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Abstract: This article is concerned with the simulation of one-day cricket matches. Given that only a finite
number of outcomes can occur on each ball that is bowled, a discrete generator on a finite set is developed
where the outcome probabilities are estimated from historical data involving one-day international cricket
matches. The probabilities depend on the batsman, the bowler, the number of wickets lost, the number of
balls bowled and the innings. The proposed simulator appears to do a reasonable job at producing realistic
results. The simulator allows investigators to address complex questions involving one-day cricket matches.
The Canadian Journal of Statistics 37: 143–160; 2009 © 2009 Statistical Society of Canada

Résumé: Cet article porte sur la simulation de matchs de cricket d’une seule journée. Étant donné qu’il y a
un nombre fini d’événements possibles à chaque lancer de balle, un générateur discret. Sur un ensemble fini
est développé où les probabilités de chacun des événements sont estimées à partir de données historiques
provenant de matchs de cricket international d’une seule journée. Les probabilités dépendent du batteur, du
lanceur, du nombre de guichets perdus, du nombre de balles lancées et des manches. Le simulateur proposé
semble faire un travail raisonnable en produisant des résultats réalistes. Il permet aux chercheurs d’étudier
des questions complexes concernant les matchs de cricket d’une seule journée. La revue canadienne de
statistique 37: 143–160; 2009 © 2009 Société statistique du Canada

1. INTRODUCTION

Simulation is a practical and powerful tool that has been used in a wide range of disciplines to
investigate complex systems.When a simulation model is available, it is typically straightforward
to address questions concerning the occurrence of various phenomena. One simply carries out
repeated simulations and observes the frequency with which the phenomena occur.

In one-day international (ODI) cricket, there are an endless number of questions that are
not amenable to experimentation or direct analysis but could be easily addressed via simulation.
For example, on average, would England benefit from increasing the number of runs scored by
changing the batting order of their third and sixth batsmen? As another example, what percentage
of time would India be expected to score more than 350 runs versus Australia in the first innings?

To provide reliable answers to questions such as these, a good simulator for one-day cricket
matches is required. Surprisingly, the development of simulators for one-day cricket is a topic
that has not been vigorously pursued by academics. In the pre-computer days, Elderton (1945)
and Wood (1945) fit the geometric distribution to individual runs scored based on results from
test cricket. Kimber & Hansford (1993) argue against the geometric distribution and obtain
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probabilities for selected ranges of individual scores in test cricket using product-limit estimators.
More recently, Dyte (1998) simulates batting outcomes between a specified test batsman and
bowler using career batting and bowling averages as the key inputs without regard to the state
of the match (e.g., the score, the number of wickets lost, the number of overs completed). Bailey
& Clarke (2004, 2006) investigate the impact of various factors on the outcome of ODI cricket
matches. Some of themore prominent factors include home ground advantage, teamquality (class)
and current form. Their analysis is based on the modelling of runs using the normal distribution.

In a non-academic setting, there are currently more than 100 cricket games that have been
developed for use on personal computers and gaming stations where some of the games rely on
simulation techniques (see www.cricketgames.com/games/index.htm for a comprehensive survey
of games and reviews). However, in all of the games that we have inspected, the details of the
simulation procedures have not been revealed. Moreover, the games that we have inspected suffer
in various ways from a lack of realism.

One-day cricket was introduced in the 1960s as an alternative to traditional forms of cricket
that may take up to 5 days to complete. With more aggressive batting, colourful uniforms and
fewermatches ending in draws, one-day cricket has become extremely popular. The ultimate event
in ODI cricket takes place every 4 years where the World Cup of Cricket is contested.

One-day cricket has some similarities with the sport of baseball. The game is played between
two teams of 11 players where a batting team attempts to score runs against a fielding team until
the first innings terminates. At this stage, the fielding team goes “to bat” and attempts to score
more runs before the second innings terminates. A bowler on the fielding team “bowls” balls in
groups of six referred to as overs. Bowling takes place only from one end of the pitch during an
over, and the bowling end changes on the subsequent over. A batsman on the batting team faces
a bowled ball with a bat and attempts to score runs. Runs are scored by running between two
stumps located at opposite ends of the pitch. The running aspect involves two batsmen known
as a partnership where each partner is running to the opposite stump. They may score 0, . . . , 6
runs according to the number of traversals between the stumps. Therefore, the batsman in the
partnership who is located at the batting end faces the next ball. An innings terminates when
either 50 overs are completed or 10 wickets are lost. A loss of a wicket can occur in various ways
with the three most common being (i) a ball is caught in midair after having been batted, (ii)
a bowled ball hits the stump located behind the batsman, and (iii) a batsman is run-out before
reaching the nearest stump. When a wicket is lost, a new batsman is introduced in the batting
order. This is a very brief introduction to the rules of one-day cricket, and more information is
provided in the article as required. More detail on the rules (laws) of cricket is available from the
Lord’s website (www.lords.org).

In this article, we develop a simulator for one-day cricket matches. The approach extends
the work of Swartz et al. (2006) who investigate the problem of optimal batting orders in one-
day cricket for the first innings. Whereas the model used in Swartz et al. (2006) ignores the
effect of bowlers, the model used in this article is more realistic in that specific batsman/bowler
combinations are considered. In addition, we now provide a method of generating runs in the
second innings. Given that only a finite number of outcomes can occur on each ball that is bowled,
a discrete generator on a finite set is developed where the outcome probabilities are estimated
from historical data involving ODI cricket matches. The probabilities depend on the batsman,
the bowler, the number of wickets lost, the number of balls bowled and the current score of the
match. The probabilities are obtained using a Bayesian latent variable model which is fitted using
WinBUGS software (Spiegelhalter et al., 2004).

In Section 2, we develop a simulator for ODI cricket which is based upon a Bayesian latent
variable model. Particular attention is given to second innings batting where the state of the match
(e.g., score, wickets, overs) affects the aggressiveness of batsmen. In Section 3, we consider the
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adequacy of the approach by comparing simulated results against actual data. The simulator is
constructed using data from recent ODI matches. In Section 4, we demonstrate how the simulator
can be used to address questions of interest. We conclude with a short discussion in Section 5.

