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Summary. Stylometry refers to the statistical analysis of literary style of authors based on the

characteristics of expression in their writings. We propose an approach to stylometry based on a

Bayesian Dirichlet process mixture model using multinomial word frequency data. The parameters

of the multinomial distribution of word frequency data are the “word prints” of the author. Our

approach is based on model-based clustering of the vectors of probability values of the multinomial

distribution. The resultant clusters identify different writing styles that assist in author attribution

for disputed works in a corpus. As a test case, the methodology is applied to the problem of

authorship attribution involving the Federalist papers. Our results are consistent with previous

stylometric analyses of these papers.

Keywords: Bayesian methods, Clustering, Computational linguistics, Dirichlet process priors, Dis-

puted authorship, Federalist papers, Multinomial distribution

1



1 Introduction

Stylometry deals with the statistical and computer analysis of literary style using the characteristics

of expression. For more than 150 years, a wide variety of statistical techniques have been proposed

to compare literary styles and address the problem of authorship attribution. The methods range

from goodness-of-fit tests, principal component analysis, discriminant analysis and classical clus-

tering methodologies to sophisticated artificial intelligence and neural networks models. Specific

stylometric applications have involved religious texts (Old and New Testaments, Book of Mormon),

Old English manuscripts, political essays (Federalist papers), popular literature (The Royal Book

of Oz ), Shakespearean plays, American Civil War letters, plagiarism in students’ essays and the

authenticity of legal documents. Holmes (1999) provides a good review and history of research in

this field.

Pioneering work on stylometry was based on word-length and sentence-length distributions.

However, it was often the case that these variables were unable to discriminate between authors

(Mosteller and Wallace 1984). Consequently, many stylometric analyses include other variables such

as vocabulary richness, the proportion of nouns, the proportion of adjectives, the number of one-

letter and two-letter words, etc. (Holmes 1999). For the purpose of author attribution, successful

methods rely on identifying and exploiting an author’s “word prints”. The methodologies involve

words, called function words, which are non-contextual (i.e. topic-independent) but serve as useful

indicators of an author’s unconscious stylistic preferences while writing on any topic. Commonly used

function words are conjunctions, prepositions and articles that have little meaning by themselves

but are used to define relationships between content words in a sentence. Data extracted from texts

consist of the frequencies of occurrence of various function words.

The question of authorship falls into the general statistical problem of classification where objects

that are “similar” are grouped together in clusters. In stylometry, the objects are texts and the

clusters consists of texts that are deemed to have been written by the same author. Sometimes

prior knowledge is available of the form where the authorship is known for some of the texts under

consideration.

In our approach, we view the frequencies of function words as samples from an underlying

multinomial distribution. The use of the multinomial distribution is an important aspect of our

methodology and differs from analyses based on the multivariate normal distribution (e.g. Holmes

and Forsyth 1995). When dealing with frequency data, percentages sum to 100% and induce neg-
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ative correlations between the frequencies of function words. In the normal setting, the negative

correlations are not quite handled correctly even when a non-diagonal variance matrix is permitted.

Furthermore, the discrete nature of the data is not taken into consideration when analyses are based

on the normal distribution.

Our approach also differs from most stylometric analyses in that it is Bayesian. Unlike deter-

ministic clustering algorithms, this implies that there is a quantifiable uncertainty in the resultant

clusters of texts. We account for the uncertainty by expressing probabilities associated with clusters.

Although methods of fuzzy analysis (Dunn 1977) provide membership coefficients for individual ob-

jects, classical (as opposed to model-based) agglomerative approaches do not provide probability

assessments for clustering. Clustering probabilities are sometimes available using Bayesian mixture

models (Liu, Zhang, Palumbo and Lawrence 2003). However, these methods typically rely on Markov

chains which often require fine tuning to promote mixing in the Markov chain. A mixture model

based on generalized Dirichlet multinomial distributions to cluster count data with applications to

digit recognition is discussed in Bouguila (2008).

In Section 2, we describe the underlying Bayesian model used in our approach. The data on

function word frequencies are assumed to arise from multinomial distributions. The parameters of

the multinomial distributions are therefore characteristics of an author’s writing style, and clustering

is carried out on these parameters. As there exists uncertainty in the parameters, it follows that there

is uncertainty in the clustering which leads to the calculation of posterior clustering probabilities.

In Gill, Swartz and Treschow (2007), stylometric clustering is done in a two-stage process whereby

parameter output is generated from a Markov chain, and the output is then fed into a standard

clustering algorithm. In the proposed approach, the clustering is more natural as the clustering is an

inherent part of the statistical model. This is accomplished via the Dirichlet process whose support

is restricted to discrete distributions (Ferguson 1974) and is therefore well-suited for clustering.

