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Abstract

Cricket is a sport for which many batting and bowling statistics have been proposed.

However, a feature of cricket is that the level of aggressiveness adopted by batsmen

is dependent on match circumstances. It is therefore relevant to consider these cir-

cumstances when evaluating batting and bowling performances. This paper considers

batting performance in the second innings of limited overs cricket when a target has

been set. The runs required, the number of overs completed and the wickets taken are

relevant in assessing the batting performance. We produce a visualization for second

innings batting which describes how a batsman performs under different circumstances.

The visualization is then reduced to a single statistic “clutch batting” which can be

used to compare batsmen. An analogous approach is then provided for bowlers based

on the symmetry between batting and bowling, and we define the statistic “clutch

bowling”.
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1 Introduction

Imagine the following scenario: It is the second innings of a limited overs cricket match

(either one-day or Twenty20). There are 3 overs remaining, 7 wickets have been taken and

the batting team requires R additional runs to win the match. During the next over, the

batsman of interest scores 5 runs. How has the batsman performed?

Clearly, the answer to the question is that it depends on the number of runs R required

to win the match. If R = 10, the batsman has done his job, and his team is in a good

position to win the match. However, if R = 40, the batsman has underperformed, and the

chance that his team will win has diminished considerably.

The evaluation of batting performance is therefore contextual. Yet, context is not consid-

ered when using traditional batting statistics. This paper attempts to incorporate context

in the evaluation of batting and bowling. The basic idea is that prior to every ball bowled,

there is a ratio of runs required to resources available that describes the contextual urgency

of the second innings chase. After the ball is bowled, the ratio changes. Therefore, perfor-

mance is measured according to the change in the ratio. A batsman has performed well if

there is a decrease in the ratio.

Swartz (2017) provides a review of the various measures that have been proposed to as-

sess batting and bowling performance in cricket. These measures range from simple statistics

such as batting and bowling averages and strike and economy rates to WAR (wins above

replacement) type measures that are based on match simulation. Player evaluation metrics

also differ in their intent, varying from an economic focus (Karnik 2010) to graphical visual-

izations (van Staden 2009). However, a commonality of all of the proposed measures is that

they do not incorporate context in terms of the runs required, the over and the wickets taken.

For example, a player’s batting average is obtained by dividing his total runs scored over all

matches by his total number of dismissals. Therefore, batting average fails to account for

any of the three contextual features.

The pressure index (PI) defined by Shah and Shah (2014) and later modified by Bhat-

tacharjee and Lemmer (2016) captures aspects of context. The pressure indices are calcu-

lated during the second innings and they attempt to describe the changing circumstances of

matches. A dificulty with both measures is that the second innings always commence with

PI = 100.0 (or unity), and therefore the indices do not distinguish between the difficulty
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of attaining large targets versus the difficulty of attaining small targets at the beginning of

the second innings. Both papers mention that the pressure index may be used to evaluate

batting performance.

In Section 2, we introduce our approach for the assessment of contextual batting and

contextual bowling. We produce a visualization that describes performance against a range

of contexts. In the case of batting, the graphical display is then reduced to a single statistic

“clutch batting” that can be used to compare batsmen in challenging situations. An anal-

ogous approach is then provided for bowlers based on the symmetry between batting and

bowling. In Section 3, clutch batting and clutch bowling are investigated for prominent crick-

eters based on data from one-day international (ODI) cricket and Twenty20 (T20) cricket.

The results provide insight into aspects of batting and bowling that are not captured by

traditional statistics. We also provide some insights on the differences between domestic and

international play, and T20 versus one-day cricket. In Section 4, we provide some concluding

remarks.