2. SIMULATION

We consider the simulation of runs in the first innings for predetermined batting and bowling
orders. We initially investigate the first innings runs since second innings strategies are affected
by the number of runs scored in the first innings. By a predetermined batting and bowling order,
we mean that a set of rules has been put in place which dictates the batsman and bowler at any
given point in the match. These rules could be simple such as maintaining a fixed batting and
bowling order. The rules for determining batting and bowling orders could also be very complex.
For example, the rules could be Markovian in nature where a specified bowler may be substituted
at a state in thematch dependent upon the number of wickets lost, the number of overs, the number
of runs and the current batsmen. The key point is that they need to be specified in advance for the
purpose of simulation.

In one-day cricket, there are a finite number of outcomes arising from each ball bowled.
Suppose that the first innings terminate on the mth ball bowled where m ≤ 300. Ignoring certain
rare events (such as scoring 5 runs), and temporarily ignoring wide-balls and no-balls, let Xb

denote the outcome of the bth ball bowled, b = 1, . . . , m where

Xb =




1 if a wicket is taken
2 if the batsman scores 0 runs
3 if the batsman scores 1 run
4 if the batsman scores 2 runs
5 if the batsman scores 3 runs
6 if the batsman scores 4 runs
7 if the batsman scores 6 runs

(1)

and set Xm+1 = · · · = X300 = 0. Note that the coding in (1) includes the possibility of scoring
due to byes and and leg byes. Byes and leg byes occur when the batsman has not hit the ball with
his bat but decides to run.

Using square brackets to generically denote probability mass functions, the joint distribution
of X1, . . . , X300 can be written as

[X1, . . . , X300] = [X300 | X0, . . . , X299] [X299 | X0, . . . , X298] · · · [X2 | X0, X1][X1 | X0] (2)

where we define X0 = 0 for notational convenience. Note that the conditional probabilities in
(2) suggest that the scoring distribution for a given ball depends on the scoring up to that point
in time in the first innings. The proposed simulation algorithm is facilitated by the structure in
(2) whereby the first outcome X1 is generated for the first ball bowled, then the second outcome
X2 is generated for the second ball bowled conditional on X1. The first innings continue until
either the overs are completed (b = 300) or all wickets are lost (wickets = 10). Let v denote the
probability of a wide-ball or a no-ball. The simulation algorithm generates a uniform(0,1) random
variable u, and if u < v, this signals a wide-ball or no-ball condition. In this case, a single run is
added to the batting team but the ball is not counted. In addition, further runs may be scored on
the no-ball or wide-ball according to the probability φk for the kth outcome, k = 1, . . . , 7. The
following simulation algorithm generates the number of runs R scored in the first innings:
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wickets = 0

R = 0

for b = 1, . . . , 300

if wickets = 10

then

Xb = 0

else

generate u ∼ uniform(0, 1) �

if u < v

then

generate Y ∼ multinomial(1, φ1, . . . , φ7)

R ← R + 1 + I(Y = 3) + 2I(Y = 4) + 3I(Y = 5) + 4I(Y = 6) + 6I(Y = 7)

go to step �

else

generate Xb ∼ [Xb | X0, . . . , Xb−1]

R ← R + I(Xb = 3) + 2I(Xb = 4) + 3I(Xb = 5) + 4I(Xb = 6) + 6I(Xb = 7)

wickets ← wickets + I(Xb = 1)

For the sake of simplicity, the above algorithm does not distinguish a run-out from other
forms of wickets. Runs may still be accumulated on a ball prior to a run-out, and the dismissed
batsman may be either of the two batsmen in the partnership. We remark that we have estimated
the probability of run-outs and have accounted for run-outs in our Fortran implementation of the
above algorithm. The proposed simulation algorithm is simple and requires only that we be able
to generate from the multinomial(1, φ1, . . . , φ7) distribution and the conditional finite discrete
distributions given by [Xb | X0, . . . , Xb−1]. In the following subsection, we describe a method
to compute the conditional distributions by modelling ball by ball outcomes in one-day cricket
matches.

2.1. Modelling
The conditional distributions [Xb | X0, . . . , Xb−1] depend on many factors including
� the batsman;
� the bowler;
� the number of wickets lost;
� the number of balls bowled;
� the current score of the match;
� the opposing team;
� the location of the match;
� the coach’s advice;
� the condition of the pitch, etc.

For the first innings, we consider the first four factors and define pijwbk as the probability
corresponding to outcome k = 1, . . . , 7 as described in (1),where the the ith batsman, i = 1, . . . , I
faces the jth bowler, j = 1, . . . , J when w = 0, . . . , 9 wickets have been lost and the bth ball is
about to be bowled, b = 1, . . . , 300. Since wide-balls and no-balls have been excluded as possible
outcomes of Xb, we have

∑
k pijwbk = 1 for all i, j, w, b. With estimates p̂ijwbk, the simulation
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algorithm generates outcomes according to

Prob(Xb = k | X0, . . . , Xb−1) = p̂ijwbk. (3)

Our data are based on 472 ODI matches from January 2001 until July 2006 amongst the 10 full
member nations of the International Cricket Council (ICC). Thesematches are those for which ball
by ball commentary is available on the Cricinfo website (www.cricinfo.com) and include almost
all matches amongst the 10 nations during the specified time period. We note that a Powerplay
rule was introduced for a 10-month trial period beginning August 2005 and the Supersub rule was
introduced for a portion of the trial period. Although we believe that these temporary rules had
some effect on scoring, we do not account for the presence and absence of the temporary rules
in our modelling. In the 472 matches, 257,922 balls were bowled involving I = 435 batsman and
J = 360 bowlers. In the first innings, 138,439 balls were bowled. In Table 1, we record the number
of matches for which data were collected on the ICC teams. Except Bangladesh, we observe that
there is reasonable balance in the number of matches played.

