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Abstract

This paper proposes a simple method of forming two-player and four-player golf teams

for the purposes of net best-ball tournaments in stroke play format. The proposal is

based on the recognition that variability is an important consideration in team com-

position; highly variable players contribute greatly in a best-ball setting. A theoretical

rationale is provided for the proposed team formation. In addition, simulation studies

are carried out which compare the proposal against other common methods of team

formation. In these studies, the proposed team composition leads to competitions that

are more fair.
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1 Introduction

One of the compelling features of golf is that players of vastly different abilities can compete

against one another and have a “fair” match. This is accomplished by the handicapping

system which has a long history of refinements extending back to the 1600’s (Yun 2011a,

2011b, 2011c, 2011d).

There is a considerable literature on golf handicapping, and the consensus is that most

handicapping systems provide a modest advantage to the stronger player in both stroke and

match play formats involving two players (Madras 2017, Kupper et al. 2012, Bingham and

Swartz 2000, Scheid 1977 and Pollock 1974). In fact, Section 10-2 of the United States

Golf Association (USGA) Handicap System Manual (USGA 2016) states that the handicap

formula provides an “incentive for players to improve their golf games” whereby a small

bonus for excellence advantage is given to the stronger player.

However, in competitions involving multiple players, varying rules and team formats,

fairness may be greatly violated. For example, Bingham and Swartz (2000) suggested that

weaker golfers have a considerable advantage winning a tournaments based on net scores.

Grasman and Thomas (2013) investigated scramble competitions and provided suggestions

for assigning teams. And of particular relevance to this paper, Hurley and Sauerbrei (2015)

demonstrated that team net best-ball matches are not generally fair.

Handicapping in golf takes different forms depending on the governing body. In this

paper, we focus on the handicapping system used by the USGA and the Royal Canadian

Golf Association (RCGA). And although golf is a stochastic game, the USGA/RCGA hand-

icapping system was not developed using the tools of probability theory. On the other hand,

we make use of the stochastic nature of golf to provide team compositions in net best-ball

competitions that are more fair than the status quo. For the purposes of this paper, we

define a fair system involving n teams as one where the probability of each team finishing

in jth place is 1/n, j = 1, . . . , n. Surprisingly, although fairness in golf is a much discussed

topic, the above definition does not appear to exist in the golf literature.

There are two related papers that concern the problem of team formation in net best-ball

competitions. Siegbahn and Hearn (2010) studied fourball; a two-player versus two-player

event where handicapping is used. Like Bingham and Swartz (2000), golfer variability was a

prominent focus of their study where the variability of golfer performance was parametrized
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and estimated as a function of handicap. Siegbahn and Hearn (2010) concluded that high

handicap golfers (i.e. weak golfers) have an advantage in fourball, and they suggested tie-

breaking rules to reduce the unfairness. As discussed in Siegbahn and Hearn (2010), previous

studies on fairness in fourball matches focused on the difference in handicaps between team-

mates as a predictor of fourball success.

Pavlikov, Hearn and Uryasev (2014) built on the results of Siegbahn and Hearn (2010) to

specifically address team composition in net best-ball tournament settings. They developed a

sophisticated search algorithm over the combinatorial space of potential team compositions.

Optimal team formations were sought in the sense that all teams have nearly the same

probability of winning. When the number of golfers n < 40, it was asserted that the

program can be run in reasonable computational times. A feature of the approach proposed

by Pavlikov, Hearn and Uryasev (2014) is that the algorithm is applicable to any prescribed

team size. A drawback of the approach involves the reliance on tables that provide average

scoring distributions for players of a given handicap. An implication of the use of the tables

is an imposed monotonicity between handicap and performance variability. Whereas it is

generally the case that high handicap golfers tend to be more variable, there are clearly

instances of high handicap golfers who are consistent. For example, imagine a senior golfer

who does not hit the ball far, is straight off the tee and rarely gets into trouble (i.e. lands

in the rough, hazards, water, etc.). It is the third author’s experience that such golfers

do exist. Moreover, the dataset which we consider in Section 4.2 suggests there is not a

strictly monotonic relationship between handicap and variability. Following Swartz (2009),

we estimate variability individually for golfers, and this forms the critical component for

our team formation proposal in net best-ball tournaments. And importantly, the proposed

estimation of individual variability is a straightforward side calculation of handicap.