Using Dirichlet process priors also allows weaker prior assumptions by going from a parametric to

a semiparametric framework. Our approach makes various prior assumptions that are appropriate

to the stylometric context. We also suggest a pragmatic approach to the selection of function

words. Our methodology and analysis is computational and we discuss aspects of the computation

in Section 3. Some theory and discussion is provided regarding the effect of increasing the number

of function words. In Section 4, a detailed simulation study provides insights regarding the interplay

of the various input parameters of the algorithm. The simulation study suggests conditions when

the approach may be effective. In Section 5, the methods are applied to the well-studied problem
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concerning the authorship of the Federalist papers. In the analyses, we indicate how prior knowledge

can be utilized by grouping texts in appropriate ways and by varying the concentration parameter

used in the Dirichlet process. A concluding discussion is provided in Section 6.

2 Bayesian model

A principle of stylometric analysis is that authors use high-frequency function words unreflectively in

their writings. These function words occur regardless of context, and hence, differential rates of usage

form a basis for distinguishing authorship. Function words are typically prepositions, conjunctions,

articles and common verbs. The choice of function words is typically determined by a subject matter

expert. Given the selection of K function words, we assume that frequency counts are obtained for

each of N texts. Let Xik denote the frequency of function word k in the ith text, k = 1, . . . ,K,

i = 1, . . . , N. This gives rise to the model

Xi = (Xi1, . . . , XiK)T ∼ Multinomial(ni ; pi1, . . . , piK) (1)

where ni =
∑
kXik is the total number of function words in the ith text, the multinomial vectors

are assumed independent over i = 1, . . . , N and
∑
k pik = 1. The multinomial distribution is a

natural distribution for use in this problem. However, in a clustering context, we are not aware of

any model-based mixture approaches that use the multinomial distribution. Perhaps this is due to

the fact that there is no clear choice for a dissimilarity measure between the multinomial vectors

X1, . . . , XN in classical partitioning and hierarchical clustering algorithms. Traditional stylometric

methods are often based on large sample multivariate normal approximations to the multinomial

distribution for word frequency data (Holmes and Forsyth 1995).

The unknown parameters in model (1) are the pik’s which represent the word prints of the author

of the ith text. In a standard Bayesian analysis based on (1), it is typical to assign independent flat

priors to pi = (pi1, . . . , piK)T for i = 1, . . . , N . In the given application to stylometry, we suggest

that it is more appropriate to assume that the pi’s are grouped in latent clusters representing the

underlying authors. We proceed by using a Dirichlet process mixture model whereby

pi |G
iid∼ G (2)

G |α,G0 ∼ DP(α,G0)
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for i = 1, . . . , N . In non-technical language, (2) states that the parameters pi are independent and

are distributed according to G. However, the distribution G is unknown and this is the semipara-

metric aspect of the Dirichlet process. Furthermore, (2) states that the distribution G arises from

a distribution of distributions where E(G) = G0 and the concentration parameter α > 0 is such

that larger (smaller) values of α imply that G is closer (further) in distributional distance to G0.

Again, an important but not so obvious feature of (2) is that the support of G is limited to discrete

distributions, and this is fundamental to the clustering of the pi’s. We also note that the Dirichlet

process does not require the specification of the number of clusters. Once a theoretical curiosity, the

Dirichlet process and its extensions are finding increasing application areas in nonparametric statis-

tics. For a clear exposition of a Dirichlet process mixture model in an applied random-effects setting

together with references to the technical literature concerning the Dirichlet process, see Ohlssen,

Sharples and Spiegelhalter (2007).

To complete the Bayesian model, we require the specification of the baseline distribution G0 and

the remaining prior distributions. In our problem, we suggest the baseline distribution

G0 ∼ Dirichlet(a1, ..., aK) (3)

where the Dirichlet is appropriately defined on the (K − 1)-dimensional simplex. Although setting

a1 = · · · = aK = 1 in (3) may be interpreted as noninformative, we take the view that the individual

writing styles pi arise from a superpopulation of writing styles. We therefore take an empirical Bayes

approach and set ak = mqk where qk is the proportion of times that function word k appears across

all manuscripts (i.e. qk =
∑
iXik/

∑
i ni ) for k = 1, . . . ,K. The specification implies that the kth

component of the Dirichlet distribution has expectation qk, k = 1, . . . ,K. The determination of m

is based on variability considerations where we equate the “empirical variance” s2 =
∑

(qi − q)2/K

with the theoretical variance of the kth component of the Dirichlet distribution. This leads to

(m+ 1)s2 = qk(1− qk), and summing over k = 1, . . . ,K gives

m =

∑
qk(1− qk)∑
(qk − q)2

− 1.

Finally, in various applications, the treatment of the concentration parameter α has sometimes

proved problematic as inferences may be sensitive to α (Dorazio 2009). Accordingly, we treat the

concentration parameter as a tuning parameter and investigate its effect under various fixed settings.