Over these matches, we calculate v̂ = 8289/257,922 = 0.032 as the total number of wide-
balls and no-balls divided by the total number of balls bowled. The conditional probabilities φk

are similarly estimated by frequencies.
Before describing the model used in the estimation of pijwbk, we offer some preliminary

comments based on our experience in fitting numerous models over several years. Most
importantly, our goal is to obtain a model which fits well and provides a realistic simulator.
With regard to estimation and prediction, there are many situations for which data do not exist.
For example, a given batsman i may never have faced a given bowler j in the third over when
two wickets are lost. To predict what may happen in these situations it is necessary to borrow
information from similar situations. For example, it is relevant in the above problem to consider
how other batsman/bowler combinations fared in the third over when two wickets are lost, and
it is also relevant to consider how batsman i fared against bowler j in other stages of a match.
With nearly 1,000 batsmen and bowlers, our experience suggests that it is not a good idea to have
multiple parameters for each batsman and bowler since this leads to excessive parameterization.
When the number of parameters is excessive, computation may be overwhelming and unreliable
estimates may arise.We strive for parsimoniousmodel building, assigning only a single parameter
to each batsman and assigning only a single parameter to each bowler.

Table 1: The number of ODI matches for which data were collected on the ICC teams.

ICC nation Number of matches

Australia 106

Bangladesh 48

England 89

India 125

New Zealand 94

Pakistan 108

South Africa 101

Sri Lanka 118

West Indies 77

Zimbabwe 78
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To obtain the estimates p̂ijwbk in (3), we develop a Bayesian latent variable model which is
related to the classical cumulative-logit models for ordinal responses (Agresti, 2002). We initially
assume that batting is taking place in the first innings and we temporarily ignore the state of the
first innings (e.g., the number of overs completed and the number of wickets lost). We imagine
that there is a latent continuous variable U which describes the “quality” of the batting outcome.
For example, one might imagine that a ball batted near a fielder has a lower rating than a similar
ball batted slightly further away from the fielder. Although U is unobserved (latent), there is an
observed data variable X which is related to U as follows:

X = 1 (dismissal) ↔ a0 < U ≤ a1

X = 2 (0 runs) ↔ a1 < U ≤ a2

X = 3 (1 runs) ↔ a2 < U ≤ a3

X = 4 (2 runs) ↔ a3 < U ≤ a4

X = 5 (3 runs) ↔ a4 < U ≤ a5

X = 6 (4 runs) ↔ a5 < U ≤ a6

X = 7 (6 runs) ↔ a6 < U ≤ a7

where −∞ = a0 < a1 < · · · < a6 < a7 = ∞. Note that increasing values of X correspond to
higher quality of batting outcomes and that a1, . . . , a6 are unknown parameters.

We now define a single batsman characteristic µ
(1)
i for the ith batsman and a single bowler

characteristic µ
(2)
j for the jth bowler. We assume that the quality of the batting outcome U is

expressed as

U = µ
(1)
i − µ

(2)
j + ε (4)

where µ(1) = 0 represents an average batsmen, µ(2) = 0 represents an average bowler and ε is a
random variable whose distribution determines the quality of the batting outcome for an average
batsman and an average bowler. From (4), we observe that a good batsman (µ(1)

i > 0) increases
the quality of the batting outcome. Similarly, a good bowler (µ(2)

j > 0) decreases the quality of
the batting outcome. Letting F denote the distribution function of ε, we write

Prob(X ≤ k) = Prob(U ≤ ak)

= Prob
(
µ
(1)
i − µ

(2)
j + ε ≤ ak

)

= Prob
(
ε ≤ ak − µ

(1)
i + µ

(2)
j

)
(5)

= F
(
ak − µ

(1)
i + µ

(2)
j

)

for the batting outcome k = 1, . . . , 7.
To gain a better appreciation of the model given by (5), refer to Figure 1 where the density

function of the logistic distribution (i.e., F (ε) = 1/(1 + exp(−ε))) has been chosen using typical
values of a1, . . . , a6. The logistic distribution is symmetric about 0 and has longer tails than the
normal distribution. We observe that the area under the density function between ak−1 and ak

corresponds to the probability that X = k. The effect of better batsmen (µ(1)
i > 0) and weaker

bowlers (µ(2)
j < 0) causes a simultaneous leftward shift in the vertical lines and hence decreases

the probability of dismissal and increases the probability of scoring 6 runs.
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Figure 1: Logistic density function and typical parameters for the model in (5).

A difficulty with the model given by (5) is that it does not account for the variability in
aggressiveness which batsmen display during the first innings. For example, it is well known
that batsmen become more aggressive in the final overs if few wickets have been lost. Increasing
aggressiveness corresponds to an increase in the probability of dismissal (k = 1), a decrease in
the probability of scoring 0 runs (k = 2) and an increase in the probability of scoring 6 runs
(k = 7). The effect of increasing aggressiveness on the remaining four outcomes k = 3, 4, 5, 6 is
not as obvious and is situation dependent. Note that aggressiveness is a characteristic that affects
the parameters ak and is different from the quality of batsmen µ

(1)
i and the quality of bowlers

µ
(2)
j . In the spirit of parsimonious model building, in Table 2 we propose nine situations where

aggressiveness is assumed constant. Situations 1, 2, and 3 are motivated by the fielding restriction
which is in place during the first 15 overs. We view overs 16–35 as the middle period of the first
innings where any change in aggressiveness is due to wickets lost. The final period of the first
innings (overs 36–50) can lead to very aggressive batting if few wickets are lost. We note that
situations 4, 7, and 8 are particularly rare and the parameters corresponding to these situations
may not be well estimated. However, this is not a great concern as simulation rarely takes place
during these periods.

Table 2: The nine first innings situations where aggressiveness is assumed constant.