In Section 2, we review various background material that is related to the development

of team composition. This includes details concerning the rules related to net best-ball

tournaments, the current handicapping system and related literature. In Section 3, our

proposal for team composition is developed. It is based on the recognition that variability

is an important consideration in terms of player performance in net best-ball competitions.

The basic idea is that golfers of high variability are matched up with golfers of low variability.

The matching procedure is developed for both two-man and four-man team competitions.
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A noteworthy aspect of the procedure is that it does not require sophisticated software

and it is simple to implement. A theoretical justification is given for the proposed method

of team formation. In Section 4, two simulation studies are provided. The first study is

based on a theoretical model for golf scores and investigates the performance of all possible

team compositions. The second study is based on a resampling procedure of actual golf

scores and investigates common practices involving team composition. In both studies, it is

demonstrated that the proposed method of team composition leads to competitions that are

more fair. We conclude with a short discussion in Section 6.

2 Background Material

Although the proposed method for net best-ball team composition is easy to describe and

to implement, some background material needs to be introduced. The background material

provides the theoretical structure for the proposal.

2.1 Net best-ball competitions

Net best-ball competitions are typically based on teams of size m = 2 or teams of size m = 4.

And in such competitions, we denote that there are n ≥ 2 teams.

On the jth hole of the course, j = 1, . . . , 18, the ith player on a given team has a gross

score Xij which represents the number of strokes that it took to sink the ball into the hole.

Associated with the ith player on the jth hole is a handicap allowance hij = 0, 1, 2 which

is related to the quality of the player. The larger the value of hij, the weaker the player.

Under this framework, the ith player has the resultant net score

Yij = Xij − hij (1)

on hole j. The player’s team then records their net best-ball score on the jth hole

Tj = min
i=1,...,m

Yij (2)
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and the team’s overall performance is based on their aggregated net best-ball score

T =
18∑
j=1

Tj . (3)

The teams in the competition are then ranked according to (3) where the winning team has

the lowest value of T . Various procedures exist for breaking ties. For example, with multiple

ties, the team having done best on the 18th hole may be determined the winner. If a tie still

exists, the criteria may then be applied to the 17th hole, then the 16th hole, etc, until the

tie is broken.

The above format is known as stroke play which is the focus of our investigation. When

there are only n = 2 teams, then match play competitions are possible. In match play, Tj

is calculated as in (2), and the team with the lower value of Tj is said to have won the jth

hole. The team with the greatest number of winning holes is the match play winner.

2.2 The current handicapping system

Section 10 of the USGA Handicap System Manual (USGA 2016) provides the intricate

details involving the calculation of handicap. However, for ease of exposition, we provide a

description of the standard calculation which applies to most golfers.

Consider then a golfer’s most recent 20 rounds of golf where each round is completed on

a full 18-hole golf course. The kth round yields the differential Dk which is obtained by

Dk = (adjusted gross score− course rating) ∗ 113/(slope rating) . (4)

In (4), the adjusted gross score is the player’s actual score reduced according to equitable

stroke control (ESC) which is a mechanism for limiting high scores on individual holes. The

intuition is that handicap reflects potential and should not be distorted by unusually poor

results. The course rating describes the difficulty of the course from the perspective of a

scratch (expert) golfer. Typically, course ratings are close to the par score of the course

where values less than (greater than) par indicates less (more) difficult courses. Course

ratings are reported to one decimal place. The slope rating describes the difficulty of the
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course from the perspective of non-scratch golfers where a slope rating less than (greater

than) 113 indicates an easier (more difficult) course than average. Slope ratings are integer-

valued and lie in the interval (55, 155). The main takeaway from (4) is that large differentials

correspond to poor rounds of golf and small differentials correspond to good rounds of golf.