In our examples, we set values of α ranging from 1 to 100. This is demonstrated in the simulation

study of Section 4.
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2.1 Choice of function words

Earlier, we glossed over the problem of determining function words. In fact, this is a serious issue

which has a direct impact on the success of any stylometric approach.

A temptation and standard strategy is to look at the texts in question, and choose non-contextual

function words that have good discriminating power in differentiating texts between authors who

are known to be distinct. In classical analyses, such an approach typically violates the statistical

procedures used in the analyses. The reason is that statistical procedures such as t-tests are uncon-

ditional tests, and unconditional tests do not allow the user to first look at the data, and then use

the information to determine aspects of the test (i.e. determine the function words). This standard

stylometric strategy therefore argues for a Bayesian approach. In Bayesian statistics, all inferences

proceed from the posterior distribution, and the posterior describes parameter uncertainty condi-

tional on the observed data. Bayesian procedures are therefore conditional procedures which allow

a user to make decisions on how to proceed based on an initial inspection of the data.

In our Bayesian approach to stylometry, we determine function words based on data inspection.

Suppose that we have K non-contextual function words initially chosen by a subject matter expert.

Often the subject matter expert may do something as simple as list the most frequent words and

eliminate contextual words from the list. As discussed at the end of Section 3, we do not want K

large, and therefore, we attempt to reduce the list of non-contextual function words. Suppose further

that we have N texts in the stylometric analysis. Given the kth function word under consideration

and texts i and j, we calculate the statistic

z =
p̂ik − p̂jk√(

1
ni

+ 1
nj

)
p̃(1− p̃)

(4)

where p̂lk = Xlk/nl is the proportion of occurrence of function word k in text l, p̃ = (Xik+Xjk)/(ni+

nj) is the pooled proportion of the given function word in text i and text j, and nl is the total number

of function words in text l, l = i, j. The statistic z in (4) is calculated for all K
(N

2

)
combinations of

function words and pairs of texts. We sort |z| and use the largest values to determine the reduced

set of function words. This is a simple and effective method of determining function words, and it

is a legitimate procedure when implemented as part of a Bayesian analysis.
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3 Computational algorithm

In Bayesian analyses, the posterior distribution provides the full description of uncertainty for all

that is unknown. Accordingly, it is often convenient to describe the posterior using summaries

such as posterior means and posterior standard deviations. However, in most Bayesian applications,

the complexity and dimensionality of the posterior prevents the analytic calculation of summary

measures which take the form of integrals. In these problems, it is common to take a sampling

approach to approximate the integrals, and Markov chain methods are often the sampling method

of choice.

The Dirchlet process mixture model presented in Section 2 is a model whose complexity seems

to demand an analysis via Markov chain methods. Our first attempt at computation involved

an implementation via the software package WinBUGS (Spiegelhalter, Thomas and Best 2003).

WinBUGS analyses are appealing as the programmer need only specify the statistical model, the

prior and the data. In WinBUGS, the Markov chain calculations are done in the background

whereby the user is supplied with Markov chain output. As the Dirichlet process prior is not one of

the available WinBUGS distributions, an approximation of the prior was considered as carried out in

Ghosh, Gill, Muthukumarana and Swartz (2010). The approximation is based on a truncation of the

“stick-breaking” sum as given in the Sethuraman (1994) construction of the Dirichlet process. We

use this approach as a confirmatory procedure to ensure that we have qualitatively correct results.

Our preferred procedure which we describe next does not require the tuning parameter involved in

the stick-breaking truncation.

An alternative approach involves the direct programming of a Markov chain for the Dirichlet

process mixture model of Section 2. Neal (2000) describes various Markov chain algorithms for the

analysis of Dirichlet process mixture models. Our model has a conjugate structure (i.e. Dirichlet

baseline distribution with multinomial data) and this facilitates the development of algorithms. We

implement Algorithm 2 given by Neal (2000) which involves the introduction of latent variables

describing the cluster membership of the writing styles p1, . . . , pN . Compared to various alternative

MCMC algorithms, Algorithm 2 is thought to mix well and lead to practical convergence in realistic

computing times for a variety of problems (Neal 2000). Specifically, let ci denote the latent class

of the ith text and let nic be the size of latent class c = 1, . . . , G when text i is excluded from

consideration. Then Algorithm 2 from Neal (2000) translates into iterations of the following two

steps:
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• For i = 1, . . . , N : generate ci according to Pr[ci = c] = rc where

rc ∝


0 if nic = 0(

α
N−1+α

)
Γ(a1+···+aK)
Γ(a1)···Γ(aK)

Γ(a1+Xi1)···Γ(aK+XiK)
Γ(a1+···+aK+Xi1+···+XiK) if c = G+ 1(

nic
N−1+α

)
pXi1
c1 · · · p

XiK
cK otherwise .