2 Contextual Performances

2.1 Data

A key element of our approach is that it requires ball-by-ball data. Ball-by-ball data is

not common in cricket as most analyses are based on summary statistics as presented in

match scorecards. We have developed a parser of match commentary logs that provides

detailed ball-by-ball data including the batsman, the bowler, the over, the number of wickets

taken and the outcome of the ball. Commentary logs for high level domestic matches and

international matches for teams belonging to the International Cricket Council (ICC) are

available from the website www.cricinfo.com. The parser has been carefully verified and we

believe that it has close to 100% accuracy. The parser was first used in an application to

determine optimal batting orders in ODI cricket (Swartz et al. 2006).

Second innings data were collected for 395 ODI matches and 625 domestic Twenty20 and

Twenty20 International matches. The domestic matches consisted of those from the Indian

Premier League (IPL) and the Big Bash League (BBL) that took place between April 2015

to October 2019. We excluded all matches that were reduced in length due to delays; this
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resulted in a loss of 10.8% of the ODI matches and 4.5% of the Twenty20 matches. In this

dataset, 169,251 balls were bowled.

2.2 Contextual batting

A batsman’s approach in the second innings (his degree of aggressiveness versus cautiousness)

is dependent on context. As noted earlier, context is a function of (1) the runs required,

(2) the overs remaining and (3) the wickets taken. How then should we quantify context in

terms of these three elements in the second innings of a limited overs cricket match?

We begin with the interplay between overs and wickets. A batsman can be more aggres-

sive when there are fewer overs remaining and can be more aggressive when fewer wickets

have been taken. Fortunately, the interplay between overs and wickets is described via the

Duckworth-Lewis-Stern (DLS) resource table. Although some details of the construction

of the DLS table are propriety, the estimation of resources is based on run scoring from

historical matches. In one-day cricket, a batting team begins their innings with 100% of

their resources available (i.e. 50 overs and 10 wickets at their disposal). When the team

has used up all of their overs or 10 wickets have been taken, the innings are complete and

they have 0% of their resources remaining. For intermediate values of overs and wickets, the

DLS table gives the appropriate resource percentage. In the case of T20 cricket, a simple

transformation of the resources from the one-day table gives the T20 resource percentage.

The Duckworth-Lewis method (Duckworth and Lewis 1998, 2004) was introduced in the

context of resetting targets in interrupted one-day cricket matches. Frank Duckworth and

Tony Lewis have since ceded the management of the system to Steven Stern where the re-

source table has been updated to account for recent changes in scoring (Stern 2016). In

the Appendix, we provide additional information on the DLS system and an abbreviated

Duckworth-Lewis table based on the Standard Edition found at www.icc-cricket.com.

For the purposes of our investigation, what is important to note is that DLS resources

provide a measure that is proportional to run scoring capability. It therefore follows that at

any particular juncture of the second innings, the ratio r of runs required (for victory) to

the resources available describes the contextual urgency of the second innings chase.

The ratio of runs required to resources available r is a key statistic in our work. Using

the combined ODI/Twenty20 dataset, Figure 1 provides a histogram of r based on all of
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the balls bowled in the second innings. It is instructive to be able to calibrate r. In the

ODI matches in our dataset, the average number of runs scored in the first innings is 263.

Therefore, at the beginning of the second innings of ODI matches, the average value of the

ratio is r = 263/100 = 2.63. For reference, there is an average of 157.0 runs scored in the first

innings of the T20 matches, and we note that 157.0/56.6 = 2.78 (see the T20 standardization

in the Appendix). In the combined ODI/Twenty20 dataset, it is also interesting to note that

the batting side was never able to win if r > 9.17 at any point in the second innings. Further,

when r > 3.33, the batting side won only 25% of the time, and when r > 2.80, the batting

side won only 50% of the time. Therefore, we will define highly challenging batting contexts

as those for which r ∈ (2.80, 3.33). Only 33,282 second innings balls were bowled in this

challenging scenario.

