBA data in Section 4 where interesting insights are obtained with respect

to the fouling tendencies of players. We conclude with a short discussion in Section 5.
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2 EXPLORATORY DATA ANALYSIS

2.1 The Fouling Time Distribution

It has been suggested that the exponential distribution may be appropriate for the dis-

tribution of fouling times (Evans 2017a). Some simple thought experiments reveal that

the validity of this assumption is less than clear-cut. For example, if the fouling time is

exponentially distributed, then this time between fouls satisfies the memoryless property.

This implies that a player who has just stepped onto the court has the same probability of

fouling within a period of time compared to the situation where the player had been on the

court for a period of time. The memoryless property seems suspect as it is well known that

a tired basketball player may have difficulty moving his feet into a good defensive stance,

and is therefore more likely to commit a foul than a fresh player. On the other hand, it

may be argued that a fresh player may be overly excited and aggressive, and may be more

prone to foul than a player who has been on the court for a while.

In order to test the suitability of the exponential distribution, we introduce some stan-

dard failure time notation. Consider the ith player who has committed his (n − 1)st foul,

and this occurs in a match which we label the jth match. We denote X
(n)
ij as the time played

between the (n−1)st and nth foul, n = 1, . . . , 6 and j = 1, . . . ,min where min is the number

of matches in which the ith player has reached the nth foul level. It is therefore apparent

that mi1 ≥ mi2 ≥ · · · ≥ mi6 since a player must reach all foul levels less than n to reach the

nth foul level. It is possible that the time to foul X
(n)
ij is unobserved and there is a potential

censoring time C
(n)
ij . In this case, the corresponding observed dataset for the ith player at

the nth foul level is given by (Y
(n)
i1 , δi1), . . . , (Y

(n)
inm

, δinm) where Y
(n)
ij = min(X

(n)
ij , C

(n)
ij ) and

δij =

{
0 X

(n)
ij ≤ C

(n)
ij (uncensored)

1 X
(n)
ij > C

(n)
ij (censored)

.

In this application, it is important to note that the censoring mechanism involves random

right censoring rather than fixed right censoring. Should a player not commit the nth foul,
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n = 1, . . . , 6, we can think of the nth foul as randomly censored. In a medical application

with fixed right censoring, this corresponds to an experiment which concludes at the same

time for all subjects. A detailed treatment of the statistical analysis of failure time data is

given by Kalbfleisch and Prentice (2002).

In our investigation of the exponential distribution to model fouling times , we first note

that the exponential distribution is a special case of the gamma distribution. Here, we use

the parameterization X ∼ Gamma(α, β) such that E(X) = α/β. We consider alternative

data to that used in Section 4 to avoid the perils of “double use of the data.” Specifically,

we consider data from the 2012/2013 NBA regular season involving players i at the nth

foul level who have min ≥ 30 observations. This provides 1,010 player-foul combinations

involving 376 unique players.

We test the fit of the exponential distribution against the fit of the gamma distribution at

the 0.05 level of significance for each of the 1,010 datasets. That is, we carry out likelihood

ratio tests of the null hypothesis, H0 : α = 1 (i.e., exponential) against the alternative

hypothesis, H0 : α 6= 1 (i.e., gamma but not exponential). Expressions for the maximum

likelihood estimators of α and β under right random censoring are given by Harter and

Moore (1965). These are estimated using the mle function from the stats4 R package which

finds the minimum of a specified negative log-likelihood using an optimizer.

In the context of multiple comparisons, we reject 20% of the null hypotheses (much

more than 5% of null hypotheses that would be expected due to random variation). An

associated p-value for the number of rejected tests corresponds to Prob(W > 202) ≈ 0

where W ∼ Binomial(1010, 0.5). This provides evidence that the gamma distribution is

more appropriate than the exponential distribution. More powerful goodness-of-fit tests

such as those based on the empirical distribution function (see D’Agostino and Stephens

1986) would likely result in higher rates of rejection of the null hypothesis.

