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and Gentle (1980), Davis and Rabinowitz (1984), Thisted (1988) and Press,Flannery, Teukolsky and Vetterling (1986) discuss methods for approximat-ing such integrals.The approach that we present has some virtues from the point of viewof its simplicity, e�ciency and the fact that, with some quali�cations dueto round-o� error, it returns exact error bounds along with the approxi-mate value. Often the methodology leads to good algorithms with relativelylittle work from the implementer. For example, evaluation of the N(0; 1)distribution function is a much studied problem and when we consider theapplication of our methodology to this problem in Example 4.2 we obtainsurprisingly good results with very little e�ort. Similarly we obtain goodresults in Example 4.3 where we apply the methodology to constructingapproximations to the Gamma function and the Gamma distribution func-tion. In Example 4.4 we show that the technique can be used to evaluatean approximation to a non-standard problem having application in actuarialscience; namely Makeham's distribution function.While we have emphasizedthe application of the methodology to one dimensional integrals the methodcan be generalized to multidimensional integrals. We illustrate this in inExample 4.5 where we compute approximations to the probability contentsof rectangles for the bivariate Student distribution.In Gilks and Wild (1992), Hoermann (1995) and Evans and Swartz(1996) a class of techniques with common characteristics is discussed forconstructing random variable generators from a univariate density. The ba-sic idea behind these methods involves piecewise linear approximations toa transformation of the density to construct upper and lower envelopes forthe density. The virtue of this methodology is that it requires very littleinput from the user beyond the choice of a transformation and knowledgeof the concavity structure of the transformed density or equivalently the in-ection points of the transformed density. It is to a great degree a black-boxgenerator.The upper and lower envelopes constructed via these algorithms alsolead to easily calculated upper and lower approximations to the associateddistribution function and so we can compute approximations with exact er-ror bounds. Such integration techniques might be referred to as enveloperules. The approximation to the integral obtained from the lower envelope isin fact an application of the trapezoid rule with an additional restriction onthe placement of the integration points. As we show in this paper, however,while this methodology is excellent for constructing random variable gener-ators it can be very ine�cient for approximating distribution functions. Insection 2 we show that this is due to the low order of the rate of convergence2



of the methodology as an integration technique. We also show, however,that this methodology can be generalized to yield integration techniques ofany rate of convergence provided that information concerning the concavitystructure of the derivatives of the density is available. This information is ei-ther available or, as we show, is even unneccessary, for many commonly useddistributions. In section 3 we generalize the algorithm to multidimensionalcontexts. In section 4 we apply the methodology to a number of examples.In developing upper and lower bounds for integrals in this paper we ig-nore the e�ects of round-o� error. In practice this means that actual boundscomputed may not contain the true value of the integral. True bounds canbe attained, however, if we combine the methods of interval arithmetic withour algorithms. We do not pursue this aspect of the computation here.For a discussion of the use of interval arithmetic in the approximation ofdistribution functions see Wang and Kennedy (1994).The methods we derive here involve the use of Taylor expansions ofthe integrand and their direct integration. Lyness (1969) also uses Taylorexpansions in the approximation of integrals but the development there isquite di�erent from what we are proposing.2 The Algorithm for One Dimensional IntegralsWe assume hereafter that an integrand f possesses the number of derivativesnecessary to make the results stated below valid. The basic idea behindthe algorithm is dependent on the following simple fact derived from theFundamental Theorem of Calculus.Lemma 1. If f 0(x) � g0(x) for every x 2 (a; b) then f(x) � g(x)�g(a)+f(a)for every x 2 (a; b).Now suppose that f is a density function such that f (n) is concave in(a; b): Then we have the following result which gives upper and lower en-velopes for f on (a; b):Lemma 2. If f (n) is concave on (a; b) then for every x 2 (a; b) ;l(x) = nXk=0 f (k) (a)k! (x� a)k + f (n)(b)� f (n)(a)b� a (x� a)n+1(n+ 1)!� f(x) � u(x) = n+1Xk=0 f (k) (a)k! (x� a)k: (1)3