It is even possible for differentials to be negative which correspond to excellent rounds of

golf. Differentials are rounded to the first decimal place.

Given a golfer’s scoring record, the golfer’s handicap index is calculated by taking 96% of

the average of the 10 best (lowest) differentials and truncating the result to the first decimal

place. In Section 2.3, we will see that it is instructive to write the handicap index as

I = (0.96)(D(1) +D(2) + · · ·+D(10))/10

= (0.096)D(1) + (0.096)D(2) + · · ·+ (0.096)D(10) (5)

where D(i) denotes the ith order statistic of the differentials. The handicap index is the

summary statistic that is used in USGA handicapping; strong golfers have small handicap

indices whereas weak golfers have large handicap indices. It is possible that a golfer holds a

handicap index I < 0, and these golfers (mostly professionals) are referred to as plus golfers.

The maximum allowable handicap index for men is 36.4. For many golfers, the calculation

of the handicap index I is viewed as a black-box procedure. Under the RCGA jurisdiction

(Golf Canada 2016), handicap index is referred to as handicap factor.

Recognizing that courses are of varying difficulty, the last step for the implementation

of handicap involves converting the handicap index to strokes for a particular course. For a

course with slope rating S, the course handicap for a golfer with handicap index I is given

by C = I×S/113 rounded to the nearest integer.

In the context of net best-ball competitions, the course handicaps C of the players in the

tournament are then used to determine the hole-by-hole handicap allowances hij in (1). It

is at this point where there is some variation in how hij is obtained. According to Section

9-4(bii) of the USGA Handicap System Manual (USGA 2016), the recommended way is to

first reduce the individual course handicaps C by a factor of 90%, rounding to the nearest

integer. An adjustment is then made to the reduced course handicaps where the course

handicap for a given golfer is set to the offset between their course handicap and the lowest

(best) course handicap in the competition. For example, suppose that the best golfer in the
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competition has a reduced course handicap Ci1 = 3 and that some other golfer has a reduced

course handicap Ci2 = 24. Then the two course handicaps are converted to Ci1 = 3− 3 = 0

and Ci2 = 24 − 3 = 21, respectively. Then, we note that the holes on a golf course are

assigned a hole handicap according to a stroke allocation table. The table consists of a

permutation of the integers 1 to 18 where it is typically thought that increasing numbers

correspond to decreasing difficulty of the holes. Denote the hole handicap on the jth hole

by HDCPj. Under the complicated framework described above, hij is determined as follows:

hij =


0 HDCPj > Ci, Ci ≤ 18

1 HDCPj ≤ Ci, Ci ≤ 18

1 HDCPj > Ci − 18, Ci > 18

2 HDCPj ≤ Ci − 18, Ci > 18

. (6)

Although (6) may be difficult to digest, the idea is that relative to the strongest player, an

individual with C ≤ 18 receives a single stroke on the most difficult holes up to his handicap

offset. If his handicap offset exceeds 18, then he receives two strokes on the more difficult

holes and one stroke on the remaining holes. For example, if C = 21, the weaker player

receives two shots on handicap holes #1, #2 and #3, and one shot on the remaining 15

holes.

Madras (2017) investigated how alternative permutations of HDCP and other innovations

affect the fairness of net match play events between two players.

2.3 Related literature and ideas

In consultation with the RCGA, Swartz (2009) proposed an alternative handicapping system

with the following features:

• the system retains the well-established concepts of course rating and slope rating

• the system provides a modified handicap index/factor referred to as the mean which

has a clear interpretation in terms of actual golf performance; this is contrasted with

the index/factor whose interpretation is allegedly related to potential
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• the system was developed using probability theory, leading to net competitions that

are more fair

The key component of the system developed by Swartz (2009) was that it incorporated

variability in handicapping. And in the context of net best-ball tournaments, it is clear that

amongst two golfers with the same handicap index, a highly variable golfer is more valuable

to a team than a consistent golfer. For example, the highly variable golfer will obtain more

net birdies which contribute positively to the overall net score of his team. On the other

hand, when this highly variable golfer scores net double bogeys, these poor scores are not

likely to penalize his team in the best-ball format.