We further investigate the adequacy of the exponential and gamma distributions by

comparing exponential and gamma survival curves (based on maximum likelihood estima-

tion under right random censoring) against the associated non-parametric Kaplan-Meier

estimates (see Figure 1). We examine the two most extreme cases (i.e., smallest p-values)
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from the previous formal tests using the 2012/2013 data. These are the cases (Reggie Evans

and George Hill) that most strongly reject the exponential distribution. We also examine

the two cases (Avery Bradley and LaMarcus Aldridge) with the largest p-values. With Reg-

gie Evans (foul level n = 1, m1 = 80, 0 censored observations, p-value = 0.000000301) and

George Hill (foul level n = 1, m1 = 76, 9 censored observations, p-value = 0.000000681),

we observe that the exponential distribution is inadequate, yet the gamma survival curves

resemble the Kaplan-Meier curves. This is good because Kaplan-Meier curves are based on

nonparametric methods and ought to resemble the true underlying survival distributions.

Kaplan-Meier curves also readily accommodate censoring. With Avery Bradley (foul level

n = 3, m3 = 37, 11 censored observations, p-value = 0.992) and LaMarcus Aldridge (foul

level n = 2, m2 = 71, 14 censored observations, p-value = 0.995), we observe that the expo-

nential and gamma survival curves overlap, and provide good matches to the Kaplan-Meier

curves. Therefore, Figure 1 illustrates both the adequacy of the gamma distribution and

its lack of drawbacks.

In the formal goodness-of-fit testing, we observed α̂ > 1 in 821 out of the 1,010 datasets.

This indicates an increasing hazard function for the gamma distribution. In basketball

terms, this means that a player is more likely to foul when they are on the court for longer

periods of time. This corresponds to our intuition that tired players are more prone to

fouling. For the remainder of our investigation, we will assume fouling times obey a gamma

distribution. Because the gamma distribution is a two-parameter distribution that includes

the exponential as a special case, it is a more robust choice in the sense that it has more

flexibility to accommodate various distributional shapes (assuming there is sufficient data

to estimate the two parameters).

2.2 The Impact of Player Position and Foul Level

There is a perception that the accumulation of fouls may depend on player position. To in-

vestigate this notion, we considered NBA data from three recent seasons, 2013-2014 through

2015-2016. We further restrict the analysis to players who accumulated more than five fouls
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Figure 1: Estimated survival function (based on the gamma and exponential distributions)
and the Kaplan-Meier estimate for four players based on data from the 2012/2013 regular
season.

at each foul level and played at least 20 minutes a game for at least 60 games across the three

seasons. The restriction was carried out to avoid small datasets and provide more stability

in the estimates of the gamma parameters. For each foul level n = 1, 2, . . . , 6, we used the

maximum likelihood procedure previously discussed to estimate the gamma parameters αin

and βin for the ith player. We classified players into one of three positions: bigs, forwards

or guards according to their NBA position classification. Using www.nba.com, players are

labelled as either G, G-F, F-G, F, F-C, C-F or C. We classified players according to their

primary position (e.g., F-G was labelled as F). Estimated mean fouling times α̂in/β̂in were

then calculated and classified according to player position. The corresponding boxplot for
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estimated mean fouling times according to player position is shown in Figure 2. We observe

that bigs foul the most quickly, followed by forwards, and then followed by guards.

Figure 2: Boxplot of the estimated mean fouling times for each of the standard baskeball
playing positions.

There is a second perception that the accumulation of fouls may depend on the foul

level. We carry out a similar analysis where the estimated mean fouling times α̂in/β̂in were

classified according to foul level n = 1, 2, . . . , 6. The corresponding boxplot for estimated

mean fouling times is shown in Figure 3. We observe a clear trend that fouls occur more

quickly for increasing foul levels n.

To test the impact of player position and foul level formally, we carried out multiple

two-way ANOVA analyses on the mean fouling time estimates α̂in/β̂in. The ANOVA factors

were playing position (bigs, forwards and guards) and foul level n = 1, 2, . . . , 6. Adjusting

for multiple comparisons via Tukey’s HSD method, we found statistical significance for all

combinations of positions; namely big-forward (p-value = 1.5e-06), big-guard (p-value =

2.2e-308) and forward-guard (p-value = 1.6e-06). We also obtained statistical significance
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Figure 3: Boxplot of the estimated mean fouling times for foul levels n = 1, 2, . . . , 6.

(p-value = 5.1e-10) when testing for the overall difference in foul levels n = 1, 2, . . . , 6.