Figure 1: Histogram of r based on all second innings balls in the combined ODI/Twenty20

dataset.
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The motivation for our approach is based on well-established concepts in limited overs

cricket; the runs required in the chase and the resources available. For every ball that a

batsman faces, we therefore have his ratio r0 before the ball is bowled and his ratio r1 after

the ball is bowled. For example, if there is a target of 250 runs at the beginning of the second

innings in an ODI match, then we have a starting ratio r0 = 250/100 = 2.5. If the batsman

scores a run on the first ball, then referring to the DLS table, r1 = 249/99.8 = 2.495. If

instead, no runs were scored on the first ball, r1 = 250/99.8 = 2.505. In the case where a

wicket was obtained on the first ball, r1 = 250/93.4 = 2.677.

Therefore, the ordered pairs (r0, r0− r1) over all balls that a batsman has faced describes

the batsman’s performance with respect to the contextual difficulty of the chase. On a

particular ball, the quantity r0 describes the difficulty of the chase with larger values of r0

corresponding to more challenging chases. The quantity r0 − r1 describes the contribution

by the batsman based on the outcome of the ball where r0−r1 > 0 corresponds to improving

his team’s situation.

However, there is a difficulty with the interpretation of r0 − r1. Towards the end of the

second innings when resources are limited, it is possible that the ratios r0 and r1 can be

relatively large. In this case, r0 − r1 can vary greatly with respect to a given ball. In fact,

r1 is undefined if the ball in question is the last ball of the innings or if it results in the 10th

wicket (since the remaining resources are nil). To adjust for this, and to compare apples

to apples, we make two modifications. First, we introduce the arbitrary cutoff that when

resources are less than 10% we do not include the batting outcome. Second, we introduce

the statistical technique of standardization. We disregard the rare events corresponding to

scoring three runs and five runs, and for a given ball, we calculate the 7 outcome possibilities:

r0 − r1(0) − the result of r0 − r1 if 0 runs are scored

r0 − r1(1) − the result of r0 − r1 if 1 runs are scored

r0 − r1(2) − the result of r0 − r1 if 2 runs are scored

r0 − r1(4) − the result of r0 − r1 if 4 runs are scored

r0 − r1(6) − the result of r0 − r1 if 6 runs are scored

r0 − r1(w) − the result of r0 − r1 if a wicket falls

r0 − r1(e) − the result of r0 − r1 if an extra occurs .
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We then define

s2 = [ (r0 − r1(0)− 0)2 + · · ·+ (r0 − r1(e)− 0)2 ] / 6

and replace the observed r0 − r1 with the standardized quantity

s(r0 − r1) =
r0 − r1
s

. (1)

Therefore, using (1), the plot of (r0, s(r0 − r1)) over all balls that a batsman has faced

describes the batsman’s performance with respect to the contextual difficulty of the chase.

The points are then smoothed to provide a trend for the batsman. This smoothed curve

is referred to as the batsman’s contextual batting function. It describes performance over a

range of contextual circumstances. When one batsman’s curve dominates (i.e. lies above)

another batsman’s curve, the first batsman is the better batsman in all contexts.

Note that in the case of extras such as byes, leg-byes, wide-balls and no-balls, we credit

the extra runs to the batsman. Although a case may be made that these extra runs are not

a function of batting performance, they occur while the batsman is on-strike. Perhaps the

batsman should receive credit for the extras as the bowler takes the strengths of the batsman

into account during the delivery. In Section 2.2, we propose an analogous visualization for

bowlers; in this case, it is evident that extras ought to be charged against bowlers. Therefore,

we retain symmetry in the visualization by also giving credit to batsmen for extras. Extras

occur at the rate of 5.1% in Twenty20 cricket (Davis, Perera and Swartz 2015).