(5)

If ci belongs to an existing class cj , then set pi = pj . If ci does not belong to an existing class,

then generate pi ∼ Dirichlet(a1 +Xi1, . . . , aK +XiK).

• For each latent class c = 1, . . . , G: sample the corresponding pc ∼ Dirichlet(ac1, . . . , acK) where

ack = ak +
∑
i:ci=cXik.

The primary inferential question for stylometry concerns the attribution of authorship. To ad-

dress this question, consider a single iteration of the Markov chain which yields parameter output

p1, . . . , pN . For each pair of texts (i, j), we check whether pi = pj and increment its counter accord-

ingly. After many iterations, we obtain the proportion of time that pi and pj are equal, and this

provides an estimate of the probability that authors of text i and j are the same.

In (5), the concentration parameter α is fixed and we view it as a tuning parameter for the

algorithm. However, it may be more satisfying to consider a fully Bayes procedure where a prior

distribution is assigned to α. Neal (2000) states that the random α case can be handled. Gill and

Casella (2009) consider the case where α is discrete. In the continuous case, let π(α) denote the

prior density of α. Then it is not difficult to show that the full conditional distribution for α is

[α | ·] ∝ Γ(α)

Γ(α+N)
αGπ(α) (6)

where G is the number of latent classes. We recognize that (6) is a nonstandard density which does

not readily admit variate generation. We therefore imbed a Metropolis step in the Gibbs sampling

algorithm (5) where q(α) is chosen as the proposal density for α. The Metropolis step then proceeds

by generating u ∼ Uniform(0, 1) and generating α according to the proposal distribution. We denote

the previous value of α in the Markov chain as α∗. We use the generated α from the proposal as the

next iterate in the Markov chain unless

u >
Γ(α)

Γ(α∗)

Γ(α∗ +N)

Γ(α+N)

(
α

α∗

)G π(α)

π(α∗)

q(α∗)

q(α)
, (7)

in which case, we set α = α∗. As a particular case, we choose the prior density π(α) as Uniform(0, θ0)

for some prescribed θ0. Then noting that Γ(α)αG/Γ(α+N) is increasing in α, we choose the proposal
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density q(α) = 2α/θ2
0 on (0, θ0). Generating from this proposal is straightforward via α = θ0

√
v

where v ∼ Uniform(0, 1) and inequality (7) reduces to

u >
Γ(α)

Γ(α∗)

Γ(α∗ +N)

Γ(α+N)

(
α

α∗

)G−1

.

Initially, our intuition suggested that by increasing the number K of function words, the dis-

criminating power of the methodology would improve, and better stylometric inferences would be

obtained. This is what is generally observed in multivariate analyses where increasing the number

of variables tends to increase the opportunity to discriminate. However, our investigations suggest

that this is not the case, and in fact, very large values of K lead to unreasonably small numbers of

clusters. Therefore, the user needs to strike a balance between adding function words that are truly

discriminatory versus adding function words that create noise in the analysis. To get a sense why

this happens, consider for simplicity the noninformative prior a1 = · · · = aK = 1. Then using the

probabilities in (5), we investigate the probability that a new cluster is formed in the Markov chain.

Letting Q denote a constant and using Stirling’s approximation to the log-gamma function, we have

log

(
rG+1

rc

)
= logα+ log Γ(K) +

∑
k

log Γ(Xik + 1)

− log Γ(K +
∑
k

Xik)− log nic −
∑
k

Xik log pck

≈ log(α/nic) + (K − 1) log(K − 1)− (K − 1) +
∑
k

Xik logXik −
∑
k

Xik

− (K − 1 +
∑
k

Xik) log(K − 1 +
∑
k

Xik) + (K − 1 +
∑
k

Xik)−
∑
k

Xik log pck

≈ Q+ (K − 1) log(K − 1)− (K − 1 +
∑
k

Xik) log(K − 1 +
∑
k

Xik)

≤ Q+ (K − 1) log(K − 1)− (K − 1 +
∑
k

Xik) log(K − 1)

= Q−
∑
k

Xik log(K − 1)

→ −∞

as K → ∞. This implies that new clusters do not form in the Markov chain when the number of

function words becomes excessively large.
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4 Simulation Study

We now provide a comprehensive simulation study on the effect of various input parameters to the

stylometric clustering algorithm.

4.1 The baseline data, model and analysis

We consider a stylometric problem involving N = 10 texts and three clusters. We generated data

such that texts i = 1, . . . , 5 belong to the first cluster, texts i = 6, 7, 8 belong to the second cluster

and texts i = 9, 10 belong to the third cluster. Specifically, for texts i = 1, . . . , 10, we generated data

(Xi1, . . . , XiJ)T ∼ Multinomial(ñi ; pi1, . . . , piJ)

where J = 21 and we initially considered a total text size of ñi = 5000 words. Note that piJ =

1−
∑J−1
j=1 pij corresponds to the frequency of non-function words such that the number of function

words that can be used in model (1) is K = 2, . . . , J − 1 leading to ni =
∑K
k=1Xik.