As an alternative to the handicap index/factor, Swartz (2009) defined two statistics that

characterize player performance. These statistics are referred to as the mean µ̂ and the

spread σ̂, and their calculation is analogous to (5). Specifically,

µ̂ = w1D(1) + w2D(2) + · · ·+ w16D(16) (7)

and

σ̂ = q1D(1) + q2D(2) + · · ·+ q16D(16) (8)

where the weights wi in (7) and qi in (8) provide best linear unbiased estimators (BLUEs)

of the mean and the standard deviations of the differentials where the differentials are as-

sumed to be realizations of independent and identically distributed normal random variables.

Whereas (5) is based on 10 order statistics, (7) and (8) are based on 16 order statistics; the

rationale was that data is informative and it is wasteful to discard observations. On the other

hand, there is evidence that the largest differentials may not arise from a normal distribution

as the true underlying distribution may be positively skewed (Siegbahn and Hearn 2010).

For the purposes of this paper, the spread σ̂ in (8) plays a primary role and we record

the weights qi in Table 1. Alternative weights are recorded in Swartz (2009) when a golfer

has played fewer than 20 complete rounds. When the spread calculation σ̂ falls outside of

the interval (1.5,8.0), it is set equal to the corresponding endpoint.

A point that is worth emphasizing is that the calculation of σ̂ in (8) is simple and

is directly analogous to the calculation of (5) which is part of the current handicapping
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q1 q2 q3 q4 q5 q6 q7 q8
-0.1511 -0.1006 -0.0792 -0.0632 -0.0500 -0.0384 -0.0277 -0.0178
q9 q10 q11 q12 q13 q14 q15 q16

-0.0082 0.0011 0.0103 0.0196 0.0291 0.0389 0.0492 0.3880

Table 1: The weights qi in (8) that are used in the calculation of the spread σ̂.

system. In Section 3, we assume that the values σ̂ are available for each golfer in the net

best-ball competition. Moreover, the values σ̂ are the only values that are needed to form

teams according to our proposal. Thus, teams are formed based on the basis of individual

performance variability σ̂, and this is the main message of Section 2.

3 Team Composition

Suppose that the number of golfers in a net best-ball tournament is an even number. The

task with teams of size m = 2 is to pair players in a fair manner. Following (1), we let Yij

denote the net score of golfer i on hole j. Although golf scores are discrete, we assume

Yij ∼ Normal(µij, τ
2
ij) . (9)

The essence of handicapping is to create fair matches. Therefore, we make the assumption

that all golfers have the same mean net score, i.e. µij = µj. In addition, we are going to make

the clearly false assumptions that µj = µ and τij = τi, that the mean net scores and the net

score variances are the same on all holes. However, this assumption is not problematic as

the same analysis can be undertaken on a hole-by-hole basis leading to the same proposal for

team compositions. Without loss of generality, we also set µ = 0 as it is only comparative

golf scores that are relevant. Accordingly, we simplify (9) whereby the net score for golfer i

on each hole is given by

Yi ∼ Normal(0, τ 2i ) . (10)

With a two-man team consisting of players i1 and i2, the quantity of interest is the
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distribution of the net best-ball result

Zi1,i2 = min(Yi1 , Yi2) .

It is shown by Nadarajah and Kotz (2008) that Zi1,i2 is nearly normal if τi1 and τi2 do not

vary greatly. Using (10), assuming that τi1 and τi2 do not vary greatly and assuming the

independence between Yi1 and Yi2, the moment expressions (11) and (12) from Nadarajah

and Kotz (2008) lead to the approximate distribution

Zi1,i2 ∼ Normal

(
− 1√

2π
(τ 2i1 + τ 2i2) ,

(
π − 1

2π

)
(τ 2i1 + τ 2i2)

)
. (11)

If we pair golfers such that every pair has the same probability distribution, then each

pair has the same probability of finishing in any position in a tournament. Therefore, if the

i1’s and i2’s are paired such that τ 2i1 + τ 2i2 = c for some constant c, then the objective is

achieved as each distribution in (11) is Normal(−c/
√

2π, c(π − 1)/(2π)).

