Net Best-Ball Team Composition in Golf

Yifan (Lucas) Wu, Peter Chow-White and Tim B. Swartz *

Abstract

This paper proposes a simple method of forming two-player and four-player golf teams for the purposes of net best-ball tournaments in stroke play format. The proposal is based on the recognition that variability is an important consideration in team composition; highly variable players contribute greatly in a best-ball setting. A theoretical rationale is provided for the proposed team formation. In addition, simulation studies are carried out which compare the proposal against other common methods of team formation. In these studies, the proposed team composition leads to competitions that are more fair.

Keywords: Distribution of minimum, Handicapping in golf, Order statistics, Simulation.

*Y. Wu is an MSc candidate and T. Swartz is Professor, Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A1S6. P. Chow-White is Associate Professor, School of Communication, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A1S6. Swartz has been partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
1 Introduction

One of the compelling features of golf is that players of vastly different abilities can compete against one another and have a “fair” match. This is accomplished by the handicapping system which has a long history of refinements extending back to the 1600’s (Yun 2011a, 2011b, 2011c, 2011d).

There is a considerable literature on golf handicapping, and the consensus is that most handicapping systems provide a modest advantage to the stronger player in both stroke and match play formats involving two players (Madras 2017, Kupper et al. 2012, Bingham and Swartz 2000, Scheid 1977 and Pollock 1974). In fact, Section 10-2 of the United States Golf Association (USGA) Handicap System Manual (USGA 2016) states that the handicap formula provides an “incentive for players to improve their golf games” whereby a small bonus for excellence advantage is given to the stronger player.

However, in competitions involving multiple players, varying rules and team formats, fairness may be greatly violated. For example, Bingham and Swartz (2000) suggested that weaker golfers have a considerable advantage winning a tournaments based on net scores. Grasman and Thomas (2013) investigated scramble competitions and provided suggestions for assigning teams. And of particular relevance to this paper, Hurley and Sauerbrei (2015) demonstrated that team net best-ball matches are not generally fair.

Handicapping in golf takes different forms depending on the governing body. In this paper, we focus on the handicapping system used by the USGA and the Royal Canadian Golf Association (RCGA). And although golf is a stochastic game, the USGA/RCGA handicapping system was not developed using the tools of probability theory. On the other hand, we make use of the stochastic nature of golf to provide team compositions in net best-ball competitions that are more fair than the status quo. For the purposes of this paper, we define a fair system involving n teams as one where the probability of each team finishing in jth place is $1/n$, $j = 1, \ldots, n$. Surprisingly, although fairness in golf is a much discussed topic, the above definition does not appear to exist in the golf literature.

There are two related papers that concern the problem of team formation in net best-ball competitions. Siegbahn and Hearn (2010) studied fourball; a two-player versus two-player event where handicapping is used. Like Bingham and Swartz (2000), golfer variability was a prominent focus of their study where the variability of golfer performance was parametrized
and estimated as a function of handicap. Siegbahn and Hearn (2010) concluded that high handicap golfers (i.e. weak golfers) have an advantage in fourball, and they suggested tie-breaking rules to reduce the unfairness. As discussed in Siegbahn and Hearn (2010), previous studies on fairness in fourball matches focused on the difference in handicaps between teammates as a predictor of fourball success.

Pavlikov, Hearn and Uryasev (2014) built on the results of Siegbahn and Hearn (2010) to specifically address team composition in net best-ball tournament settings. They developed a sophisticated search algorithm over the combinatorial space of potential team compositions. Optimal team formations were sought in the sense that all teams have nearly the same probability of winning. When the number of golfers $n < 40$, it was asserted that the program can be run in reasonable computational times. A feature of the approach proposed by Pavlikov, Hearn and Uryasev (2014) is that the algorithm is applicable to any prescribed team size. A drawback of the approach involves the reliance on tables that provide average scoring distributions for players of a given handicap. An implication of the use of the tables is an imposed monotonicity between handicap and performance variability. Whereas it is generally the case that high handicap golfers tend to be more variable, there are clearly instances of high handicap golfers who are consistent. For example, imagine a senior golfer who does not hit the ball far, is straight off the tee and rarely gets into trouble (i.e. lands in the rough, hazards, water, etc.). It is the third author’s experience that such golfers do exist. Moreover, the dataset which we consider in Section 4.2 suggests there is not a strictly monotonic relationship between handicap and variability. Following Swartz (2009), we estimate variability individually for golfers, and this forms the critical component for our team formation proposal in net best-ball tournaments. And importantly, the proposed estimation of individual variability is a straightforward side calculation of handicap.