The multinomial parameters for texts i = 1, . . . , 5 in the first cluster were set as follows:

pi1 pi2 pi3 . . . pi5 pi6 . . . pi8 pi9 pi10 pi11 . . . pi20

0.060 0.030 0.025 0.020 0.010 0.005 0.002
.

For texts i = 6, 7, 8 in the second cluster, we set

pij =

 a2p1j j odd

b2p1j j even
(8)

where a2 = 0.9 and b2 = 1.1 were chosen to differentiate the second cluster from the first cluster at

the 10% level. For texts i = 9, 10 in the third cluster, we set

pij =

 a3p1j j odd

b3p1j j even
(9)

where a3 = 1.1 and b3 = 0.9 were chosen to differentiate the third cluster from the first cluster at

the 10% level. With these settings, the first cluster “lies” somewhere between the second and third

clusters.

The generated data are intended to portray a realistic stylometric problem. We have consid-

ered texts which are of standard essay length (5000 words) and the function word frequencies pik
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correspond to the usage of common non-contextual words such as “the” and “as”. Note that the

frequencies decrease as we increase the number of function words; this is realistic as most English

function words have frequencies less than 2%. Table 1 provides the data counts Xi1, . . . , Xi10 for

the first 10 function words for each of the texts i = 1, . . . , 10.

Text i Xi1 Xi2 Xi3 Xi4 Xi5 Xi6 Xi7 Xi8 Xi9 Xi10

1 316 142 116 131 124 95 111 82 41 20

2 271 145 118 154 132 99 105 101 56 17

3 307 161 114 123 124 96 115 110 43 22

4 322 137 124 127 132 106 94 86 41 35

5 298 150 127 125 134 95 91 95 57 33

6 268 161 127 129 117 111 96 102 56 31

7 245 188 112 131 116 116 90 106 41 24

8 268 158 112 151 129 109 85 116 39 26

9 347 139 123 121 130 73 105 85 52 27

10 356 142 114 107 126 66 108 60 58 23

Table 1: The frequency counts Xi1, . . . , Xi10 corresponding to the first 10 function words of the

baseline data from Section 4.1.

Having generated the baseline data, we completed the specification of the baseline stylometric

model by using the continuous prior α ∼ Uniform(0, 3) and using the first K = 2 function words.

Table 2 provides the resultant posterior probabilities of pairwise clustering between texts. Using

a probability threshold of 0.5 for clustering, Table 2 suggests three clusters with text memberships

{1, 4, 9, 10}, {2, 3, 5, 6, 8} and {7}. At first glance, the clustering results may appear poor. However,

upon close inspection of the first two columns of Table 1 (recall K = 2), the clustering appears

sensible and reflects the variation of the data generation mechanism. The posterior probabilities in

Table 2 are reasonable in the sense that they are not too close to either 0 or 1. For example, texts

2, 3 and 5 are nearly clustered with texts 1 and 4. We repeated the exercise by generating several

datasets under the same input conditions, and in each of the cases, the clustering was “incorrect”

with a number of misclassified texts.
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Text i Text j

1 2 3 4 5 6 7 8 9 10

1 0.00 0.43 0.46 0.67 0.53 0.23 0.01 0.26 0.64 0.64

2 0.43 0.00 0.64 0.35 0.60 0.55 0.11 0.58 0.29 0.29

3 0.46 0.64 0.00 0.39 0.63 0.53 0.09 0.55 0.32 0.31

4 0.67 0.35 0.39 0.00 0.47 0.16 0.00 0.19 0.71 0.71

5 0.53 0.60 0.63 0.47 0.00 0.44 0.06 0.47 0.41 0.40

6 0.23 0.55 0.53 0.16 0.44 0.00 0.26 0.66 0.11 0.11

7 0.01 0.11 0.09 0.00 0.06 0.26 0.00 0.23 0.00 0.00

8 0.26 0.58 0.55 0.19 0.47 0.66 0.23 0.00 0.14 0.14

9 0.64 0.29 0.32 0.71 0.41 0.11 0.00 0.14 0.00 0.75

10 0.64 0.29 0.31 0.71 0.40 0.11 0.00 0.14 0.75 0.00

Table 2: The posterior probability of clustering between texts i and j for the baseline data of Section

4.1 where K = 2 and α ∼ Uniform(0, 3).