Therefore, we have a prescription for pairing golfers in two-man net best-ball tourna-

ments. We use σ̂ in (8) as a proxy for τ , and we simply match the golfer with the highest

σ̂ with the golfer with the lowest σ̂, we match the golfer with the second highest σ̂ with

the golfer with the second lowest σ̂, and so on. Given the σ̂ values, the forming of two-man

teams is an incredibly easy task for the golf director.

In the case of four-man net best-ball tournaments, our heuristic is to begin with opti-

mal two-man teams as described above, and then combine pairs of the two-man teams. It

therefore makes sense to form teams based on the mean values in (11). Our procedure is to

rank the two-man teams according to σ̂2
i1

+ σ̂2
i2

. We then match the two-man team with the

highest σ̂2
i1

+ σ̂2
i2

with the two-man team with the lowest σ̂2
i1

+ σ̂2
i2

, and so on. Again, given

the σ̂ values, this is an incredibly easy task for the golf director.

We have therefore provided a theoretical justification for team composition. In Section

4, we supplement the theoretical underpinnings with simulation studies.
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4 Simulation Studies

A rationale for the proposed team composition was provided using statistical theory in

Section 3. However, given that the statistical theory was based on some approximations,

it is good to supplement the theory via simulation. We first generate golf scores from a

theoretical model for scoring. We then use a resampling scheme to generate golf scores from

a dataset of actual golf scores.

4.1 Simulation via a theoretical scoring model

In Table 2, we provide probability distributions for 8 fictitious golfers corresponding to their

performance on each hole. The distributions are not entirely realistic as we only permit the

four net scores of birdie (-1 relative to par), par, bogey (+1 relative to par) and double-

bogey (+2 relative to par). However, the probability distributions have been constructed

such that each golfer has the same mean net score which is consistent with the desiderata of

the handicapping system. The most noteworthy aspect of Table 2 is that the performance

of the golfers is variable with increasing standard deviations as we go down the rows of the

table. Therefore, golfer 1 is the most consistent and golfer 8 is the most variable.

Golfer
Net Score

Probability Distribution Mean SD
-1 0 1 2

1 0.02 0.96 0.02 0.00 0.00 0.200
2 0.06 0.88 0.06 0.00 0.00 0.346
3 0.10 0.80 0.10 0.00 0.00 0.447
4 0.14 0.72 0.14 0.00 0.00 0.529
5 0.18 0.64 0.18 0.00 0.00 0.600
6 0.20 0.61 0.18 0.01 0.00 0.648
7 0.26 0.51 0.20 0.03 0.00 0.762
8 0.32 0.41 0.22 0.05 0.00 0.860

Table 2: Net score probability distributions for 8 fictitious golfers.

Imagine that these 8 golfers are competing in teams of size m = 2. Therefore, the number

of possible tournament constructions is (82)(
6
2)(

4
2)/4! = 105. Consider one such tournament
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construction. For each team, we first generate 18 holes for each golfer in the pair according to

their probability distributions in Table 2. We then determine the team’s aggregate net best-

ball score T according to (3). For this particular round of 18 holes and for the particular

tournament construction, we determine the finishing order of the four teams. We repeat

the simulation procedure for 1,000 tournaments to obtain frequency tables for the finishing

positions. Note that if a tie exists for a particular round, we randomly break ties.

According to our proposed team composition developed in Section 3, the optimal tourna-

ment construction in terms of fairness is 1&8, 2&7, 3&6 and 4&5. We denote this tournament

construction as WCS (an acronym based on the author’s surnames). We are interested in

how WCS performs compared to the other 104 potential tournament constructions. Table 3

provides the frequencies of the finishing positions corresponding to WCS. If the competition

were completely fair, the expected cell entries would all be equal (i.e. 250). For WCS, we

observe that Team 1&8 is clearly the strongest team finishing in the top two positions nearly

66% of the time (i.e. 374+285=659 out of 1000 tournaments).