Proof. Because f (n) is concave on (a; b) we have that the chordl(n)(x) = f (n)(a) + f (n)(b)� f (n)(a)b� a (x� a)and the tangent u(n)(x) = f (n)(a) + f (n+1)(a)(x� a)satisfy l(n)(x) � f (n)(x) � u(n)(x) on (a; b): Then repeatedly applyingLemma 1 to both sides of this inequality we obtain the result.Corollary 1. Integrating both sides of (1) givesnXk=0 f (k) (a)(k + 1)!(b� a)k+1 + f (n)(b)� f (n)(a)b� a (b� a)n+2(n+ 2)!� Z ba f(x) dx � n+1Xk=0 f (k) (a)(k + 1)!(b� a)k+1: (2)Accordingly, (2) gives upper and lower bounds for R ba f(x) dx and this impliesthat an upper bound on the absolute error in the approximation R ba u(x) dxto R ba f(x) dx is given by f (n+1) (a)� f (n)(b)� f (n)(a)b� a ! (b� a)n+2(n+ 2)! : (3)If f (n) is convex on (a; b) then the inequalities in (1) and (2) are reversed and(3) is multiplied by -1. The bound (3) can be used to give insight concerningthe choice of n:Notice that R ba u(x) dx = R ba f(x) dx whenever f is a polynomial of degreeless than n + 2 and R ba l(x) dx = R ba f(x) dx whenever f is a polynomial ofdegree less than n+1:While we have stated the results for concave or convexf (n) the technique is also applicable when these conditions do not apply. For,provided that we can determine the inection points of f (n) in (a; b), namelythe roots of f (n+2); we can then determine the concavity of f (n) on each ofthe subintervals determined by these points and apply the results piecewise.Recall that the concavity on each of these intervals is determined by thesign of f (n+3) at the inection points.If (a; b) is short then we can imagine that the approximations R ba u(x) dxand R ba l(x) dx will be quite good. In the typical application, however, this4



will not be the case. We now show, however, that under componding theseapproximations converge to the value of the integral. By compounding wemean divide (a; b) into m subintervals of equal length, use the approxima-tions to the integral over this subinterval given by Corollary 1, and then sumthe approximations. Let lm; um denote the lower and upper envelopes to fon (a; b) determined by this compounding; i.e. the envelopes determined byapplying Lemma 1 in each subinterval. The following result establishes theconvergence of the approximations R ba um(x) dx and R ba lm(x) dx and the rateof convergence as m!1:Lemma 3. If Emand Em denote the errors in R ba u(n)m (x) dx and R ba l(n)m (x) dxrespectively then as m!1 we haveEm � 1mn+2 �f (n+1)(b)� f (n+1)(a)� (b� a)n+2(n + 3)! ! 0Em � (n+ 3) 1mn+2 �f (n+1)(b)� f (n+1)(a)� (b� a)n+2(n+ 3)! ! 0:Proof. >From Taylor's Theorem we have thatf(x) = u(x) + f (n+2)(�(x))(x� a)n+2(n+ 2)!where �(x) 2 (a; b) : ThereforeZ ba f(x) dx = Z ba u(x) dx+ Z ba f (n+2)(�(x))(x� a)n+2(n+ 2)! dx= Z ba u(x) dx+ f (n+2)(�) Z ba (x� a)n+2(n+ 2)! dx= Z ba u(x) dx+ f (n+2)(�)(b� a)n+3(n+ 3)!where the second equality is justi�ed by the Generalized Mean Value The-orem, see Davis and Rabinowitz (1984, p. 9). Also by Taylor's Theoremf(x) = l(x) + "f (n+1)(�(x))� f (n)(b)� f (n)(a)b� a # (x� a)n+1(n+ 1)!where �(x) 2 (a; b); which givesZ ba f(x) dx 5



= Z ba l(x) dx+ Z ba "f (n+1)(�(x))� f (n)(b)� f (n)(a)b� a # (x� a)n+1(n + 1)! dx= Z ba l(x) dx+ "f (n+1)(�)� f (n)(b)� f (n)(a)b� a # Z ba (x� a)n+1(n+ 1)! dx= Z ba l(x) dx+ hf (n+1)(�)� f (n+1)(��)i (b� a)n+2(n + 2)!= Z ba l(x) dx+ f (n+2)(���)(b� a)n+3(n+ 2)!where the second equality is justi�ed by the Generalized Mean Value Theo-rem for some � 2 (a; b) and the last two equalities are justi�ed by the usualMean Value Theorem for some ��; ��� 2 (a; b):The statements in the Lemmathen follow immediately from the theorem on p. 72, Davis and Rabinowitz(1984).Therefore both approximations have the same rate of convergence undercompounding but Em has a larger constant. For this reason we use theintegral of the upper envelope as the basic approximation. Note that whenn = 0 then the rate of convergence is quadratic; i.e O(1=m2). As we shall seein section 4, this proves inadequate in a number of examples as it requiresfar too much compounding. Dramatic improvements are obtained by usinghigher order derivatives.The integration algorithm that we have presented can be generalized inseveral ways. For example, suppose that f(x) = g(x)h(x) , g(x) � 0; l(x)�h(x) � u(x) on (a; b) where l and u are as speci�ed in (1) for h rather thanf: Then g(x)l(x) � f(x) � g(x)u(x) holds on (a; b): Also assume that thatg and h have all the necessary derivatives and that all necessary integralsexist. Then, with a proof similar to that of Lemma 3, we have the followingresult.Lemma 4. If Emand Em denote the errors in R ba g(x)um(x) dx andR ba g(x)lm(x) dx respectively then as m!1Em � 1mn+2  Z ba g(x)h(n+2)(x) dx! (b� a)n+2(n+ 3)! ! 0Em � (n + 3) 1mn+2  Z ba g(x)h(n+2)(x) dx! (b� a)n+2(n+ 3)! ! 0:If g represents a great deal of the variability in f then we might expect theseapproximations to improve on applying the theory strictly to f: Of course6