4.2 The effect of the function word probabilities pik

Hopefully, the methodology is better able to distinguish differences between texts when there is in

fact greater differentiation between texts. To explore this, we changed the differentiation parameters

in (8) and (9) to a2 = 0.8, b2 = 1.2, a3 = 1.2 and b3 = 0.8 corresponding to an increased 20% level

of differentiation. We generated four datasets and the clustering results were as follows:

• {1, 2, 3, 4, 5}, {6, 7, 8}, {9, 10}

• {1, 2, 3, 4, 5, 8}, {6}, {7}, {9, 10}

• {1, 2, 3, 4, 5, 6}, {7, 8}, {9, 10}

• {1, 3, 4, 5}, {2}, {6, 7, 8}, {9, 10}

Although the clustering is “perfect” only in the first case, the overall clustering performance

here is better than in the case of 10% differentiation. This provides evidence that our stylometric

methodology makes better decisions when authors are more heterogeneous in their writing styles.
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4.3 The effect of the DP concentration parameter α

One of the contributions in the paper is the specification and implementation of a continuous prior for

α. In the analysis of section 4.1, the posterior mean of α was 1.6. If we instead use a discrete Uniform

prior for α (Gill and Casella 2009), we observe that the posterior means can differ substantially. For

example, using a discrete Uniform(1, . . . , 20) prior, the posterior mean of α is 5.1. The clustering

results also differ with texts apportioned to six clusters according to {1, 4}, {2, 3}, {5}, {6, 8}, {7}
and {9, 10}. This is expected as expanding the limit of support for the concentration parameter

α is known to increase the numbers of clusters. However, the good news is that changing the

prior for the nuisance parameter α did not greatly change the pairwise clustering probabilities. In

Table 3, we provide the posterior pairwise clustering probabilities using the baseline data given in

Section 4.1 with K = 2 and α ∼ Discrete Uniform(1, . . . , 20). The entries in Table 3 and Table 2

are qualitatively similar in the sense that for every text, we have the same rank order for the row

probabilities.

Text i Text j

1 2 3 4 5 6 7 8 9 10

1 0.00 0.32 0.35 0.52 0.41 0.16 0.00 0.19 0.48 0.48

2 0.32 0.00 0.51 0.26 0.47 0.43 0.06 0.45 0.20 0.19

3 0.35 0.51 0.00 0.28 0.49 0.41 0.05 0.43 0.21 0.21

4 0.52 0.26 0.28 0.00 0.35 0.11 0.00 0.13 0.54 0.54

5 0.41 0.47 0.49 0.35 0.00 0.34 0.03 0.36 0.28 0.27

6 0.16 0.43 0.41 0.11 0.34 0.00 0.17 0.52 0.07 0.07

7 0.00 0.06 0.05 0.00 0.03 0.17 0.00 0.15 0.00 0.00

8 0.19 0.45 0.43 0.13 0.36 0.52 0.15 0.00 0.08 0.08

9 0.48 0.20 0.21 0.54 0.28 0.07 0.00 0.08 0.00 0.57

10 0.48 0.19 0.21 0.54 0.27 0.07 0.00 0.08 0.57 0.00

Table 3: The posterior probability of clustering between texts i and j for the baseline data of Section

4.1 where K = 2 and α ∼ Discrete Uniform(1, . . . , 20).

We also consider the effect of Gamma(a, b) priors which appear well-suited to the stylometric

application. Unlike Uniform distributions with truncated support that needs to be specified, Gamma
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distributions are defined on (0,∞). Another appealing feature of the Gamma family is that the

Metropolis step (7) can be avoided. Instead, Escobar and West (1995) provide a direct expression

for the posterior distribution of α as a mixture of two Gamma’s involving an auxilliary parameter η.

Dorazio (2009) provides a method of selecting the Gamma parameters a and b such that the number

of possible clusters 1, . . . N is apriori equiprobable. In our simulated baseline data with N = 10,

Dorazio’s (2009) method provides a = 0.525 and b = 0.046. In this case, the clustering methodology

yields the partition {1}, {2}, {3}, {4, 9, 10}, {5}, {6}, {7} and {8}, which as anticipated, contains

more clusters than when using the Uniform(0, 3) prior. However, if we were apriori more inclined

towards fewer clusters, we might consider changing the clustering threshold from 0.5 to 0.4. With

the lower clustering threshold, the posterior pairwise clustering probabilities yield the partition

{1, 4, 9, 10}, {2, 3, 5, 6, 8} and {7} which is the same partition when using the Uniform(0, 3) prior.

Further, we note that using various fixed values of α (e.g. α = 5.0) does not result in markedly

different clustering.

4.4 The effect of the text sizes ñi

Our intuition is that increasing text sizes leads to more information which in turn leads to improved

clustering. To explore this conjecture, we generated a new dataset according to the specifications

of Section 4.1 except that each of the text sizes is increased tenfold from ñi = 5, 000 words to

ñi = 50, 000 words.