Consider Figure 2 which displays the points (r0, s(r0 − r1)) and the contextual batting

function (ODI and T20) for the high profile batsman Steve Smith who was the former captain

of Australia. The function is provided over the range of contexts r0 ∈ (0, 4). We observe

that Smith bats infrequently in some contexts, and has not batted at all when r0 > 4. This

is partly explained by noting that Australia is a strong cricketing nation and rarely falls

behind by huge margins during matches. We also note that some contexts (e.g. r0 < 2.80)

correspond to more comfortable chases which are not as interesting. It appears that for most

contexts, Smith’s contextual batting function lies above the par line s(r0 − r1) = 0 which

suggests that he improves his team’s situation in these chases. Figure 2 also illustrates a
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difficulty in visualization; when the points are plotted, it is difficult to compare the contextual

batting function with the par line. We also observe that wickets are very damaging when

assessing contextual batting performance; the large negative points in Figure 2 correspond

to wickets and these points pull the contextual batting curve downwards.

Figure 2: The points (r0, s(r0 − r1)) and the resulting contextual batting function for Steve

Smith over the contextual range r0 ∈ (0, 4).

2.3 A summary statistic for contextual batting

The contextual batting function describes a complete picture of how a batsman performs

against a range of contexts. When comparing two batsmen, one batsman is superior if his

curve dominates (lies above) the other curve. However, it will not always be the case that

one curve dominates the other and therefore interpretation of contextual batting functions is

necessary. For example, it could be the case that a batsman is very good at pushing through

a win when a win is expected but is unable to produce a huge number of runs when his
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team is trailing badly. In this case, his contextual batting function would lie above the line

s(r0 − r1) = 0 for smaller values of r0 and lie below the line s(r0 − r1) = 0 for larger values

of r0. In fact, many batsmen will have functions that take this general shape with crossover

points on the line s(r0 − r1) = 0.

Although the contextual batting function provides a description of batting performance

across a range of contexts, the general public is more at ease with simple univariate statistics

that are directly comparable. We will therefore propose a single statistic clutch batting which

is a summarization of the contextual batting function when matches are highly challenging

(i.e. r0 ∈ (2.80, 3.33)). Clutch batting provides overall evaluation of second innings batting

in challenging chases.

In Figure 3, we illustrate the clutch batting statistic with reference to Steve Smith.

Smith’s contextual batting function is restricted to the challenging range r0 ∈ (2.80, 3.33).

This allows us to narrow in on his performance in the more interesting matches where there

is a challenging chase. We compare Smith’s performance against the par line s(r0 − r1) = 0

where a player is doing just enough to maintain the difficulty of the chase. Interestingly,

Smith does not seem to help his team in the most difficult contexts (e.g. r0 > 3.05) where

his team is struggling. We also note that there is a downward slope to his contextual batting

curve. This makes sense from a cricketing perspective since it becomes increasingly difficult

to overcome a losing position as r0 increases.

If we denote the contextual batting function as f(r0), then the clutch batting statistic is

defined as

Cbat =

(∫ 3.33

2.80

(f(r0)− 0) dr0

)
100

=

(∫ 3.33

2.80

f(r0) dr0

)
100 (2)

where 100 is a scaling factor that is introduced to make the statistic more appealing. There-

fore, (2) involves an area calculation involving the contextual batting function and the par

line. Accordingly, Cbat is an overall measure of batting performance in challenging situ-

ations where larger values of Cbat denote greater proficiency. In Smith’s case, his clutch

batting statistic is 0.46 which suggests that overall, Smith improves his team’s situation in

challenging chases.
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Figure 3: The contextual batting plot for Steve Smith over the challenging range r0 ∈
(2.80, 3.33).

2.4 Contextual bowling performance

In cricket, there is an inherent symmetry between batting and bowling. Whereas a batsman

attempts to score runs and avoid wickets, the bowler attempts to limit runs and take wickets.

Therefore, the previous development of contextual batting can be modified to provide an

analysis of contextual bowling. As before, during the second innings, we study the ratio

of the runs required by the batting team (to win the match) to the resources available.

Opposite to batsmen, a bowler attempts to increase the ratio on each delivery of the ball.