g must also be chosen so that R ba g(x)um(x) dx and R ba g(x)lm(x) dx can beeasily evaluated; see Example 4.3 for such an application.Sometimes we can write f(x) = h(g(x)): Let l and u be as speci�ed in(1) but for h on (c; d) and suppose g(x) 2 (c; d) whenever x 2 (a; b): Thenl(g(x)) � f(x) � u(g(x)) holds on (a; b): Assuming that g and h have allthe necessary derivatives and that all necessary integrals exist then, with aproof similar to that of Lemma 3, we have the following result.Lemma 5. IfEmandEm denote the errors in R ba um(g(x)) dx and R ba lm(g(x)) dxrespectively then as m!1Em � 1mn+2  Z ba h(n+2)(g(x)) dx! (b� a)n+2(n+ 3)! ! 0Em � (n + 3) 1mn+2  Z ba h(n+2)(g(x)) dx! (b� a)n+2(n+ 3)! ! 0:Again g must be chosen so that R ba um(g(x)) dx and R ba lm(g(x)) dx can beeasily evaluated; see Example 4.2 for such an application. Lemmas 4 and5 can be used to substantially simplify and improve the application of themethod.We will make use of the following simple facts when calculating abso-lute and relative error bounds in our examples. Suppose that we wish toapproximate quantities r and s and that we have lower bounds lr; ls andupper bounds ur; us: Then we have that lr + ls � r+ s � ur + us and there-fore (ur + us)� (lr + ls) is an absolute error bound for the approximationsur + us and lr + ls of r+ s: Further if ls is positive then lr=us � r=s � ur=lsand ur=ls � lr=us is an absolute error bound for the approximations ur=usand lr=ls of r=s: Further, when lr is positive then the absolute relative errorin ur as an approximation of r is bounded above by ur=lr � 1: Similarly, wecan combine lower and upper bounds on quantities to compute bounds onthe absolute and absolute relative errors of other simple functions of thosequantities.3 The Algorithm for Multidimensional IntegralsWe can also generalize the methodology to multivariate contexts. Once againwe will assume that all the necessary derivatives exist for the validty of anystated results. For integrand f : Rp ! R we say that the n-th derivative dnfis concave in open, convex C � Rp if the n-th order directional derivative7



dnf� (�; : : :; �) is a concave function of �2C for every � 2 Rp and recallthatdnf� (�; : : :; �) = Xj1+���+jp=n nj1 : : : jp ! @nf (�)@�j11 � � �@�jpp �j11 � � ��jpp : (4)This implies that dnf�+t� (�; : : : ; �) is a concave function of t provided �+t� 2C. Then as in section 2, for 0 � t � 1 we havednf� (�; : : : ; �) + t (dnf�+� (�; : : :; �)� dnf� (�; : : : ; �))� dnf�+t� (�; : : : ; �)� dnf� (�; : : : ; �) + tdn+1f� (�; : : : ; �) (5)provided that �; � + �2C: Then using t as the variable of integration inthe right-hand side of (5), anti-di�erentiating n times as in section 2, andputting t = 1; � = z � � we obtain an upper envelope for f given byu(z) = n+1Xk=0 dkf� (z � �; : : : ; z � �)k!when �; z2C: Therefore we need only integrate polynomials over C to get anupper bound on RC f(z) dz. For the lower bound we assume in addition thatC is relatively compact, antidi�erentiate the left-hand side of (5) n timesand put t = 1; � = z � � to obtainf(z) � nXk=0 dkf� (z � �; : : : ; z � �)k! +(dnfz (z � �; : : :; z � �)� dnf� (z � �; : : : ; z � �))(n + 1)!This lower bound is typically not useful here, however, because of the dnfzterm as this cannot be easily integrated.In the most important context, however, a useful lower bound can becomputed. For this consider the rectangle [a; b] = Qpi=1 [ai; bi] � C and let�=a and note that when z 2 [a; b] each coordinate of �=z � � is non-negative. Denote the set of vertices of the rectangle [a; b] by [a; b]� : Nowfrom the concavity we have that dnfw (�; : : : ; �) is minimized for w2 [a; b] ata value w2 [a; b]� : Therefore for w2 [a; b] and � = z � � with z 2 [a; b],dnfw (�; : : : ; �)� dnf� (�; : : :; �)� minw�2[a;b]� fdnfw� (�; : : : ; �)� dnf� (�; : : : ; �)g8