1&8 2&7 3&6 4&5
Finish 1st 374 247 177 202
Finish 2nd 285 254 206 255
Finish 3rd 215 270 278 237
Finish 4th 126 229 339 306

Table 3: Frequencies of the finishing positions corresponding to WCS.

However, whether WCS is meritorious can only be determined in the context of the other

potential tournament constructions. And each tournament construction has a corresponding

Table 3 resulting from the simulation procedure. For each tournament construction, it is

natural to assess fairness via the Chi-Square test statistic

χ̃2 =
4∑

i=1

4∑
j=1

(fij − Eij)
2

Eij

(12)

where Eij = 250 and the frequency fij is the (i, j)th entry from the corresponding matrix in

the form of Table 3. Under the null hypothesis that the tournament construction is fair, χ̃2

has a Chi-Square distribution on 9 degrees of freedom. Large values of χ̃2 provide evidence
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against the null hypothesis.

Table 4 lists the best performing and worst performing tournament constructions based

on the Chi-Square test statistic (12). Although none of the team constructions are fair (i.e.

they all have p-values that are statistically significant), we observe that our proposed team

formation WCS is the best possible tournament construction. It is the best construction

that can be achieved given the characteristics of the 8 golfers and the rules of net best-ball

tournaments. We also note that the best five tournament constructions are similar in the

sense that golfers with high variability are paired with ones with low variability.

Ranking Team A Team B Team C Team D
Chi-Square
test statistic

1 (WCS) 1 & 8 2 & 7 3 & 6 4 & 5 221.4
2 1 & 8 2 & 7 3 & 5 4 & 6 270.4
3 1 & 7 2 & 8 3 & 6 4 & 5 371.2
4 1 & 8 2 & 6 3 & 7 4 & 5 420.8
5 1 & 7 2 & 8 3 & 5 4 & 6 433.0
... ... ... ... ... ...

101 1 & 2 3 & 6 4 & 5 7 & 8 3705.0
102 1 & 2 3 & 4 5 & 7 6 & 8 3738.7
103 1 & 2 3 & 4 5 & 8 6 & 7 3851.5
104 1 & 2 3 & 5 4 & 6 7 & 8 3919.3
105 1 & 2 3 & 4 5 & 6 7 & 8 4047.0

Table 4: The five best and five worst tournament constructions for the golfers in Table 2
ordered according to the Chi-Square test statistic (12).

4.2 Simulation via actual golf scores

This simulation study is based on a dataset obtained from Coloniale Golf Club in Beaumont,

Alberta collected over the years 1996 through 1999.

After restricting scores to male golfers who have played at least 40 rounds, we are left

with a dataset consisting of 10,470 rounds collected on 80 golfers. Therefore, the average

number of rounds played per golfer in the restricted dataset is approximately 131. In Figure

1, we provide a histogram and density plot of the handicap differentials corresponding to

the 10,470 rounds. The mean handicap differential is approximately 13 and is marked by

13



the dashed vertical line. The data correspond to a large pool of golfers with varying skill

levels. It should therefore have the required generality for testing our proposed method of

team formation in net best-ball tournaments.
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Figure 1: Histogram and density plot of the handicap differentials for the Coloniale dataset.

Our simulation procedure is based on a resampling scheme. In this exercise, suppose

that we investigate a particular team construction heuristic where we form n = 20 teams

of size m = 4. For each golfer, our first step involves randomly selecting 20 of his rounds

of golf. These rounds will form his 20 differentials from which his handicap index I in

(5) and his spread statistic σ̂ in (8) can be calculated. These two statistics are sufficient for

determining all of the common methods of team composition including our proposed method.