In clutch batting, we defined r0 ∈ (2.80, 3.33) as highly challenging contexts corre-

sponding to a win probability interval (0.25, 0.50) for the batting side. We likewise define

r0 ∈ (2.27, 2.80) as highly challenging contexts corresponding to a win probability interval

10



(0.25, 0.50) for the bowling side. We therefore define the clutch bowling statistic as

Cbowl =

(∫ 2.80

2.27

−f(r0) dr0

)
100 (3)

where the negative sign has been introduced since we wish positive values of the statistic to

be associated with clutch bowling.

An attractive feature of the clutch batting statistic (2) and the clutch bowling statistic

(3) is that batsmen and bowlers can be assessed on the same scale.

3 Data Analyses

3.1 Details of implementation

As previously emphasized, we use combined data from both ODI cricket and T20 cricket

during the period April 2015 through October 2019. The synthesis of the two formats is

possible due to the introduction of the runs to resource ratio r that describes and standardizes

the contextual difficulty of the chase at any point during the second innings in limited overs

cricket.

An issue related to clutch batting and clutch bowling is that we limit the analysis of

batsmen and bowlers to those who have faced/delivered sufficient balls. This provides us

with reliable statistics that are not heavily influenced by the results of only a few batting and

bowling outcomes. We set the minimum number of balls faced/delivered to 300. This leaves

us with 24 batsmen and 19 bowlers under consideration. With 12 full member nations in

the International Cricket Council (ICC), our study is therefore restricted to a small number

of prominent batsmen and bowlers on each ICC team.

The shape of the contextual batting and bowling curves are impacted by smoothing. We

prefer curves that are not too “wiggly” since we do not believe there are practical reasons why

batting and bowling performances should oscillate over the range r of contextual urgency.

Smoothing is carried out in the R programming language using the loess function (Cleveland

1979). The parameters span and degree determine the characteristics of smoothing in loess.

The parameter span ∈ (0, 1) controls the smoothing neighbourhood where larger span means

that more nearby data influence the fit. The parameter degree > 0 specifies the order of
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the smoothing polynomials where higher order polynomials permit more wiggle in the fitted

curve. In our application, we have set span = 1 and degree = 1.

Once the loess function has been determined, the calculation of the clutch batting statis-

tic (2) and the clutch bowling statistic (3) require numerical integration to obtain the areas

beneath the loess curve. This is done using the uniroot and integrate functions in R. The

function uniroot finds the roots of the contextual curves, and integrate obtains the corre-

sponding areas between the roots.

To get a sense of the reliability of the clutch batting and clutch bowling statistics, we

associate standard errors to the statistics. This is implemented through a bootstrapping

procedure where for each batsman and bowler, we resample (with replacement) the balls

faced/delivered from their individual dataset. From the resampled data, the clutch bat-

ting/bowling statistic is calculated, and this resampling procedures is repeated M = 10, 000

times. From the M simulated statistics, a standard error is calculated.

3.2 Clutch batting analysis

In Table 1, we present the clutch batting statistic 24 prominent batsmen in limited overs

cricket who have faced at least 300 balls. For comparison purposes, we also present the

batting average, the strike rate and the survival rate (i.e. balls per dismissal) of van Staden

(2009) where large values of the three statistics are all indicative of good batting. An

immediate reaction is that clutch batting correlates positively but not strongly with batting

average (average number of runs scored per wicket) where the sample correlation coefficient

is 0.34. The correlation between clutch batting and strike rate is 0.70 and the correlation

between clutch batting and survival rate is -0.34. This suggests that clutch batting detects

an aspect of performance that resembles features of the strike rate. Clutch batting and the

survival rate appear to have little in common. Note that to make fair comparisons, we have

calculated the common statistics based on the same timeframe considered in our dataset.

We see from Table 1 that the best clutch batsman is Jason Roy of England followed by

his countryman Jos Buttler. Whereas Roy and Buttler are known as solid batsmen, they are

spectacular in situations when their team is in desperate need of runs. Perhaps this partly

explains England’s good run of form in recent years. We also observe that the remarkable

Virat Kohli of India is also a top clutch batsman. Shai Hope of the West Indies is situated
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at the bottom of the table. He does not pull his team from the brink in desperate chase

situations. We do note that Hope’s statistic was based on only 331 balls and has a standard

error of 0.95.