� minw�2 [a; b]�j1 + � � �+ jp = n ( @nf (w�)@�j11 � � �@�jpp � @nf (�)@�j11 � � �@�jpp ) (�1 + � � �+ �p)n= cn(f; a; b) (�1 + � � �+ �p)n :This leads to the inequality dnf� (�; : : : ; �) + tcn(f; a; b) (�1 + � � �+ �p)n �dnf�+t� (�; : : : ; �) and note that cn(f; a; b) can be computed relatively easilyprovided p and n are not large. Antidi�erentiating this inequality n timesin t and then putting t = 1; � = a and �= z � � gives the lower envelopel(z) = nXk=0 dkf� (z � �; : : : ; z � �)k! + cn(f; a; b)(n+ 1)! (z1 � �1 + � � �+ zp � �p)n :The function l can be easily exactly integrated over [a; b] to give a lowerbound on R[a;b] f(z) dz. Note that l(z) here is not a generalization of the onedimensional de�nition.Consider now the approximations R[a;b] lmp(z) dz and R[a;b] ump(z) dz wherelmp and ump are the lower and upper envelopes to f on [a; b] obtained bycompounding this approach. By compounding we now mean to subdivide[a; b] intomp subrectangles of equal volume by subdividing each edge of [a; b]into m subintervals of equal length. We have the following result.Lemma 7. If Emp and Emp denote the errors in the approximationsR[a;b] lmp(z) dz and R[a;b] ump(z) dz then as m!1Emp � 1mn+2 Xj1+���+jp=n+2 n + 2j1 : : : jp !Z[a;b] @n+2f (z)@�j11 � � �@�jpp dz� (b1 � a1)j1 � � � (bp � ap)jp(j1 + 1) � � �(jp + 1) (n + 2)! ! 0and Emp = O( 1mn+1 )! 0:Proof: As in Lemma 3 we use Taylor's Theorem, the Generalized MeanValue Theorem and (4) to establishZ[a;b] f(z) dz= Z[a;b] u(z) dz + Z[a;b] dn+2f�(z) (z � a; : : : ; z � a)(n+ 2)! dz= Z[a;b] u(z) dz + Xj1+���+jp=n+2 n+ 2j1 : : : jp ! @n+2f (� (j1; : : : ; jp))@�j11 � � �@�jpp9



� Z[a;b] (z1 � a1)j1 � � � (zp � ap)jp(n+ 2)! dz= Z[a;b] u(z) dz + Xj1+���+jp=n+2 n+ 2j1 : : : jp ! @n+2f (� (j1; : : : ; jp))@�j11 � � �@�jpp�(b1 � a1)j1+1 � � � (bp � ap)jp+1(j1 + 1) � � �(jp + 1) (n+ 2)!= Z[a;b] u(z) dz + Xj1+���+jp=n+2 n+ 2j1 : : : jp ! @n+2f (� (j1; : : : ; jp))@�j11 � � �@�jpp V ol([a; b])� (b1 � a1)j1 � � �(bp � ap)jp(j1 + 1) � � �(jp + 1) (n+ 2)!where �(z); � (j1; : : : ; jp) 2 [a; b] : This leads immediately to the expressionfor Emp via the same argument for the proof of the theorem on p. 72 ofDavis and Rabinowitz (1984).Similarly we haveZ[a;b] f(z) dz= Z[a;b] l(z) dz + Z[a;b] dn+1f�(z) (z � a; : : : ; z � a)(n + 1)! dz�cn(f; a; b)(n + 1)! Z[a;b] (z1 � a1 + � � �+ zp � ap)n dz= Z[a;b] l(z) dz + Xj1+���+jp=n+1 n+ 1j1 : : : jp ! @n+1f (� (j1; : : : ; jn+1))@�j11 � � �@�jpp V ol([a; b])� (b1 � a1)j1 � � �(bp � ap)jp(j1 + 1) � � �(jp + 1) (n+ 1)!� [cn(f; a; b)V ol([a; b])] 1(n + 1)! Xk1+���+kp=n nk1 : : : kp !�(b1 � a1)k1 � � � (bp � ap)kp(k1 + 1) � � �(kp + 1) :Now observe that for w�2 [a; b]� the Mean Value Theorem implies@nf (w�)@�j11 � � �@�jpp � @nf (a)@�j11 � � �@�jpp = pXi=1 (w�i � ai) @n+1f (� (j1; : : : ; jp))@�j11 � � �@�ji+1i � � �@�jppfor some � (j1; : : : ; jp) on the line between a and w� and thus � (j1; : : : ; jp) 2[a; b] ; and note that w�i � ai = 0 or w�i � ai = bi � ai. From this we deduce10