Situation Over Wickets lost Percentage of dataset (%)

1 1–15 0–3 30.3

2 16–35 0–3 25.3

3 36–50 0–3 5.0

4 1–15 4–6 1.2

5 16–35 4–6 14.0

6 36–50 4–6 15.2

7 1–15 7–9 0.0

8 16–35 7–9 1.7

9 36–50 7–9 7.3

The fourth column provides the percentage of balls in the dataset that
correspond to the given situation.
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Having proposed the nine situations in Table 2, we modify the model given by (5) to take into
account the varying levels of aggressiveness. We introduce a new subscript l = 1, . . . , 9 to denote
the nine situations and we note that l is really a function of w (wickets lost) and b (ball currently
facing) as indicated in (3). Consider then a batting outcome where batsman i faces bowler j in the
lth situation and outcome k is recorded. The likelihood contribution due to the event is

F
(
alk − µ

(1)
i − �l + µ

(2)
j

)
− F

(
al,k−1 − µ

(1)
i − �l + µ

(2)
j

)
(6)

where�l = 0 for l = 1, 2, 3,�l = �(1) for l = 4, 5, 6, and�l = �(1) + �(2) for l = 7, 8, 9. The
complete likelihood is therefore the product of terms of the form (6) over all balls bowled in
the dataset. The additional parameters �(1) and �(2) provide a link to situations where batsmen
do not typically bat. For example, batsmen who bat in positions 7, 8, and 9 in the batting order
are usually bowlers and are usually not very good batsmen. If the model given by (6) were fit
without the � terms, then the µ

(1)
i values for these batsmen would be relative only to batsmen

who batted in situations 7, 8, and 9. We therefore adjust situational skill levels using the �s.
Recall that our intention is to develop a simulator that allows experimentation whereby batsmen
may bat in atypical positions in the batting order. The estimation of �(1) and �(2) is feasible due
to data corresponding to batsmen who crossover. For example, �(1) is estimable since there are
some batsmen who have data in at least one of situations 1, 2, or 3 and who have data in at least
one of situations 4, 5, or 6. We remark that our approach to handling situational skill levels and
aggressiveness in the first innings might be better handled in some sort of continuous fashion
rather than imposing nine states where homogeneity is assumed.

From (6) the primary parameters of interest are �(1), �(2), the alks, the µ
(1)
i s and the µ

(2)
j s.

This corresponds to 1 + 1 + 9(6) + 435 + 360 = 851unknownprimaryparameters. In aBayesian
formulation, parameters have prior distributions and we assign the following prior distributions

�(1) ∼ uniform(0, 1)

�(2) ∼ uniform(0, 1)

alk ∼ normal(0, σ2) where σ−2 ∼ gamma(1.0, 1.0)

µ
(1)
i ∼ normal(0, τ2)

µ
(2)
j ∼ normal(0, τ2) where τ−2 ∼ gamma(1.0, 1.0)

for batting outcomes k = 1, . . . , 6, for situations l = 1, . . . , 9, for batsmen i = 1, . . . , I = 435
and for bowlers j = 1, . . . , J = 360. The prior distributions are assumed independent except
for the order restriction al1 < al2 < · · · < al6 for l = 1, . . . , 9. The notation Y ∼ gamma(a, b)
implies E(Y ) = a/b and Var(Y ) = a/b2. Note that although the prior distributions are somewhat
diffuse, prior knowledge is used in the prior specification. For example, it is known that batsmen
who bat in positions 1, 2, and 3 in the batting order are generally better than batsmen who bat in
positions 4, 5, and 6 in the batting order who are in turn generally better than batsmen who bat in
positions 7, 8, and 9 in the batting order. This knowledge implies that�(1) > 0 and�(2) > 0. The
prior distributions for σ−2 and τ−2 make use of the knowledge that the bulk of the probability for
the logistic distribution F lies in the interval (−5, 5). Also, the modelling of common prior means
for the µ

(1)
i and the modelling of common prior means for the µ

(2)
j is sensible in that it produces

average characteristics for batsmen and bowlers for whom little data has been collected. Finally,
note that our prior specification introduces only two extra hyperparameters (σ and τ).

Our model can be specified within the WinBUGS platform, and upon providing the data,
WinBUGS constructs a Markov chain whose output consists of generated parameters. Since the
Markov chain converges to the posterior distribution, the generated parameters can be averaged to
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obtain approximations of the posteriormeans.When the parameters are estimated, the probabilities
p̂ijwbk for the simulator (3) are obtained by substituting the relevant primary parameter estimates
into (6). One of the features of the model is that it permits inference on various batsman/bowler
combinations at different stages of a match even when they have not faced one another in actual
competition.

In our WinBUGS implementation, we used a burn-in of 10,000 iterations and a further 10,000
iterations for parameter estimation. This required approximately 1 day of computation. Standard
diagnostics such as trace plots, autocorrelation plots and varied starting values were used to
assess convergence. We experimented with changes to the vague prior distributions (particularly
the gammas) and found that our results were not sensitive to the prior specification.

There is an important remaining point that needs to be made concerning the fitting of the
Bayesian latent variable model. In order to fit the model, we require ball by ball data to specify the
terms in (6). To obtain the data, the ball by ball commentary log from the Cricinfo website was
parsed into a convenient format. For this, we used a Java script that extracted the relevant details
on a ball by ball basis, and stored the data in a tabular form. For example, codes were created to
index batsmen and bowlers, and outcomes were categorized according to (1).

2.2. Generating Runs in the Second Innings
Up until now, we have considered only the generation of first innings runs. It is evident that the
conditional distributions [Xb | X0, . . . , Xb−1] for the second innings also depend on the current
score of the match. For example, it is well known that when the team batting first scores an
unusually high number of runs, the team batting second becomes more aggressive in its batting
style.

One idea is to modify the model given by (6) so that batting outcome probabilities also depend
on the score of the match. One could imagine introducing additional subscripts to the alk terms to
denote the score of the match. The problem with such an approach is that there would be many
more parameters and very few replicate observations for the purposes of estimation.