The pairwise clustering results corresponding to the new dataset are presented in Table 4. From

Table 4, we observe “perfect” clustering (i.e. {1, 2, 3, 4, 5}, {6, 7, 8}, {9, 10} ) and we note that the

probability assessments are more definitive than in Table 2. These observations suggest that our

stylometric methodology may provide better results when we study larger texts.

4.5 The effect of the number of function words K

In this section, we consider the effect of the number of function words K on clustering. Although

our intuition suggests that larger K leads to more information and therefore improved clustering,

we will see that the effect of K is less straightforward.

To investigate the effect of K, we ran the stylometric clustering algorithm on the baseline data of

Section 4.1 using K = 6. The posterior pairwise probabilities are reported in Table 5 and lead to the

two clusters {1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}. This is an improvement over the analysis of Section 4.1
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Text i Text j

1 2 3 4 5 6 7 8 9 10

1 0.00 0.90 0.88 0.88 0.92 0.01 0.00 0.00 0.00 0.00

2 0.90 0.00 0.86 0.85 0.90 0.01 0.00 0.00 0.00 0.00

3 0.88 0.86 0.00 0.90 0.89 0.02 0.00 0.00 0.00 0.00

4 0.88 0.85 0.90 0.00 0.88 0.02 0.00 0.00 0.00 0.00

5 0.92 0.90 0.89 0.88 0.00 0.01 0.00 0.00 0.00 0.00

6 0.01 0.01 0.02 0.02 0.01 0.00 0.84 0.77 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.84 0.00 0.86 0.00 0.00

8 0.00 0.00 0.00 0.00 0.00 0.77 0.86 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00

Table 4: The posterior probability of clustering between texts i and j based on larger text sizes of

ñi = 50, 000 words where K = 2 and α ∼ Uniform(0, 3).

where K = 2 was used and clusters {1, 4, 9, 10}, {2, 3, 5, 6, 8} and {7} were obtained. We note that

the pairwise probabilities in Table 5 are more affirmative than those in Table 2. This reflects one

of the idiosyncrasies regarding the effect of increasing K. We remark that when K = 10, we obtain

the same clustering results ({1, 2, 3, 4, 5, 6, 7, 8} and {9, 10}) except that the pairwise probabilities

become even more affirmative. For example, the posterior probability of clustering between text 1

and text 2 increases from 0.76 with K = 6 to 0.81 with K = 10.

When we set K = 20 and use the baseline dataset from Section 4.1, all of the 10 texts clustered

together with posterior pairwise probabilities of 1.0. This is clearly problematic, and confirms the

theoretical derivation from Section 3 that suggests that increasing K leads to the formation of fewer

clusters. Although we have reported results only in the case of the dataset from Section 4.1, we have

seen these patterns in all of the datasets that we have generated.

The complex role of K in our clustering algorithm does not appear to be generally well-known.

The reason for this may be that most applications of the DP in hierarchical models (2) involve a

parameter (pi in our case) that is univariate. For example, often an experimenter has a univariate

parameter that represents means of sub-populations. In our case, the parameter pi has dimension

K − 1, and it is the increased dimensionality which impedes the formation of additional clusters.

15



Text i Text j

1 2 3 4 5 6 7 8 9 10

1 0.00 0.76 0.95 0.97 0.95 0.75 0.68 0.75 0.22 0.21

2 0.76 0.00 0.80 0.77 0.81 0.97 0.91 0.98 0.01 0.01

3 0.95 0.80 0.00 0.96 0.97 0.79 0.72 0.79 0.18 0.18

4 0.97 0.77 0.96 0.00 0.96 0.75 0.68 0.75 0.21 0.21

5 0.95 0.81 0.97 0.96 0.00 0.79 0.72 0.79 0.18 0.17

6 0.75 0.97 0.79 0.75 0.79 0.00 0.93 0.98 0.00 0.00

7 0.68 0.91 0.72 0.68 0.72 0.93 0.00 0.93 0.00 0.00

8 0.75 0.98 0.79 0.75 0.79 0.98 0.93 0.00 0.00 0.00

9 0.22 0.01 0.18 0.21 0.18 0.00 0.00 0.00 0.00 0.99

10 0.21 0.01 0.18 0.21 0.17 0.00 0.00 0.00 0.99 0.00

Table 5: The posterior probability of clustering between texts i and j for the baseline data of Section

4.1 where K = 6 and α ∼ Uniform(0, 3).

When a new function word is added, will it assist in discovering new clusters? If the function

word is truly discriminatory, it may. However, if the new function word is not discriminatory (i.e.

pi,K+1 ≈ pj,K+1 ), then because the pik’s lie on a simplex (i.e. pi1 + · · · + piK = 1), a new function

word reduces the magnitude of | pik − pjk | for k = 1, . . . ,K.