that jcn(f; a; b)j � pXi=1 (bi � ai) maxw 2 [a; b]j1 + � � �+ jp = n+ 1 ����� @n+1f (w)@�j11 � � �@�jpp ����� :Therefore for all m large enough jEmp j � Kmn+1 whenever K satis�esK > Xj1+���+jp=n+1 n+ 1j1 : : : jp !Z[a;b] ����� @n+1f (z)@�j11 � � �@�jpp ����� dz �(b1 � a1)j1 � � � (bp � ap)jp(j1 + 1) � � �(jp + 1) (n + 1)!+ pXi=1 (bi � ai)! maxw 2 [a; b]j1 + � � �+ jp = n+ 1 ����� @n+1f (w)@�j11 � � �@�jpp ����� �Xk1+���+kp=n nk1 : : : kp ! (b1 � a1)k1+1 � � �(bp � ap)kp+1(k1 + 1) � � �(kp + 1) (n+ 1)! :Observe that the result for the lower bound in Lemma 7 is not strictlya generalization of Lemma 3. We do better with one dimensional integralsto use the lower envelope approximation of section 2. It is possible thata better lower envelope approximation can be found in the multivariatecontext. Also observe that if we put N = mp then the rate of convergenceof the upper approximation is N�(n+2p ) and for the lower approximationN�(n+1p ): So we need to choose n higher as we increase dimension if wewant to achieve good results. The downside of this of course is the need tocompute many derivatives. The above also assumes that regions of concavityof dnf� (�; : : : ; �) can be easily determined and this is not necessarily thecase.All of this suggests that the multivariate generalization is not very use-ful. Fortunately, we can obtain generalizations of Lemma 7 similar to thegeneralizations we obtained for Lemma 3 and these increase the utility ofthe methodolgy substantially. We illustrate this in Example 4.11



4 Examples4.1 The Exponential DistributionOf course it is easy to calculate F (x) = R x0 e�z dz = 1� e�x but as we see insubsequent examples, the upper and lower envelopes to the function e�z arevery useful. Note that (e�z)(n) = (�1)(n) e�z and so the n� th derivative isconcave when n is odd and convex when n is even. Therefore on the interval(a; b), using the n�th derivative, we obtain the upper envelope for e�z givenbyu(a;b)(z) = 8<: e�aPn+1k=0 (�1)kk! (x� a)k n odde�aPnk=0 (�1)kk! (x� a)k + (�1)n(n+1)! e�b�e�ab�a (x� a)n+1 n evenand the lower envelope for e�z given byl(a;b)(z) = 8<: e�aPnk=0 (�1)kk! (x� a)k + (�1)n(n+1)! e�b�e�ab�a (x� a)n+1 n odde�aPn+1k=0 (�1)kk! (x� a)k n even:This implies that the absolute error in the approximation R ba u(a;b)(z) dz toR ba e�z dz is bounded above by e(a; b; n) = (b�a)n+2(n+2)! � e�b�e�ab�a + e�a�. Forexample, e(0; 1; 5) = 7:3� 10�5; e(0; 1; 21) = 1:42� 10�23 and e(9; 10; 5) =9:01� 10�9; e(9; 10; 21) = 1:76� 10�27: The encouraging information fromthis is the potential for highly accurate approximations in other problemswith very little computational e�ort.4.2 The Normal Distribution FunctionMany authors have discussed the approximation of the N(0; 1) distributionfunction F (x) = R x�1 f(z) dz where f(z) = 1p2� exp ��12z2� : We considerapplying our methods to this problem to assess performance in a well-knowncontext. As it turns out there are several possibilities.A strict application of our methodology involves computingf (n)(z) = (�1)nHn(z)f(z)where Hn is the n� th degree Hermite polynomial associated with f . Thesepolynomials are obtained via the recursion Hn+1(z) = zHn(z) � nHn�1(z)and H0(z) = 1; H1(z) = z: The concavity structure of f (n) is then obtainedby calculating the roots ofHn+2(z); as these give the inection points of f (n);12



and observing the sign of f (n+3) at each of these points. Note that theseinection points are precisely the Gauss points of Gaussian integration rules.These values are readily available from common numerical packages.Another approach to this problem is based on the observations thatF (�x) = 1 � F (x) and F (0) = 12 : Therefore we only need to considerx > 0 and compute R x0 f(z) dz: The upper and lower envelopes for f on(c; d) � (0; x) are immediately available via 1p2�u(a;b) � z22 � and 1p2� l(a;b) � z22 �where u(a;b) and l(a;b) are as in Example 4.1 and a = c22 , b = d22 . Theseenvelopes can be easily integrated exactly over (c; d) via the recursionZ dc (z � c)p (z + c)q dz = (d� c)p(d+ c)q+1q + 1� pq + 1 Z dc (z � c)p�1 (z + c)q+1 dzfor p; q 2 N and noting that �z2 � c2�k = (z � c)k(z + c)k:Neither of these methods will work well if x is too large. We note,however, that f is log-concave and the tangent to ln(f) at x is given byln � 1p2�e� 12x2��x(z�x) and this has a negative slope when x > 0: ThereforeZ 1x f(z) dz � Z 1x exp�ln� 1p2�e� 12x2�� x(z � x)� dz= 1p2� e� 12x2x = �x:If we wish to compute an approximation with absolute error less than � andif �x < � then we return the the interval (1� �x; 1) for the correct value. Ifour criterion is an absolute relative error less than � and �x1��x < � we returnthe approximate value 1 and the upper bound �x1��x : Note that the upperbound �x is sometimes called Mills' ratio, see Thisted (1988, p. 325), andit is derived here in a very simple way. As we will show, similar bounds areavailable for other distributions.In Table 1 we present the results of a simulation comparing the di�erentmethods for approximating F (x) and for di�erent choices of n: The �rstmethod is labeled H and the second method E. We generated 105 standardnormal variates and approximated F at these variates with � = 10�7 andthe values presented are approximate average CPU times in seconds. Wesee from this that the methods are roughly comparable and that there is atremendous improvement in e�ciency by using a higher order derivative. For13