Therefore, based on the particular team construction heuristic, the 20 teams of four players

are identified. For each of these 80 golfers, we next generate one of their remaining rounds

of golf for which we have hole-by-hole scores. In golf, detailed hole-by-hole data is rare and

is a feature of the Coloniale dataset. Using the generated round of golf for each of the 80

golfers, each team’s aggregate net best-ball score T can be calculated according to (3), and
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we obtain the finishing order of the 20 teams composed by the particular team construction

heuristic. This resampling procedure is repeated over 40,000 hypothetical tournaments.

Frequency tables are obtained as in Table 3 where finishing order corresponds to the rows

and team compositions correspond to the columns. In this simulation exercise we therefore

have matrices of dimension 20 × 20.

We now compare two team constructions against our proposed method WCS of team

formation. Recall from Section 3 that our method of team formation first ranks golfers

according to σ̂, and then pairs golfers 1&80, 2&79, and so on. Then, these 40 pairs are

ranked according to σ̂2
i1

+ σ̂2
i2

where i1 and i2 are in the same pair. We then pair the pairs

as before with high values of σ̂2
i1

+ σ̂2
i2

matched with low values. This algorithm determines

the 4-man teams.

We refer to the most common method of team formation as “High-Low” where High-Low

is very similar in construction to WCS. The only difference is that orderings are based on

the handicap index I in (5) rather than spread statistic σ̂ in (8). The High-Low heuristic is

that strong golfers are matched with weak golfers in the first pairing, and then strong teams

(based on cumulative handicap indices) are matched with weak teams in the subsequent

pairing.

We refer to the third method of team formation as “Zigzag” which is less common than

High-Low. Pavlikov, Hearn and Uryasev (2014) provide an illustrative example of Zigzag.

For simplicity, consider the formation of 16 golfers into four teams of four players as shown

in Table 5. For example, Team 1 consists of golfers 1, 8, 9 and 16. The intuition behind

Zigzag is that the summation of handicap indices should be nearly constant across teams.

Golfers ordered by handicap index from the lowest to highest
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Team 1 1 1 1 1
Team 2 2 2 2 2
Team 3 3 3 3 3
Team 4 4 4 4 4

Table 5: Demonstration of the Zigzag method of team composition where 16 golfers are
formed into four teams.

In Table 6, we provide the results of the comparison using the simulated frequency tables
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based on WCS, High-Low and Zigzag. In this exercise, the Chi-Square statistic (12) is used

to assess the three methods of team formation where the summations in (12) extend over the

20 × 20 cells and Eij = 2, 000. We observe that WCS outperforms the other two methods in

terms of giving the lowest Chi-Square statistic. The High-Low method is clearly the worst

of the three methods in terms of fairness.

Method χ̃2

High-Low 4049.09
Zigzag 2136.88
WCS 2034.99

Table 6: Comparison of the three methods of team formation based on the Chi-square test
statistic.

Another way of assessing the three methods is via heatmaps. In Figure 2, we produce

heatmaps corresponding to the simulated frequency tables based on High-Low, Zigzag and

WCS. It is evident that WCS has a more constant coloring; this indicates that it is a fairer

method of team composition than both High-Low and Zigzag.
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Figure 2: Heatmaps of the frequency tables produced by High-Low, Zigzag and WCS.
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5 Discussion

In most sports, it is only reasonable for players of comparable abilities to compete. For

example, it is difficult to imagine any basketball related competition where an average person

is matched up against Lebron James.

However, in golf, a comprehensive handicap system has been devised to allow players of

different abilities to compete fairly against one another. Unfortunately, the handicap system

can be far from fair in particular competitions, and there are many types of competitions

in golf. For example, golf can be played according to match play or stroke play, golf can be

played 1v1, 2v2 or in tournament settings, and golf can be played in various formats such

as best-ball, foursomes, aggregate, scrambles, etc.

In this paper, we have devised a simple proposal where teams of sizes two and four are

formed in net best-ball competitions. Using both statistical theory and simulation studies,

we have demonstrated that the proposal is more fair than standard procedures for team

composition.

The key component of our proposal is the recognition of variability in golf performance.

Perhaps the variability aspect can be introduced to improve fairness in other types of golf

competitions.
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