In Section 2, we review various background material that is related to the development of team composition. This includes details concerning the rules related to net best-ball tournaments, the current handicapping system and related literature. In Section 3, our proposal for team composition is developed. It is based on the recognition that variability is an important consideration in terms of player performance in net best-ball competitions. The basic idea is that golfers of high variability are matched up with golfers of low variability. The matching procedure is developed for both two-man and four-man team competitions.
A noteworthy aspect of the procedure is that it does not require sophisticated software and it is simple to implement. A theoretical justification is given for the proposed method of team formation. In Section 4, two simulation studies are provided. The first study is based on a theoretical model for golf scores and investigates the performance of all possible team compositions. The second study is based on a resampling procedure of actual golf scores and investigates common practices involving team composition. In both studies, it is demonstrated that the proposed method of team composition leads to competitions that are more fair. We conclude with a short discussion in Section 6.

2 Background Material

Although the proposed method for net best-ball team composition is easy to describe and to implement, some background material needs to be introduced. The background material provides the theoretical structure for the proposal.

2.1 Net best-ball competitions

Net best-ball competitions are typically based on teams of size $m = 2$ or teams of size $m = 4$. And in such competitions, we denote that there are $n \geq 2$ teams.

On the jth hole of the course, $j = 1, \ldots, 18$, the ith player on a given team has a gross score X_{ij} which represents the number of strokes that it took to sink the ball into the hole. Associated with the ith player on the jth hole is a handicap allowance $h_{ij} = 0, 1, 2$ which is related to the quality of the player. The larger the value of h_{ij}, the weaker the player. Under this framework, the ith player has the resultant net score

$$Y_{ij} = X_{ij} - h_{ij}$$

on hole j. The player’s team then records their net best-ball score on the jth hole

$$T_j = \min_{i=1,\ldots,m} Y_{ij}$$
and the team’s overall performance is based on their aggregated net best-ball score

\[T = \sum_{j=1}^{18} T_j . \]

(3)

The teams in the competition are then ranked according to (3) where the winning team has the lowest value of \(T \). Various procedures exist for breaking ties. For example, with multiple ties, the team having done best on the 18th hole may be determined the winner. If a tie still exists, the criteria may then be applied to the 17th hole, then the 16th hole, etc, until the tie is broken.

The above format is known as stroke play which is the focus of our investigation. When there are only \(n = 2 \) teams, then match play competitions are possible. In match play, \(T_j \) is calculated as in (2), and the team with the lower value of \(T_j \) is said to have won the \(j \)th hole. The team with the greatest number of winning holes is the match play winner.

2.2 The current handicapping system

Section 10 of the USGA Handicap System Manual (USGA 2016) provides the intricate details involving the calculation of handicap. However, for ease of exposition, we provide a description of the standard calculation which applies to most golfers.

Consider then a golfer’s most recent 20 rounds of golf where each round is completed on a full 18-hole golf course. The \(k \)th round yields the differential \(D_k \) which is obtained by

\[D_k = (\text{adjusted gross score} - \text{course rating}) \times \frac{113}{(\text{slope rating})}. \]

(4)

In (4), the adjusted gross score is the player’s actual score reduced according to equitable stroke control (ESC) which is a mechanism for limiting high scores on individual holes. The intuition is that handicap reflects potential and should not be distorted by unusually poor results. The course rating describes the difficulty of the course from the perspective of a scratch (expert) golfer. Typically, course ratings are close to the par score of the course where values less than (greater than) par indicates less (more) difficult courses. Course ratings are reported to one decimal place. The slope rating describes the difficulty of the
course from the perspective of non-scratch golfers where a slope rating less than (greater than) 113 indicates an easier (more difficult) course than average. Slope ratings are integer-valued and lie in the interval (55, 155). The main takeaway from (4) is that large differentials correspond to poor rounds of golf and small differentials correspond to good rounds of golf. It is even possible for differentials to be negative which correspond to excellent rounds of golf. Differentials are rounded to the first decimal place.

Given a golfer’s scoring record, the golfer’s handicap index is calculated by taking 96% of the average of the 10 best (lowest) differentials and truncating the result to the first decimal place. In Section 2.3, we will see that it is instructive to write the handicap index as

\[I = (0.96)(D(1) + D(2) + \cdots + D(10))/10 \]
\[= (0.096)D(1) + (0.096)D(2) + \cdots + (0.096)D(10) \]

where \(D(i) \) denotes the \(i \)th order statistic of the differentials. The handicap index is the summary statistic that is used in USGA handicapping; strong golfers have small handicap indices whereas weak golfers have large handicap indices. It is possible that a golfer holds a handicap index \(I < 0 \), and these golfers (mostly professionals) are referred to as plus golfers. The maximum allowable handicap index for men is 36.4. For many golfers, the calculation of the handicap index \(I \) is viewed as a black-box procedure. Under the RCGA jurisdiction (Golf Canada 2016), handicap index is referred to as handicap factor.