Our approach is to leave the model given by (6) as it stands, and view the pijwbk terms in
(3) as the first innings probabilities which share some characteristics with the second innings
probabilities. We account for the current score in the second innings by modifying the conditional
distributions [Xb | X0, . . . , Xb−1] used in the algorithm for simulation. Consider then the stage
of the second innings where batsman i faces bowler j, w wickets have been lost and the bth ball
is about to be bowled. For notational convenience, we suppress the subscripted notation ijwb.
Then, referring to (1) and ignoring wide-balls and no-balls, the expected number of runs that the
batsman scores on the current ball is

E1(p) = p3 + 2p4 + 3p5 + 4p6 + 6p7

and the expected proportion of resources that the batsman consumes on the current ball is

E2(p) = (x + y)p1 + xp2 + xp3 + xp4 + xp5 + xp6 + xp7

= x + yp1

where the proportion of resources lost x due to the current ball and the proportion of resources
lost y due to a wicket are known quantities that are available from the Duckworth/Lewis resource
table (Duckworth & Lewis, 1998, 2004). For the batsman to become more aggressive during the
match, this implies a change in the probabilities p = (p1, . . . , p7). We make the assumption that
the batsman modifies his overall batting behaviour from p to p′ = (p′

1, . . . , p
′
7) according to the

current score in the match.
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Consider now the situation where f runs have been scored in the first innings, s runs have been
scored in the second innings and the proportion of resources remaining in the second innings is
r. To win, the team batting second needs to score f − s + 1 runs in the remainder of the match
relative to the r resources that are available. This suggests that the run to resource ratio for the
batsman should be at least (f − s + 1)/r. If (f − s + 1)/r > E1(p)/E2(p), then the team batting
second is on the verge of losing/tying, and we assume that the batsman becomes more aggressive
in his batting style. We therefore propose that the batsman modifies his style from p to p′ where

p′
2 = cp2, c ∈ (0, 1). (7)

The idea is that a more aggressive batsman swings the bat more often and is less likely to score
0 runs (i.e., p′

2 < p2). When c = 1, the batsman is behaving in a neutral fashion (i.e., not extra
aggressive), and when c = 0, the batsman has reached his limit of aggressive behaviour where
scoring 0 runs is impossible. Accordingly, when (f − s + 1)/r > E1(p)/E2(p), we set

c = rE1(p)
(f − s + 1)E2(p)

. (8)

We propose that when c ∈ (0, 1) as in (8), the decrease in probability from p2 to p′
2 results in

an increase in the probability of dismissal

p′
1 = p1 + δp2(1 − c), δ ∈ [0, 1] (9)

and a proportional increase in the run-scoring probabilities

p′
i =

(
1 − p1 − (c + δ(1 − c))p2

1 − p1 − p2

)
pi, i = 3, . . . , 7. (10)

It is easy to establish that p′
1, . . . , p

′
7 form a simplex, and hence constitute a probability

distribution. Observe that the free parameter δ ∈ [0, 1] determines the degree to which the
aggressive behaviour affects dismissals (9) and run-scoring (10).When δ = 1, all of the aggressive
behaviour increases the dismissal probability, and when δ = 0, all of the aggressive behaviour
increases the run-scoring probabilities.

When a batsman is aggressive in the second innings (i.e., c ∈ (0, 1)), it is easy to establish
that

E1(p′) =
(
1 − p1 − (c + δ(1 − c))p2

1 − p1 − p2

)
E1(p) ≥ E1(p) (11)

and

E2(p′) = E2(p) + δp2(1 − c)y ≥ E2(p). (12)

In modifying his behaviour from p to p′, the inequalities (11) and (12) imply that the batsman
simultaneously increases the expected number of runs scored and the expected number of resources
consumed on the current ball. Moreover, it is straightforward to show that both E1(p′) and E2(p′)
are decreasing functions of c ∈ (0, 1). These consequences correspond to our intuition of more
aggressive batting.

The remaining detail inmodelling aggressive batting in the second innings is the determination
of the parameter δ ∈ [0, 1]. Although an aggressive batsman is attempting to increase his run
production E1(p′), the quantity which really determines the quality of batting is E1(p′)/E2(p′).
We argue that a batsman is unable to modify his batting style from p to p′ so as to make
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E1(p′)/E2(p′) > E1(p)/E2(p); for if he were able to do this, he would do it all the time, in both
the first and second innings. However, when a team is on the verge of losing (i.e., (f − s + 1)/r >

E1(p)/E2(p)), we suggest that a batsmanmay bewilling to sacrifice E1(p′)/E2(p′) with the benefit
of increased run production E1(p′). In other words, we require E1(p′)/E2(p′) ≤ E1(p)/E2(p)
and that E1(p′)/E2(p′) be an increasing function of c ∈ (0, 1). Using the expressions in (11)
and (12), it is possible to show that E1(p′)/E2(p′) is an increasing function of c ∈ (0, 1)
provided δ > E2(p)/(E2(p) + y(1 − p1 − p2)) ∈ (0, 1). Since a batsman would naturally desire
E1(p′)/E2(p′) to be as large as possible, we therefore set

δ = E2(p)
E2(p) + y(1 − p1 − p2)

. (13)

If (f − s + 1)/r < E1(p)/E2(p), the team batting second is on the verge of winning, and
although it may not be optimal, batsmen become more cautious. The tendency to become more
cautious when protecting a lead is widely acknowledged in many sports including American
football, basketball, and ice hockey. Following the above development for aggressive batting,
a similar modification in a batsman’s style from p to p′ can be obtained. The idea is that a
more cautious batsman provides greater protection of the wicket and is more likely to score 0
runs. Specifically, we set c and δ according to (8) and (13), respectively, and we determine the
probabilities p′

1, . . . , p
′
7 according to (7), (9), and (10). In this case, increasing c corresponds

to increasing cautiousness. We note that p′
2 > p2 and p′

i < pi for the remaining probabilities
i = 1, 3, 4, 5, 6, 7. We keep in mind that it may be necessary to reduce c to an upper bound to
ensure that the probability vector p′ forms a simplex. We note that the only way that the limit of
cautious behaviour is reached (i.e., c = 1/p2) is when (f − s + 1)/r = 0 which means that the
batting side has already won the match and batting has terminated.