However, in the 15 pairwise comparisons tests for foul level differences where we accounted

for multiple comparisons, only 6 of the differences were statistically significant (1-3, 1-4,

1-5, 2-5, 3-5 and 4-5).

3 MODELLING

We use the development from Section 2.1 where α and β are vector notations for the

parameters, and y and δ are vector notations corresponding to the observed data. Assuming

X
(n)
ij ∼ Gamma(αin, βin), this leads to the posterior density

π(α, β | y, δ) ∝
∏
i

∏
j

∏
n

f(y
(n)
ij | αin, βin)1−δijn [1− F (y

(n)
ij | αin, βin)]δijn π(α, β) (1)
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where f and F are the density and cumulative distribution functions corresponding to the

gamma distribution and π(α, β) is the prior density. Here, interest concerns the unknown

parameters α and β which describe the fouling time distributions.

3.1 Prior Distribution

With 75 players of interest (see Section 4) and six foul levels n = 1, . . . , 6, this leads to

2(75)(6) = 900 parameters α and β in (1). In hierarchical models, we can effectively reduce

the parameterization by borrowing information between parameters. We let Pi denote the

position of player i where Pi is a categorical variable with values ”big” (1), ”forward” (2),

and ”guard” (3). We have seen from the exploratory data analysis that the fouling time

distributions depend on both position and foul level. We therefore consider a prior structure

where (αin, βin) arise from a distribution that depends on both the player position Pi and

the foul level n.

We implemented the prior structure by imposing independence between the (αin, βin)

pairs and specifying

(αin, βin)′ ∼ truncated Normal2((a, b)
′,Σ) (2)

where Σ = (σij). The truncations on the bivariate Normal distributions are imposed so

that αin > 0 and βin > 0 according to the definition of the gamma distribution. We have

used some simplifying notation in (2) where it is emphasized that the hyperparameters a,

b and Σ are specified and depend on the combination of the player position Pi and the foul

level n.

The hyperparameters (a, b) were informed by the original 2013-2014 through 2015-2016

regular season data. At each foul level n = 1, . . . , 6, we first obtained maximum likelihood

estimates (MLEs) α̂in and β̂in of the gamma parameters for all players who accumulated

more than five fouls and played at least 20 minutes of playing time for at least 60 games

across the three seasons. We then grouped the MLEs accordingly to the 3(6) = 18 combi-

nations corresponding to player position and foul level. The hyperparameters a and b were
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then determined by averaging the values of α̂in and β̂in in each group. For the specifica-

tion of the hyperparameter matrix Σ, we proceeded in the same fashion by calculating the

second moments corresponding to α̂in and β̂in in each group.

There is one exception to the hyperprior specification described above. We grouped

the case (Pi = 1, n = 5) with (Pi = 1, n = 6), we grouped the case (Pi = 2, n = 5) with

(Pi = 2, n = 6), and we grouped the case (Pi = 3, n = 5) with (Pi = 3, n = 6). This was

carried out because there were fewer fouls at the higher foul levels n = 5, 6, and grouping

provided more reliable estimation. The groupings appear justified since the mean fouling

time difference between foul level 5 and foul level 6 was only 0.85 minutes (see Figure 3).

We introduced one additional feature in the prior specification based on the discovery

from Section 2.3. We impose the constraint αi1/βi1 ≥ αi2/βi2 ≥ · · · ≥ αi6/βi6 to reflect our

knowledge that the mean fouling time decreases with increasing n. Further, if we believe

that fouling time distributions have an increasing hazard function, then we may introduce

the constraint αin ≥ 1.0. Additional model restrictions may be useful when data used to

inform the prior is not abundant.

3.2 Predictive Distributions

In the Bayesian setting, there is a convenient framework for handling predictive inference.

Suppose that we are interested in the predictive distribution for the playing time X
(n)∗
i

between the (n − 1)st foul and the nth foul for player i. The density for the predictive

distribution of X
(n)∗
i is given by

f(x) =

∫
f(x | αi, βi) π(α, β | y) dα dβ (3)

where y denotes the historical data used in the determination of the posterior (1).