Another observation from Table 1 is that the bootstrap standard error is large. This is

caused by large values of |s(r0 − r1)| which impact clutch batting. These impactful obser-

vations correspond to scoring sixes and dismissals. We note that the standard errors tend

to decrease with greater numbers of at-bats. Given the large standard errors, we can only

make broad inferences concerning the differentiation between batsmen.

3.3 Clutch bowling analysis

In Table 2, we present the clutch bowling statistic for 19 prominent bowlers in limited over

cricket who have delivered at least 300 balls. For comparison purposes, we also present the

strike rate, the bowling average and the economy rate where low values of the three statistics

are all indicative of good bowling. An immediate reaction is that clutch bowling correlates

moderately with bowling strike rate (average number of balls bowled per wicket) where the

sample correlation coefficient is -0.51 The correlation between clutch bowling and bowling

average is -0.54 and the correlation between clutch bowling and economy rate is -0.72. This

suggests that clutch bowling is detecting an aspect of performance that resembles features

of the economy rate. Note that to make fair comparisons, we have calculated the common

statistics using the same timeframe considered in our dataset. As with clutch batting, we

observe that the bootstrap standard error is high and this makes it difficult to differentiate

between bowlers. We note that the range (-2.84,3.26) of the clutch bowling statistics in

Table 2 is similar to the range (-1.75,2.40) of the clutch batting statistics in Table 1. The

similarity is a consequence of the symmetry in the definitions of clutch bowling and clutch

batting.

Looking at particular players, we observe that both Rashid Khan and Mujheeb Ur Rah-

man of Afghanistan are strong clutch bowlers. This comes as no surprise as they are the top

two T20 bowlers according to the current ICC rankings. Perhaps it is a surprise that the

South African fast bowler, Kagiso Rabada sits as the second worst clutch bowler in Table 2.

We also obtained the clutch bowling statistic of Lasith Malinga of Sri Lanka (Cbowl = −0.24)

who only delivered 278 balls over the time period. Malinga is of particular interest due to
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his reputation as an incredible “death” bowler. The clutch bowling statistic suggests that

Malinga’s reputation is perhaps overrated.

3.4 Data Synthesis

One of the bold assumptions that we have made in the paper involves the synthesis of data.

In forming the clutch statistics, we used data from both domestic cricket and international

cricket. In addition, we combined T20 data and one-day data. Of course, our intention was

to provide the best measures of clutch performance statistics through utilizing as much data

as possible.

To investigate these assumptions, we first investigated batting averages corresponding to

the 24 batsmen in Table 1 using the same timeframe. We observed that six of the batsmen

(Latham, Stirling, Tharanga, Hope, Sarkar and Taylor) did not compete domestically in

T20. We therefore excluded these batsmen from the following analysis. We then separated

the T20 batting averages by calculating a domestic batting average x and an international

batting average y for the remaining 18 batsman. Using a simple linear regression of y versus

x, a lack of difference between the two competitions would imply an intercept β0 = 0.0 and

a slope β1 = 1.0. We obtained estimates (standard errors) of 25.98 (15.15) and 0.15 (0.42)

for the intercept and slope, respectively. This suggests that there may be slight differences

in the scoring patterns between the two competitions.

The calculation of the proposed clutch statistics are dependent on the runs to resource

ratio r introduced in Section 2. As we have combined T20 and ODI datasets, it is important

to check that r is invariant to the two formats. In Figure 4, we have overlaid the histograms

of r calculated for all second innings balls for the two datasets. We observe that the two

histograms have roughly the same shape and this suggests that amalgamation of the two

datasets may be appropriate. It could be the case that the r0 values for ODI are slightly

larger.
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Figure 4: Frequency histograms of r based on all second innings balls displayed for the ODI
and Twenty20 datasets.