There is a final modification in our approach to second innings batting whichwe now consider.
In many sporting activities it is an advantage to have the final offensive opportunity in a game.
For example, this is the case in baseball where it is widely viewed as advantageous to bat in
the bottom innings since strategy varies according to the number of runs required. Similarly,
it is generally beneficial in golf to play in the last foursome of a tournament since the score
to beat is known. It therefore seems reasonable that a second innings batting advantage should
also exist in one-day cricket. An advantage in second innings batting seems to go hand in hand
with the quotation from Sir Francis Bacon that “knowledge is power”. However, upon looking
at empirical data, de Silva & Swartz (1997) found no such advantage in second innings batting
for ODI cricket. A possible explanation is that the strategic advantage in second innings batting
is offset by the deterioration of the pitch during the second innings. As a match progresses, the
pitch often becomes worn down, and batting becomes more difficult as bowling is subject to
more erratic bounces. Although our procedure for generating runs in the second innings takes
strategy into account through modified aggression levels in batting, our procedure fails to account
for the deterioration in the pitch. We therefore introduce the “pitch variable” η in (6) which is
activated in second innings batting but not in first innings batting. We define η as an offset to
the parameters al1, modifying al1 to al1 + η. This has the effect of increasing the probability of
dismissal in second innings batting. Since our estimation procedure is based on first innings data
only, we do not treat the pitch variable η as a standard parameter which is estimated but rather
we treat η as a tuning parameter. We have set η = 0.15 (a very small adjustment relative to the
size of al1) to coincide with the findings of de Silva & Swartz (1997). The treatment of η as a
tuning parameter may be more appropriate than viewing η as a pitch variable. As pointed out
by a referee, it is not always the case that batting conditions deteriorate during the course of a
match.
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3. TESTING MODEL ADEQUACY

As a type of cross-validation procedure, we fit the Bayesian latent variable model using only
first innings data. Although this reduces the size of the dataset (by roughly 50%), it permits us to
compare simulated results for the second innings with actual second innings results that were not
used in determining the parameter estimates.

The model was fit using WinBUGS software where posterior means were calculated for the
853 model parameters. Although the WinBUGS program requires two hours of computation,
once the parameter estimates are obtained, they can be used over and over again as inputs to the
simulation program.

Another advantage of the Bayesian formulation concerns the use of parameter estimates in
the simulation program. It is a widely held belief that the performances of batsmen and bowlers
are not constant. For example, batsmen have good days and bad days, and this can be related
to their health or any number of reasons. In a Bayesian formulation, we need not use the same
parameter estimates µ(1) and µ(2) (posterior means) for batsmen and bowlers over all matches.
Alternatively, at the beginning of a match, the µ(1) and µ(2) values can be generated from their
respective posterior distributions to reflect match by match variation in performance.

Now, there are countless ways that one might test the adequacy of the model. In Table 3, we
provide the estimated probabilities pijwbk for some batsmen/bowler combinations at different
states of a match. We have also included the expected number of runs per over for each
combination. We have presented batting outcome probabilities when Alistair Cook of England is
batting against Glenn McGrath of Australia, and against Nazmul Hossain of Bangladesh. At the
beginning of a match (i.e., ball 1, 0 wickets), we observe that with probabilities 0.681 and 0.078,
Cook scores 0 runs and 4 runs respectively against McGrath. At the beginning of a match, these
probabilities change to 0.626 and 0.100 respectively when Hossain is bowling. These changes
are consistent with the general belief that McGrath is a better bowler than Hossain. We then
investigate a situation where batsmen ought to become more aggressive (ball 271 when 2 wickets
are lost). Indeed, the probability that Cook scores 0 runs decreases substantially to 0.338 and
0.285 depending on whether McGrath or Hossain is the bowler. We also note a curious result
concerning the probability of scoring 4 runs. Even though batsmen are more aggressive on ball
271 with 2 wickets than at the beginning of a match (ball 1 with 0 wickets), the fielding restriction
that is in place at the beginning of a match enables batsmen to score 4’s at a higher rate. This
batting behaviour is observed in Table 3 and has been verified by looking at empirical data. In
Table 3, we also investigate the case of ball 271 when 4 wickets are lost which according to
common knowledge should be a less aggressive batting situation than ball 271 when 2 wickets

Table 3: Batting probabilities p for various states and the expected number of runs per over E(R) where
CM denotes the Cook/McGrath matchup and CH denotes the Cook/Hossain matchup.

State of the match Dismissal Zero One Two Three Four Six E(R)

CM (ball 1, 0 wickets) 0.024 0.681 0.165 0.038 0.010 0.078 0.004 3.7

CM (ball 271, 2 wickets) 0.039 0.338 0.452 0.077 0.006 0.069 0.018 6.1

CM (ball 271, 4 wickets) 0.033 0.352 0.435 0.085 0.007 0.071 0.017 6.1

CH (ball 1, 0 wickets) 0.018 0.626 0.191 0.047 0.012 0.100 0.006 4.5

CH (ball 271, 2 wickets) 0.030 0.285 0.472 0.094 0.008 0.088 0.024 7.1

CH (balls 271, 4 wickets) 0.025 0.297 0.454 0.103 0.008 0.091 0.022 7.1
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are lost. Accordingly, we observe that the probability of 0s increase and the probability of 1s
decrease in the less aggressive situation.

In Table 4, we investigate the adjustment from p top′ in the second innings. Consider again the
matchup between the batsman Cook and the bowler Hossain. Suppose that Bangladesh has scored
f = 250 runs in thefirst innings. Suppose further that ballb = 183 is about to be bowled andw = 3
wickets have been lost in the second innings (situation 2). From the Duckworth/Lewis table, we
therefore have the proportion of resources lostx = 0.0027due to the current ball and the proportion
of resources lost y = 0.044 due to a wicket. This might be considered as a “middle point” of the
second innings since the proportion of resources used is R(w, b) = 0.4993, and therefore, the
proportion of resources remaining is r = 0.5007. In this case, the estimated parameters give
E1(p) = 0.9723 and E2(p) = 0.00393. We now investigate the outcome probabilities p′

ijwbk

when England has scored s = 127, 90, 60 runs. When s = 127, then (f − s + 1)/r = 247.7 ≈
E1(p)/E2(p) = 247.5 and England is on pace to draw thematch, andp′ = p (i.e., no adjustment).
When s = 90, Cook should become more aggressive (c = 0.768), and when s = 60, Cook should
become even more aggressive (c = 0.648). The entries in Table 4 appear reasonable and support
these tendencies.