Fortunately, obtaining a sample from the predictive distribution (2) is a by-product

of Markov chain Monte Carlo (MCMC). In the kth iteration of MCMC, we generate the

parameter vector (α(k), β(k)). We then generate x(k) ∼ f(x | α(k)
i , β

(k)
i ). Repeating the

procedure, we have a sample x(1), x(2), . . . , x(N) from the predictive distribution. As demon-
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strated in Section 4, the sample allows us to address various questions associated with

fouling times.

3.3 Computation

With complex high-dimensional posterior distributions, one typically resorts to sampling-

based methods to approximate posterior summaries. In this application, we use MCMC

methods to generate variates from the posterior. In particular, we use the Bayesian software

package Stan which is relatively simple to use and avoids the need of special purpose MCMC

code. In Stan, the user only needs to specify the likelihood, the prior and the data; the

determination of appropriate proposal distributions and sampling schemes are done in the

background. We sample using a No-U-Turn sampler variant of Hamiltonian Monte Carlo.

Stan is open source software (https://mc-stan.org) and can be accessed through RStan

(https://mc-stan.org/rstan/) which is the R interface to Stan. For example, if we are

able to generate variates α
(1)
in , . . . , α

(N)
in from the posterior (1), then α̂in = (1/N)

∑N
k=1 α

(k)
in

provides an estimate of the posterior mean of αin.

4 RESULTS

Data were taken from the Eight Thirty Four website (Evans and Saini 2019) which consists

of enhanced play-by-play data from the 2012-2013 through 2018-2019 NBA regular seasons.

Recall that the 2013-2014 through 2015-2016 NBA regular season data were used to

specify the prior distribution. We now consider the posterior density (1) based on data from

the 2016-2017 and 2017-2018 NBA regular seasons. We use fouling time data corresponding

75 players of interest consisting of 25 bigs, 25 forwards and 25 guards. The players selected

were those who had the most minutes of playing time at their respective positions during

the two seasons. From a basketball perspective, coaches care greatly about managing fouls

for their star players. Players who play marginal minutes are not in danger of fouling out.
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4.1 Model Validation

It is important to validate model accuracy. In particular, we compare the accuracy of our

predictive distributions to predictions based on three other approaches: a baseline survival

probability of 0.5, Kaplan-Meier estimation and maximum likelihood estimates for gamma

distributions.

For assessing accuracy, we consider the integrated time-dependent expected Brier score

as suggested by Mogensen, Ishwaran and Gerds (2012) which is adjusted for random right

censoring times as described by Gerds and Schumacher (2006). In the context of survival

functions, the Brier score at time t (Brier 1950) is the squared error

B̂(t) =
1

K

K∑
i=1

(
1yi>t − Ŝ(t)

)2

based on the observed failure times y1, . . . , yK where Ŝ(t) is the estimated survival proba-

bility and 1yi>t is 1 if yi > t and 0 otherwise.

Under random right censoring, the Brier score is modified using censoring weights (Gerds

and Schumacher 2006). With data (y
(n)
ij , δij) and survival function Ŝ

(n)
i (t) for player i and

foul level n, the time-dependent expected Brier Score using this adjustment is given by

B̂
(n)
adj (t) =

1

K

75∑
i=1

min∑
j=1

((0− Ŝ(n)
i (t)

)2

· 1
y
(n)
ij ≤t,δi=0

Ĝ(y
(n)
ij )

+

(
1− Ŝ(n)

i (t)

)2

· 1
y
(n)
ij >t

Ĝ(t)

)

where Ĝ(t) is the Kaplan-Meier estimator of P [C > t], C is the censoring time and min is

the number of observations for player i at foul level n.

We calculate B̂
(n)
adj (t) for t = 0, . . . , 48 minutes and approximate 1

48

∫ 48

0
B̂

(n)
adj (t)dt to ob-

tain the integrated time-dependent expected Brier score. The integrated time-dependent

expected Brier scores for each approach is calculated from out of sample predictions in the

2018-2019 NBA season from models that were fit on data from the 2016-2017 and 2017-2018

NBA seasons and are reported in Table 1.
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Foul Level n Bayesian Kaplan-Meier MLE 0.5 Baseline
1 0.1201 0.1200 0.1202 0.2514
2 0.1283 0.1286 0.1287 0.2553
3 0.1369 0.1371 0.1376 0.2556
4 0.1589 0.1626 0.1632 0.2372
5 0.1483 0.1563 0.1541 0.2170
6 0.1561 0.1895 0.1536 0.2273

Table 1: Integrated time-dependent expected Brier scores by foul level.