4 Discussion

The proposed clutch batting and clutch bowling statistics are not intended to usurp tradi-

tional and popular statistics such as batting average and bowling strike rate. Rather, these

statistics were introduced to provide insight on an aspect of performance that had not been

previously investigated. Specifically, we are interested in how batsmen and bowlers perform

in the second innings when their teams are in difficult situations. Hence, the clutch batting

and clutch bowling statistics are contextual. The methods presented here may be regarded as

proof of concept; should the approach gain traction, it may be sensible to separate datasets

according to the competition level and the format of cricket.

The data analyses have demonstrated that performance in difficult contexts does not

correlate highly with overall performance measures. From the point of view of tactics, the

clutch batting and clutch bowling statistics may provide teams with useful information to

determine optimal batting and bowling orders in difficult contexts.
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There are various ways in which our ideas concerning contextual performance may be

explored in future research. For example, one could study different contexts as described

by the runs to resource ratio r0. Also, it is possible to narrow or expand data collection

timeframes under consideration. Alternatively, one could define statistics that weight recent

performances more highly. Contextual performance in sport is clearly an important and

understudied subject area that deserves greater attention.
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6 Appendix - Additional Information on DLS

To get a sense of the use of the DLS method, consider the abbreviated Standard Edition

of the Duckworth-Lewis-Stern table presented in Table 3. Imagine that Team A is batting

and scores 250 runs on completion of its innings. It then rains prior to the resumption of

the second innings. When Team B comes to bat, they are only allotted 30 overs. Using

the old method of run rates, Team B would need to score 250(30/50) + 1 = 151 runs in

order to win the match. The obvious problem with the run rate approach is that Team B

can bat more aggressively since their 10 wickets are spread throughout 30 overs rather than

50 overs. Therefore, the target of 151 runs is lower than what might be considered fair.

However, using the DLS approach, Table 1 indicates that with 30 overs remaining and zero

wickets lost, Team B retains 75.1% of its resources. Therefore, the target is rounded up to

250(0.751) → 188 runs. The large difference between 151 runs and 188 runs indicates how

unpalatable it was for matches to be determined by run rates. The ICC Playing Handbook

describes other scenarios in which D/L can be used to reset targets in interrupted matches.
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Batsman Country Balls Cbat (Std Err) Bat Avg Strike Rate Surv Rate
JJ Roy England 416 2.40 (0.79) 41.5 116.6 31.2
JC Buttler England 470 2.15 (0.91) 40.6 138.3 31.5
AB de Villiers South Africa 325 2.04 (0.99) 48.4 146.2 34.7
CH Gayle West Indies 374 1.81 (1.08) 35.6 130.9 28.7
Q de Kock South Africa 534 1.68 (0.64) 47.1 110.9 36.2
S Dhawan India 507 1.50 (0.89) 38.3 116.4 32.7
V Kohli India 659 1.00 (0.49) 66.7 114.8 49.3
RG Sharma India 812 0.68 (0.52) 49.5 112.4 39.0
AJ Finch Australia 608 0.52 (0.51) 44.5 115.8 34.1
SPD Smith Australia 399 0.46 (0.75) 41.8 101.1 39.3
SR Watson Australia 319 0.20 (1.17) 24.4 137.3 20.8
BA Stokes England 317 0.14 (0.71) 46.3 107.3 33.1
S Al Hasan Bangladesh 329 0.02 (0.84) 41.7 99.6 36.4
LRPL Taylor New Zealand 369 0.01 (0.64) 52.3 92.2 57.2
KS Williamson New Zealand 676 0.01 (0.56) 52.4 97.5 44.4
TWM Latham New Zealand 306 -0.54 (0.69) 43.0 88.8 45.4
E Lewis West Indies 472 -0.72 (0.99) 27.1 108.5 27.9
PR Stirling Ireland 312 -0.94 (1.03) 36.6 94.8 37.2
HM Amla South Africa 303 -0.98 (1.05) 38.3 102.4 49.4
S Sarkar Bangladesh 339 -1.32 (1.15) 35.4 108.8 27.3
F du Plessis South Africa 338 -1.32 (1.07) 44.3 106.4 46.4
WU Tharanga Sri Lanka 316 -1.38 (1.07) 37.8 91.9 37.9
AM Rahane India 388 -1.41 (1.12) 35.3 107.5 34.3
SD Hope West Indies 331 -1.75 (0.95) 33.1 78.7 57.8