It therefore appears that we need to strike a balance between the additional discriminatory

information provided by increasing the number K of function words versus the tendency of forming

fewer clusters. This highlights the importance of choosing a “good” but small set of function words

in stylometric analyses.

5 The Federalist papers

In 1788, 85 articles were compiled and published as The Federalist. The main purpose of these essays

(most of which had appeared earlier in newspapers) was to persuade citizens of the State of New

York to ratify the new Constitution of the United States. It is widely assumed that the authors

of these papers were limited to Alexander Hamilton, John Jay and James Madison. The overall

consensus amongst scholars is that Hamilton was the author of 51 of the papers, Madison wrote 14,
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Jay wrote 5, and 3 were jointly written by Hamilton and Madison. The authorship of the remaining

12 papers (referred to as the disputed papers) is unknown, but each of these disputed papers is

widely thought to be the work of either Hamilton or Madison. Mosteller and Wallace (1963, 1984)

analyzed the distribution of function words extracted from the Federalist papers and concluded that

Madison was the author of all 12 disputed papers. The Federalist papers are now considered a test

case for new methods of authorship attribution and the papers are freely available from both the

Project Gutenberg and the Library of Congress websites. An interesting account of earlier, though

unsuccessful, efforts for determining authorship of the Federalist papers is given by Mosteller and

Wallace (1984).

To investigate our methodology with respect to the Federalist papers, we amalgamate all of the

51 Hamilton papers into a single text. We also amalgamate the 14 Madison papers into a single

text. We eliminate the 5 Jay texts from the analysis as the disputed texts are believed to be written

by either Hamilton or Madison. We also eliminate the 3 joint papers as it is unclear that the

writing styles of these texts ought to exhibit the style of Hamilton, the style of Madison or some

intermediate style. Thus we have N = 1 + 1 + 12 = 14 texts under consideration where the text

sizes of the disputed papers are much smaller than the text sizes of the two amalgamated texts.

The word frequency data for each of the papers were extracted using WordSmith tools (Scott

1998). We started with a list of 125 function words gathered from Tables 2.5, 2.6 and 2.7 of Mosteller

and Wallace (1963). We emphasize that the starting list of function words was not based on any

screening. As observed in the simulation study in Section 4, selection of a small number of function

words is very crucial for stylometric analysis. In the case of Federalist papers we are interested in

identifying the authorship of disputed papers between Hamilton and Madison. Therefore, it seems

sensible that the function words used be such that they differ in the frequency of occurrence in

the known works of Hamilton and Madison. Using the Z-test methodology of Section 3 on the

amalgamated Hamilton and Madison federal papers, we ended up with 10 words with the largest

|Z| values. These words, ordered according to decreasing |Z| value, are listed in Table 6.

ANOTHER ALSO ANY AND AS ON ARE VOICE AN ALL

Table 6: The 10 function words used in the analysis of the Federalist papers.

We ran the Dirichlet process mixture algorithm using the selected 10 function and the continuous
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prior α ∼ Uniform(0, 3) and obtained the same conclusions as Mosteller and Wallace (1963, 1984).

That is, two clusters were obtained with all 12 of the disputed papers clustering with Madison and

the second cluster consisting of the amalgamated Hamilton text. The strength of membership of

the disputed papers with Madison was strong. The smallest posterior probability of membership

amongst the 12 disputed texts into the “Madison cluster” was 0.70.

6 Discussion

In this paper, we have developed an algorithm for the stylometric clustering of texts. Some of the

features of the approach include suggestions on the selection of function words, the incorporation

of the multinomial distribution and a semiparametric Bayesian framework based on the Dirichlet

process. The Dirichlet process is well suited to the stylometric problem as clustering is a by-

product of model development and posterior probability assessments can be obtained with respect

to clusters. The approach also enables a user to incorporate prior knowledge concerning authorship

by amalgamating texts which are believed to have the same author.

The prior for the function word probabilities pik and prior for the DP concentration parameter

α have been proposed for the stylometric problem in hand. However, we note that apart from

these priors, the proposed algorithm has much greater applicability as a general clustering tool for

categorical (i.e. multinomial) data.

In an honest appraisal concerning the suitability of the algorithm for stylometric problems,

one keeps in mind the adage that “the more that is assumed, the more that can be inferred”.

In the case of the DP mixture model, very little is assumed. It is therefore comforting that our

approach replicates long-standing views concerning the authorship of the Federalist papers. In

stylometric problems where there is controversy concerning authorship, it remains to be seen whether

the proposed approach can differentiate texts. As investigated in Section 4, this is partly a function

of text size and the “differentiability” between texts.

With the need to keep the number of function words K at a reasonable level, the approach

may be best suited to stylometric problems where the potential number of authors (i.e. clusters) is

relatively small. Ultimately, as discussed in some detail in the paper, the existence of a small set of

good discriminating function words provides the best chance for success.
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