Our Bayesian model outperforms the other approaches for foul levels n = 2, 3, 4, 5 and

is second best for foul levels n = 1 (Kaplan-Meier is better) and n = 6 (the MLE approach

is better). As detailed by Redelmeier, Block and Hickam (1991) the determination of

statistically significant improvements requires the true foul probabilities. Therefore, future

work is needed to formally assess if these differences are statistically significant.

4.2 Extreme Foul Habits

To illustrate the variation in fouling times between players at each position, Table 2 provides

the median predicted fouling times for players with extreme foul habits. We observe that

players like Klay Thompson, Jimmy Butler and Marc Gasol are good at avoiding fouls

whereas players like Ed Davis, Kelly Oubre Jr. and Ricky Rubio foul more quickly. This

also illustrates the heavy-handedness of the Q+1 rule when applied to all players. It seems

tactically unsound to treat Harrison Barnes or Kemba Walker in the same way as Spencer

Dinwiddie or Robert Covington.

4.3 Example: Giannis Antetokounmpo - Predictive Distributions

We illustrate the fouling tendencies of Giannis Antetokounmpo of the Milwaukee Bucks

based on his fouling data from the 2017-2018 and 2018-2019 regular seasons as to make

the results as current as possible with the available data. We use data from the 2017-

2018 and 2018-2019 regular season for the following player examples as well. Following
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Player Position 1st 2nd 3rd 4th 5th 6th
Ed Davis C 6.0 5.7 5.5 5.1 4.9 4.4
Alex Len C 6.3 6.0 5.5 5.7 4.7 4.0
Robin Lopez C 12.3 10.0 7.8 7.2 5.6 4.7
Marc Gasol C 11.3 9.6 9.0 8.4 7.5 5.4
Kelly Oubre Jr. F 7.2 7.0 6.8 6.3 6.5 5.3
Robert Covington F 8.2 8.0 7.1 7.3 7.0 6.1
Harrison Barnes F 18.5 15.9 12.0 10.1 6.8 6.8
Jimmy Butler F 20.9 15.0 11.7 9.5 6.4 6.5
Ricky Rubio G 9.2 8.4 8.0 7.3 7.1 6.2
Spencer Dinwiddie G 10.2 8.7 7.5 7.5 6.1 6.3
Klay Thompson G 15.2 14.2 10.9 9.7 8.6 7.9
Kemba Walker G 18.5 16.6 10.3 10.0 8.3 6.7

Table 2: Median predicted fouling times at each foul level for players with extreme foul
habits at each position.

Section 3.2, we approximated predictive distributions for the fouling times at the foul levels

n = 1, . . . , 6. The estimated predictive densities are shown in Figure 4. The densities are

based on 3,000 draws from the predictive distributions which are estimated by the function

geom density ridges from the ggridges package in R. We observe that the predictive densities

have long right-skewed tails indicating that there is possibility of playing a long time without

fouling. This aligns with the empirical distributions at lower foul levels and differs slightly

at higher foul levels where censoring is more prevalent. Like all players, we further observe

that Giannis fouls quicker at later foul levels. For example, the mean predictive fouling

time for Giannis is 13.2 minutes for his first foul and 11.0 minutes for his third foul.

4.4 Example: LeBron James - Endgame Scenario

LeBron James has been a star NBA player for his entire career. Any coach of LeBron would

like to see him playing at the end of a match where the outcome is in the balance. Let’s

imagine that LeBron has picked up his fifth foul midway through the third quarter where

there is 18 minutes left to play. Should LeBron’s coach force LeBron to sit or should he
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Figure 4: Predictive densities of the fouling time distribution for Giannis Antetokounmpo
at the foul levels n = 1, . . . , 6 based on data from the 2017-2018 and 2018-2019 regular
seasons.