We now compare actual runs versus simulated runs. For this, we consider the 23 matches
between Sri Lanka and India from November 1998 through March 2007 in which Sri Lanka
batted first. The 23 matches consist of 15 matches from the original dataset (2001–2006) used
for model fitting and 8 matches outside of the training period. We simulate 1,000 first innings
results for Sri Lanka based on representative batting and bowling orders employed during the
time period. The resultant QQ plot comparing the actual runs and the simulated runs is given in
Figure 2. We observe excellent agreement and we remark that satisfactory plots are also observed
for other pairs of teams that we investigated. In comparing wickets taken, the actual results also
compare favourably with the simulated results.

We also investigate the effect of the second innings adjustment. The difficulty in this exercise
is that given the number of first innings runs between two teams, replicate observations tend
not to occur. Therefore, to address goodness-of-fit, we provide some evidence that the second
innings adjustment p′ is an improvement over having the second innings team bat in a neutral
fashion (i.e., p′ = p). Consider then simulated matches between Australia and the other nine ICC
teams where Australia is batting in the second innings and where the batting and bowling lineups
resemble those used in the 2007 World Cup matches. We generate first innings runs for the other
teams, and then second innings runs for Australia with the proposed batting adjustment p′ based
on the target scores. The simulation is repeated for 1,000 hypothetical matches for each of the
9 teams. We observe that Australia uses their full 50 overs in 8.5% of the simulated matches.
The small percentage seems sensible since Australia rarely uses all 50 overs in matches that they
win. In matches that Australia loses, at some point when they are falling behind, they become

Table 4: Second innings batting probabilities p′ and the expected number of runs per over for the
Cook/Hossain matchup when Bangladesh has scored f = 250 runs in the first innings.

England runs (s) Dismissal Zero One Two Three Four Six Runs/over

127 0.016 0.452 0.397 0.058 0.008 0.062 0.008 5.0

90 0.029 0.347 0.466 0.068 0.010 0.072 0.009 5.8

60 0.036 0.293 0.501 0.073 0.010 0.078 0.010 6.3

In the second innings,w = 3 wickets have been lost, ball b = 183 is about to be bowled and England has scored
s runs.
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Figure 2: QQ plot corresponding to first innings runs for Sri Lanka batting against India.

desperate (aggressive), and typically consume all of their wickets before using the allotted 50
overs. When we repeat the simulation with neutral batting in the second innings (i.e., Australia
behave as they would in the first innings), Australia uses all 50 overs 13% of the time. To get
a sense of the percentages using actual data, we look at all 83 matches from 2000 to 2006
where Australia batted second, and observe that Australia used the full 50 overs only 7% of the
time. This suggests that there is merit in our modification of aggressiveness in second innings
batting.

4. ADDRESSING QUESTIONS VIA SIMULATION

Having developed a simulator for ODI cricket matches, there is no limit to the number and type
of questions that may be posed. The greatest utility of the simulator occurs for circumstances
in which there is limited empirical data. In these cases, without a simulator, the best that one
can do is to rely on hunches with respect to the questions of interest. In this section, we give
a flavour for the types of questions that might be posed. We see these types of applications
as being of value not only to cricket devotees but also to selection committees and team
strategists. We note that each of the simulations described below requires less than 1 min of
computation.

4.1. Question 1
Adam Gilchrist is often an opening batsman for Australia, and Australia has not played the West
Indies often in recent history. We are interested in the probability of Gilchrist hitting a century as
an opening batsman against the West Indies when Australia is batting in the first innings and the
West Indies are using a bowling lineup from the 2007 World Cup. Based on 1,000 first innings
simulations, Gilchrist reaches a century 5.1% of the time. The result appears consistent with
Gilchrist’s actual batting performances where Gilchrist made a century 8 times as an opening
batsman in 138 first innings ODI matches (5.8%) throughout his career (1996–2008).

4.2. Question 2
England has occasionally sent Alastair Cook andMatt Prior as opening batsmen. In othermatches,
they used Ian Bell andMichael Vaughan as opening batsmen.We are interested in the performance
in the untested opening partnership of Alastair Cook and Ian Bell. More specifically, we consider
the length of the partnership (i.e., the number of overs prior to losing the first wicket) for Cook
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Figure 3: Histogram of the length of the partnership (in overs) of the untested opening partnership of
Alastair Cook and Ian Bell.

and Bell when they are batting in the first innings against Pakistan where Pakistan uses a bowling
lineup comparable to the lineup used in their December 15, 2005 match against England. In
Figure 3, we provide a histogram of the number of overs in the length of their partnership based
on 1,000 simulations. We observe that the median and the mean length of the partnership is 5
overs and 7.1 overs respectively. It appears very unlikely for Cook and Bell to have a partnership
exceeding 20 overs.

4.3. Question 3
Consider a match between New Zealand and Sri Lanka where Sri Lanka is batting in the second
innings and New Zealand has scored an impressive 300 runs in the first innings. We are interested
in the probability that Sri Lanka can overcome the barrier and win the match. Based on 1,000
simulations, and taking batting/bowling lineups used in the 2007World Cup matches, we observe
that Sri Lanka wins 10.0% of the simulated matches. The result is consistent with Sri Lanka’s first
innings performance in the current decade where Sri Lanka has scored over 300 runs in 9 out of
121 matches (i.e., 7.4% of the time).

4.4. Question 4
Muttiah Muralitharan of Sri Lanka is a spin bowler and is widely regarded as one of the best
bowlers in cricket. The question arises as to his value to the Sri Lankan team. Consider a match
between Sri Lanka and India where India is batting in the first innings and India’s batting lineup
is based on their 2007 World Cup team. We use a bowling lineup comparable to Sri Lanka’s
bowling lineup in the 2007 World Cup where Muralitharan was a prominent bowler. Based on
1,000 simulations, we observe that India scores 247 runs on average.WhenwemakeMuralitharan
the only Sri Lankan bowler (which is of course against the rules), then India scores only 185 runs
on average. Clearly, if every bowler on Sri Lanka were as good as Muralitharan, Sri Lanka would
have a much better team. When we instead replace Muralitharan with Upul Chandana (a more
typical bowler), then India scores 267 runs on average.