n Time H Time E0 1.7475 1.40761 0.0216 0.02542 0.0074 0.00773 0.0036 0.00474 0.0036 0.00395 0.0035 0.00366 0.0044 0.00388 0.0058 0.0047Table 1: Average CPU time in seconds for the evaluation of the standardnormal distribution function with prescribed error .0000001.example, the algorithm based on the �fth derivative is 391 times as e�icientas the n = 0 case, which corresponds to constructing linear envelopes to theintegrand f and integrating these. Of course more e�cient algorithms canbe constructed for this problem. For example the IMSL routine anordf givesa corresponding CPU time of 0.0004 seconds. Still it must remembered thatour algorithm also returns upper and lower bounds for the true value of theintegral and is derived only using the concavity structure of f .4.3 The Gamma Function and Distribution FunctionWe consider constructing an approximation to the gamma function, �(�) =R10 z��1e�z dz where � > 0; as another signi�cant test of the utility of themethodology. We note that when 0 < � < 1 then �(�) = 1��(� + 1) andwhen � � 2 then �(�) = (�� 1) � � �(�� b�c+ 1)�(�� b�c+ 1): Thereforewe can restrict attention to approximating the gamma function with theargument always in the range 1 � � < 2. In this range �(�) is always closeto 1 and so we avoid problems associated with large values.We note further that when 1 � � then f(z) = z��1e�z is log-concave.The tangent line to ln(f) at c is given by ln(c��1e�c)+(��1c �1)(z�c): Forc > �� 1 the slope of the tangent line is negative and so we have the boundZ 1c z��1e�z dz � Z 1c exp�ln(c��1e�c) + (�� 1c � 1)(z � c)� dz= c�e�c 1c� � + 1on the tail of the integral. We will use this bound to choose c so that thecontribution of R1c z��1e�z dz to the integral is small and in a moment we14



discuss how to do this. Note that the same method leads to a bound onthe integral over (0; c) ; and the slope of the tangent is not required to benegative as the interval of integration is compact; namelyZ c0 z��1e�z dz � Z c0 exp�ln(c��1e�c) + (�� 1c � 1)(z � c)� dz= c�e�c 1c� � + 1 �ec��+1 � 1� :We now suppose that we have chosen c and proceed to approximatethe integral R c0 z��1e�z dz. For the upper and lower envelopes for f on theinterval (a; b) we use z��1u(a;b)(z) and z��1l(a;b)(z) where u(a;b) and l(a;b)are as in Example 4.1. To integrate these envelopes over (a; b) we need thefollowing recursion for k 2 N0; namelyZ ba z��1(z � a)k dz = (b� a)kb��1 � k� � 1 Z ba z�(z � a)k�1 dzand note that iterating this leads to a closed form expression for this in-tegral. Therefore it is easy to calculate the upper and lower bounds forR c0 z��1e�z dz:We then have thatZ c0 lm(x) dx � �(�) � Z c0 um(x) dx+ c�e�c 1c� � + 1and so for an absolute error of � we choose c so that �c = c�e�c 1c��+1 � �and then having chosen n we compound the integration rule, as described insection 2, until R c0 um(x) dx� R c0 lm(x) dx < � � �c: It is easy to obtain sucha c via bisection. For a relative error in our approximation of no more than� we note that an upper bound on the absolute relative error is given by"R c0 um(x) dxR c0 lm(x) dx � 1#+ c�e�c 1c��+1R c0 lm(x) dx :Now let �� be the point in (1; 2) where � (�) attains its minimum and notethat :8 < �(��) < 1: To achieve the required bound on the relative error wechoose c so that �c = �4 and then iterate the compounding until both therelative error in the approximation to R c0 z��1e�z dz is smaller than 78� andR c0 lm(x) dx � :5, both of which are guaranteed to occur under compoundingprovided �=4 < :3:The above discussion of the case 1 � � < 2 is modi�ed in obvious waysfor the other cases via the formulas given earlier. We note also that for15