continue to play? Based on the MCMC output, LeBron’s estimated posterior mean time for

the sixth foul is 10.9 minutes (4.3 minutes longer than Giannis). However, the mean fouling

time does not provide a complete picture for the problem at hand. We use the MCMC

algorithm and the predictive distribution (3) to generate fouling times x(1), x(2), . . . , x(N)

corresponding to LeBron’s sixth foul. The 10th percentile of the predictive sample based

on N = 1, 000 is 1.3 minutes. Therefore, if the coach wants LeBron playing at the end of

the match with 90% probability, then the coach should force LeBron to sit and re-enter the

match with 1.3 minutes remaining. This strikes us as an overly conservative strategy, where

we suggest that coaches ought to be willing to have LeBron re-enter the match earlier than

with 1.3 minutes remaining. For reference, the 30th and 50th percentiles for LeBron are

4.1 and 7.8 minutes, respectively. Also, note that the last time LeBron accumulated 5 fouls
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in a game was the 2016-2017 where this occurred twice. The first time he fouled out in less

than 2.0 minutes, and the second time, in under 4 minutes.

The same scenario and analysis is considered for another impact player, Karl-Anthony

Towns. Having committed his fifth foul, if his coach wants Towns playing at the end of

the match with 90% probability, then the coach should force Towns to sit and re-enter

the match with 1.0 minutes remaining. The 30th and 50th percentiles for Towns are 3.1

and 5.9 minutes, respectively. In the 2018-2019 season, Towns reached 5 fouls 28 times.

In three of those games, the 5th foul occurred with less than 1.0 minute of playing time

remaining. In four of those games, Towns fouled out in less than a minute. Therefore, while

the recommendation may seem conservative, it does line up with empirical results.

We suggest that coaches understand the full distribution of outcomes and consider even

larger percentiles than the 50th percentile in order to maximize minutes played. However,

each individual decision must balance the threat of fouling out before the end of the game

with the magnitude of minutes the player plays. Falk (2018) argues that the scale should

be pushed as far as possible to maximize minutes played. We agree and want coaches to

use this information to make a more informed decision.

4.5 Example: Damian Lillard - Cumulative Fouls

We provide a third player example which further illustrates the convenience of simulation-

based inference using the proposed model. Following the description of the generation of

predictive variates in Section 3.2, suppose we are interested in the total time T that Damian

Lillard can play following his second foul. If xj is the predicted time between the (j − 1)st

foul and the jth foul, then our interest concerns T = x3 + x4 + x5 + x6.

In Figure 5, we provide the survival curve corresponding to T for Damian Lillard. We

observe that Lillard’s median time for fouling out exceeds 48 minutes (ie. the length of

a match). Therefore, in the case of Damian Lillard, it may be unnecessarily cautious for

coaches to follow the Q+ 1 rule.

If Damian Lillard picks up his second foul 8 minutes into the first quarter, Lillard would
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be considered to be in foul trouble according to conventional wisdom. However, we would

estimate that there is only a 64% chance of surviving if Lillard were to play the final 40

minutes of the game. Of course, this is unrealistic since Lillard needs some rest throughout

the game. However, Lillard would have an 88% chance of playing his season average of 36

minutes in the game (an additional 28 minutes given the 8 minutes that he has already

played). Therefore, we would not consider Lillard to be at great risk of fouling out and we

would not recommend changing his regular substitution rotations.

Figure 5: Survival curve of the total playing time T = x3 + x4 + x5 + x6 prior to fouling
out for Damian Lillard after he has committed his second foul.

5 DISCUSSION

This paper introduces parametric models in a Bayesian framework for the analysis of fouling

time distributions. The problem is important since NBA players foul differently, and coaches

wish to manage playing minutes well.
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Some of the messages in this paper include (1) that the gamma distribution provides a

flexible and appropriate distribution for fouling times, (2) that mean fouling times decrease

across the positional types given by bigs, forwards and guards, and (3) that mean fouling

times decrease as more fouls are accumulated. Future work may consider the impact of

consecutive playing time versus segmented playing time, and other covariates such as those

suggested by Evans (2017a, 2017b).

It is our hope that the methods presented here may help NBA teams make better

substitution decisions. Should teams implement the methods, we suggest that they remove

intentional fouls from the dataset. Although intentional fouls are infrequent, they should

not be included as they do not characterize individual fouling behaviour.
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