4.5. Question 5
Here is a crazy question that surely few people have contemplated. What would happen if we
reverse a team’s batting order?Weconsider a batting order used byAustralia in the 2007WorldCup
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matches. Based on 1,000 simulations against each of the other nine teams using their 2007 World
Cup bowling lineups, Australia produces on average 272 runs, losing 6.3 wickets in 48.8 overs
during the first innings. This compares favourably with empirical data over the data collection
period where Australia produces on average 273 runs, losing 6.8 wickets in 49.8 overs during
the first innings. When we reverse the Australian batting lineup, and simulate 1,000 matches
against each of the other 9 teams, Australia produces on average 234 runs, losing 7.3 wickets in
48.4 overs during the first innings. A simple explanation for the difference in expected runs is
that higher-scoring batsmen tend to be placed at the beginning of the lineup. When the batting
order is reversed, they often do not get an opportunity to bat or they bat for shorter periods of
time.

4.6. Question 6
We now determine the probability that one team defeats another team. Using typical batting
and bowling lineups taken from matches during the 2007 World Cup of Cricket, Table 5
provides estimated probabilities based on 10,000 simulations between each pair of ODI teams.
Accordingly, Australia is clearly the best team, and Bangladesh and Zimbabwe are the weakest
teams. The probabilities for the other teams roughly agree with the authors’ beliefs although
we note that the probabilities are sensitive to the choice of the batting and bowling lineups.
Referring to the row and column averages, we observe that the probability of winning is nearly
the same for first and second innings batting. This corresponds to the observations of de Silva
& Swartz (1997) and provides a justification for the tuning parameter η introduced at the end of
Section 2.

5. DISCUSSION

In this article, a simulator for ODI cricket is developed. One of the virtues of the approach is that
the characteristics of individual batsmen and bowlers are used to generate ball by ball outcomes.
As time progresses and more matches are played, the database may be updated to reflect changes
in player characteristics.

Table 5: Estimated probabilities of the row team defeating the column team where the row team
corresponds to the team batting first.

Batting first Batting second

Australia Bangladesh England India New Zealand Pakistan South Africa Sri Lanka West Indies Zimbabwe Average

Australia 0.88 0.69 0.65 0.72 0.81 0.58 0.64 0.74 0.96 0.74

Bangladesh 0.14 0.29 0.23 0.34 0.42 0.19 0.25 0.35 0.77 0.33

England 0.29 0.75 0.43 0.54 0.61 0.36 0.43 0.54 0.89 0.54

India 0.33 0.75 0.54 0.57 0.65 0.40 0.46 0.57 0.89 0.57

New Zealand 0.30 0.81 0.50 0.44 0.64 0.40 0.46 0.59 0.92 0.56

Pakistan 0.16 0.58 0.31 0.27 0.37 0.22 0.28 0.37 0.78 0.37

South Africa 0.44 0.89 0.63 0.57 0.71 0.77 0.60 0.72 0.96 0.70

Sri Lanka 0.37 0.81 0.58 0.52 0.61 0.70 0.46 0.63 0.92 0.62

West Indies 0.23 0.67 0.41 0.34 0.47 0.55 0.30 0.36 0.85 0.46

Zimbabwe 0.05 0.33 0.12 0.10 0.15 0.21 0.08 0.12 0.16 0.15

Average 0.74 0.28 0.55 0.61 0.50 0.40 0.67 0.60 0.48 0.12

The final column are the row averages and correspond to the average probabilities of winning when batting in
the first innings. The final row are the average probabilities of winning when batting in the second innings.
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Beyond obvious uses in betting, the simulator may be used to help teams determine optimal
strategies. In ODI cricket, it is not so easy to test ideas as a team may only play 20 matches per
year and a team does not typically play all ICC nations. For example, it is not clear how changes
in the batting and bowling orders affect a match. The simulator allows a team to easily investigate
the results of making changes to the batting and bowling orders.

Our simulator was developed with an attempt to realistically model one-day cricket, and it
appears to do a reasonable job of reflectingmajor tendencies.Nevertheless, there are improvements
that might be made in future implementations of the simulator. For example, rather than treat
wide-balls and no-balls as aggregate characteristics, it may be possible to incorporate wide-balls
and no-balls as individual characteristics of bowlers. It is also possible to include a home-field
advantage term in the Bayesian latent variable model. Home field advantage has been estimated
to be worth roughly 16 runs for the home team (de Silva, Pond & Swartz, 2001).

There are other modelling issues that we have not considered yet may have an impact on
scoring. For example, in many sports there tends to be an aging effect where younger players
improve, reach a plateau and then experience a decline in performance. Modelling the aging
effect is a challenge (Berry, Reese & Larkey, 1999) and appears to be sport specific. We hope that
by discarding old data and regularly updating our database, we might mitigate the aging effect
by retaining data reflective of current performance. We might also consider the possibility that
batsmen are more vulnerable to dismissal when they first come to the crease. Another modelling
challenge involves the recognition that some batsmen struggle with certain types of bowlers (e.g.,
fast bowlers, spin bowlers).

Immediately prior to the World Cup of Cricket held in the West Indies in March 2007, a
significant rule change was made with respect to fielding restrictions. This rule is known as the
Powerplay rule which differs slightly from the temporary Powerplay rule considered during the
10-month period beginning August 2005. The new Powerplay rule has the potential of affecting
the periods of constant aggressiveness as assumed in Table 2. In a few years time, when more data
have been collected subject to the new rule, we plan on altering the definition of the situations in
Table 2 and refitting our model. Of course, our simulations are only as good as the data which
have been collected. Therefore it is advisable to regularly update our database and eliminate data
that is deemed to have occurred too far in the past.
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