large or very small values of � then relative error is the more sensible errorcriterion as �(�) is large. In this situation we can ignore the multiplicativeconstants as the relative error in the full approximation is given by therelative error in the approximation to the gamma function with its argumentin the range 1 � � < 2:The Gamma(�) distribution function is given byF�(x) = R x0 z��1e�z dz�(�) = R x0 z��1e�z dzR10 z��1e�z dzand there are two integrals that must be approximated in this case. Onceagain we can reduce the computation to the case 1 � � < 2 viaF�(x) = x�e�x + R x0 z�e�z dz�(�+ 1) = G�(x)�(� + 1) + F�+1(x)when 0 < � < 1 and viaF�(x) = �x��b�ce�x hPb�c�1k=1 Qkl=1 � x��b�c+l�i+ R x0 z��b�ce�z dz�(�� b�c + 1)= G�(x)�(�� b�c+ 1) + F��b�c+1(x)when � � 2: Notice that G�(x) cannot be large but still care must be takenwith its evaluation to avoid round-o� problems when x is large.When x is large relative to � then F�(x) is close to 1. To assess thiswe obtain a Mill's ratio inequality for the Gamma distribution given by1� F�(x) � �x where�x = 8>><>>: 1�(��)x�e�x � xx�� + 1� if 0 < � < 11�(��)x�e�x 1x��+1 if 1 � � < 21�(��) 1(��1)���(��b�c+1)x�e�x 1x��+1 if � � 2:We return the error interval (1 � �x; 1) when �x < � and the criterion isabsolute error: Similarly we return (1� �x; 1) when �x1��x < � and the crite-rion is absolute relative error: Note that the bound we obtained above forR c0 z��1e�z dz when 1 � � < 2 can be used to determine if x is such thatF�(x) is already close enough to 0 to satisfy the error criterion. For we haveF�(x) � �x; where�x = 8>><>>: 1�(��)x�e�x h1 + xx�� (ex�� � 1)i if 0 < � < 11�(��)x�e�x 1x��+1 �ex��+1 � 1� if 1 � � < 21�(��) 1(��1)���(��b�c+1)x�e�x 1x��+1 �ex��+1 � 1� if � � 2:16



n Time0 6.01321 0.25982 0.15843 0.08104 0.07145 0.07086 0.07147 0.074410 0.0882Table 2: Average CPU time in seconds for the evaluation of a Gammadistribution function with prescribed error .00001.Now suppose that 1 � � < 2: Then approximating F�(x) requires ap-proximating � (�) and R x0 z�e�z dz: It makes sense to include x, providedthat it is not too large relative to � as determined above, in the partitionformed to approximate � (�) : Then both integrals can be simultaneouslyapproximated with no more work involved than approximating the gammafunction. For the case where 0 < � < 1 the upper and lower bounds for�(�+ 1) lead to lower and upper bounds for G�(x)=�(�+ 1) and these arecombined with the lower and upper bounds for F�+1(x) to give lower andupper bounds for F�(x): We proceed similarly for the case where � � 2:We see then that we have speci�ed a complete methodology for approxi-mating the gamma function or gamma distribution function with prescribedabsolute or relative error being attained in our approximations. In Table2 we present some average computation times for Gamma(�) distributionfunctions based on 105 values obtained by generating � uniformly in (0,50)and then generating x from the Gamma(�) distribution. Again we see atremendous improvement in e�ciency by going to higher order derivatives.Correspondingly the average computation time for the IMSL routine gamdfwas about 100 times faster than the fastest time we recorded so our currentroutine is not very competitive. We have not , however, tried to optimize ouralgorithm as our intent here is only to show that the method of the papercan be used to design an e�ective algorithm for a broad family of distribu-tion functions. Also we recall that our algorithm is returning a guaranteederror bound. 17



4.4 Makeham's Distribution FunctionThe density function for this distribution is given byf(z) = (�+ �z) exp(��z � �ln () (z � 1))where � > 0;  > 1; � > �� and z � 0: It is not hard to show that f(z) islog-concave when either � < 0 or, if � � 0 whenz � ln �max���+p� ln()� ; 1��ln () :Further the tangent to ln (f(z)) at x has a negative sign whenever ln () < 4�or, if this inequality doesn't hold, whenx > 12� �(ln ()� 2�) + ln ()qln ()� 4�� :So if x is in the log-concave right tail then Mill's ratio inequality for thisdistribution is given by1� F (x) � f(x) ��+ �x � ln () �x�+ �x ��1and we can use this to determine whether or not x is so large that we canreturn the approximation 1 for F (x):Putting �� = �= ln ()and �� = �= ln () and making the transformationy = ��z we have that the density of y isg(y) = (��)�� e�� (�� + y) y����1e�yfor y > ��: Then we have thatF (x) = Z ��x�� g(y) dy:To evaluate the integral of g over (a; b) we use the upper and lower envelopesu(y) = (��)�� e�� (�� + y) y����1u(a;b)(y)l(y) = (��)�� e�� (�� + y) y����1l(a;b)(y)and note that the integrals of these functions over (a; b) can be evaluated asin Example 4.3. So with a small modi�cation the algorithm for the Gammadistribution function can be used here as well.18