Table 1: Clutch batting Cbat and other statistics for 24 batsmen who have faced at least 300
balls in high level limited overs cricket matches. For comparison purposes, batting average
was calculated over the same data collection period.
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Bowler Country Balls Cbowl (Std Err) Strike Rate Bowl Avg Econ Rate
R Khan Afghanistan 680 3.26 (0.64) 20.9 16.0 5.2
M Ur Rahman Afghanistan 418 2.07 (1.03) 28.5 21.0 4.7
MJ Henry New Zealand 330 0.95 (1.13) 33.2 30.7 5.8
MJ Santner New Zealand 373 0.00 (0.72) 35.9 29.6 5.3
M Nabi Afghanistan 624 -0.02 (0.60) 35.3 24.9 5.3
PJ Cummins Australia 304 -0.10 (0.75) 33.0 25.0 5.7
M Rahman Bangladesh 467 -0.10 (0.68) 28.5 21.8 5.9
TA Boult New Zealand 364 -0.13 (0.67) 28.1 24.8 6.1
YS Chahal India 351 -0.14 (0.87) 23.0 22.6 6.3
I Tahir South Africa 465 -0.19 (0.54) 26.4 21.6 5.7
I Wasim Pakistan 323 -0.21 (0.88) 35.7 27.3 5.2
S Al Hasan Bangladesh 591 -0.33 (0.61) 33.6 31.2 5.8
JJ Bumrah India 341 -0.35 (0.81) 21.0 21.5 5.8
M Mortaza Bangladesh 620 -0.46 (0.39) 41.7 37.6 5.6
A Zampa Australia 371 -0.56 (0.51) 29.9 29.5 6.1
TG Southee New Zealand 362 -0.62 (0.63) 36.7 34.7 6.6
B Kumar India 534 -0.74 (0.78) 33.9 25.7 6.1
K Rabada South Africa 346 -1.02 (0.63) 38.8 21.9 5.5
MP Stoinis Australia 364 -2.84 (0.86) 36.4 33.6 7.2

Table 2: Clutch bowling Cbowl and other statistics for 19 bowlers who have delivered at least
300 balls in high level limited overs cricket matches. For comparison purposes, strike rate
was calculated over the same data collection period.
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Wickets Lost
Overs Available 0 1 2 3 4 5 6 7 8 9 10

50 100.0 93.4 85.1 74.9 62.7 49.0 34.9 22.0 11.9 4.7 0.0
40 89.3 84.2 77.8 69.6 59.5 47.6 34.6 22.0 11.9 4.7 0.0
30 75.1 71.8 67.3 61.6 54.1 44.7 33.6 21.8 11.9 4.7 0.0
20 56.6 54.8 52.4 49.1 44.6 38.6 30.8 21.2 11.9 4.7 0.0
10 32.1 31.6 30.8 29.8 28.3 26.1 22.8 17.9 11.4 4.7 0.0
5 17.2 17.0 16.8 16.5 16.1 15.4 14.3 12.5 9.4 4.6 0.0
1 3.6 3.6 3.6 3.6 3.6 3.5 3.5 3.4 3.2 2.5 0.0
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3: Abbreviated version of the Duckworth-Lewis resource table (2014-2015 Standard
Edition). The table entries indicate the percentage of resources remaining in a match with
the specified number of wickets lost and overs available.
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