4.5 Bivariate Student Probabilities of RectanglesThe Student2 (�) probability content of the rectangle [a; b] is given byP ([a; b]) = �2� Z[a;b] f(x; y) dx dywhere f(x; y) = �1 + x2+y2� ���+22 = h (g(x; y)) with g(x; y) = x2 + y2 andh(t) = �1 + t����+22 for t � 0: For the integration we employ upper and lowerenvelopes to h(n) on [c; d] and note that c = min �x2 + y2 : (x; y) 2 [a; b]�	and d = max�x2 + y2 : (x; y) 2 [a; b]�	 : Also we have thath(n)(t) = (�1)n�n ��+ 22 � � � ���+ 22 + n � 1��1 + t����+22 �nand from this we see that the derivatives of h are alternately concave andconvex everywhere. Note that an appropriate generalization of Lemma 7,as we generalized Lemma 3, guarantees the success of this approach.For the approximation we must �rst reduce integration over R2 to acompact region. To do this we make the transformation (x; y) ! (r; �)given by x = r cos (�) ; y = r sin (�) and therefore�2� Zf(x;y):x2+y2>cg f(x; y) dx dy = � Z 1c r 1 + r2� !��+22 dr:It is easy to show that k(r) = "r �1 + r2� ���+22 #p is convex for large r whenp = �1= (�+ 2). Then k(c) + k0 (c) (r � c) � k(r) for all r � c with k0 (c) >0, provided c is large enough, and since the transformation T (x) = xp isstrictly decreasing we have that� Z 1c k 1p (r) dr � � Z 1c T�1 �k(c) + k0 (c) (r � c)� dr= � Z 1c �k(c) + (k (c))0 (r � c)� 1p dr = ���1p + 1� k 1p+1(c)k0 (c)= �2�+ 2�+ 1  1 + c2� !� 12� c2�c2� (�+ 1)� 1 : (6)It is easy to show that k0 (c) > 0 provided c > q ��+1 : Note that (6) is aMill's ratio inequality for the bivariate Student. For an appropriate choice19



n Time2 0.0534 0.0406 0.0308 0.03110 0.03512 0.041Table 3: Average CPU time in seconds for the evaluation of the probabil-ity content, with respect to a standard bivariate Student distribution, of arectangle with prescribed error .00005.of c we then replace [a; b] by [a; b]\ [(�c; c) ; (�c; c)] and use compoundingon this rectangle. In Table 3 we present average computation times basedon a simulation where we generated 103 rectangles by generating pairs ofvalues from a standard bivariate normal and then generating � uniformly in(0,30). Due to the long computation times we haven't bothered to recordthe n = 0 and n = 1 cases.While we have presented the calculations for the standard bivariate Stu-dent it is possible to easily generalize this to the general bivariate Studentas this only requires that we be able to integrate bivariate polynomials overparallelepipeds and this can be carried out exactly. Similarly the approachcan be generalized to higher dimensions although there are obviously somecomputational limits on this. Bohrer and Schervish (1981) in their develop-ment of an algorithm for the contents of rectangles for the bivariate normal,mention dimension 5 as about the limit for their algorithm. We will system-atically investigate the dimensional limits to our approach elsewhere.5 ConclusionsWe have presented a class of algorithms useful for computing approximationsto integrals with exact error bounds with respect to absolute or relative error.The utility of the algorithms has been demonstrated by their application toa number of integration problems. While our algorithms may lose in a speedcompetition in some integration problems with highly-developed algorithms,they have the virtue of returning exact error bounds. Further, and perhapsmost importantly, the methodology of this paper presents a set of techniquesthat a practitioner can use to develop useful algorithms when confrontedwith non-standard integration problems and these do not typically require20



extensive study of properties of the integrand. Further research will considerthe use of these techniques to evaluate various multidimensional distributionfunctions and extend the approach to non-rectangular domains.6 ReferencesBohrer, R. and Schervish, M.J. (1981). An error-bounded algorithm fornormal probabilities of rectangular regions. Technometrics, 23, No. 3,297-300.Davis, P.J. and Rabinowitz, P. (1984). Methods of Numerical Integration.Academic Press, New York.Evans, M. and Swartz, T. (1996). Random variable generation using con-cavity properties of transformed densities. To appear J. Comp. Graph.Stat.Gilks, W. and Wild, P. (1992). Adaptive rejection sampling for Gibbssampling. Applied Statistics, 41, 337-348.Hoermann, W. (1995). A rejection technique for sampling from T-concavedistributions. ACM Trans. Math. Softw., 21, No. 2, 182-193.Kennedy, W.J. and Gentle, J.E. (1980). Statistical Computing. MarcelDekker Inc., New York.Lyness, J.N. (1969). Quadrature methods based on complex function val-ues. Math. Comp., 23, 601-619.Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986).Numerical Recipes, The Art of Scienti�c Computing. Cambridge Uni-versity Press, Cambridge.Thisted, R.A. (1988). Elements of Statistical Computing. Numerical Com-putation. Chapman and Hall, New York.Wang, M.C. and Kennedy, W.J. (1994). Self-validating computations ofprobabilities for selected central and non-central univariate probabilityfunctions. JASA, 89 21