Recognizing that courses are of varying difficulty, the last step for the implementation of handicap involves converting the handicap index to strokes for a particular course. For a course with slope rating \(S \), the course handicap for a golfer with handicap index \(I \) is given by \(C = I \times S/113 \) rounded to the nearest integer.

In the context of net best-ball competitions, the course handicaps \(C \) of the players in the tournament are then used to determine the hole-by-hole handicap allowances \(h_{ij} \) in (1). It is at this point where there is some variation in how \(h_{ij} \) is obtained. According to Section 9-4(bii) of the USGA Handicap System Manual (USGA 2016), the recommended way is to first reduce the individual course handicaps \(C \) by a factor of 90%, rounding to the nearest integer. An adjustment is then made to the reduced course handicaps where the course handicap for a given golfer is set to the offset between their course handicap and the lowest (best) course handicap in the competition. For example, suppose that the best golfer in the
competition has a reduced course handicap $C_{i_1} = 3$ and that some other golfer has a reduced course handicap $C_{i_2} = 24$. Then the two course handicaps are converted to $C_{i_1} = 3 - 3 = 0$ and $C_{i_2} = 24 - 3 = 21$, respectively. Then, we note that the holes on a golf course are assigned a hole handicap according to a stroke allocation table. The table consists of a permutation of the integers 1 to 18 where it is typically thought that increasing numbers correspond to decreasing difficulty of the holes. Denote the hole handicap on the jth hole by HDCP_j. Under the complicated framework described above, h_{ij} is determined as follows:

$$h_{ij} = \begin{cases}
0 & \text{HDCP}_j > C_i, \quad C_i \leq 18 \\
1 & \text{HDCP}_j \leq C_i, \quad C_i \leq 18 \\
1 & \text{HDCP}_j > C_i - 18, \quad C_i > 18 \\
2 & \text{HDCP}_j \leq C_i - 18, \quad C_i > 18
\end{cases}$$

(6)

Although (6) may be difficult to digest, the idea is that relative to the strongest player, an individual with $C \leq 18$ receives a single stroke on the most difficult holes up to his handicap offset. If his handicap offset exceeds 18, then he receives two strokes on the more difficult holes and one stroke on the remaining holes. For example, if $C = 21$, the weaker player receives two shots on handicap holes #1, #2 and #3, and one shot on the remaining 15 holes.

Madras (2017) investigated how alternative permutations of HDCP and other innovations affect the fairness of net match play events between two players.

2.3 Related literature and ideas

In consultation with the RCGA, Swartz (2009) proposed an alternative handicapping system with the following features:

- the system retains the well-established concepts of course rating and slope rating
- the system provides a modified handicap index/factor referred to as the mean which has a clear interpretation in terms of actual golf performance; this is contrasted with the index/factor whose interpretation is allegedly related to potential
• the system was developed using probability theory, leading to net competitions that are more fair

The key component of the system developed by Swartz (2009) was that it incorporated variability in handicapping. And in the context of net best-ball tournaments, it is clear that amongst two golfers with the same handicap index, a highly variable golfer is more valuable to a team than a consistent golfer. For example, the highly variable golfer will obtain more net birdies which contribute positively to the overall net score of his team. On the other hand, when this highly variable golfer scores net double bogeys, these poor scores are not likely to penalize his team in the best-ball format.

As an alternative to the handicap index/factor, Swartz (2009) defined two statistics that characterize player performance. These statistics are referred to as the mean \(\hat{\mu} \) and the spread \(\hat{\sigma} \), and their calculation is analogous to (5). Specifically,

\[
\hat{\mu} = w_1 D_{(1)} + w_2 D_{(2)} + \cdots + w_{16} D_{(16)} \quad (7)
\]

and

\[
\hat{\sigma} = q_1 D_{(1)} + q_2 D_{(2)} + \cdots + q_{16} D_{(16)} \quad (8)
\]

where the weights \(w_i \) in (7) and \(q_i \) in (8) provide best linear unbiased estimators (BLUEs) of the mean and the standard deviations of the differentials where the differentials are assumed to be realizations of independent and identically distributed normal random variables. Whereas (5) is based on 10 order statistics, (7) and (8) are based on 16 order statistics; the rationale was that data is informative and it is wasteful to discard observations. On the other hand, there is evidence that the largest differentials may not arise from a normal distribution as the true underlying distribution may be positively skewed (Siegbahn and Hearn 2010).

For the purposes of this paper, the spread \(\hat{\sigma} \) in (8) plays a primary role and we record the weights \(q_i \) in Table 1. Alternative weights are recorded in Swartz (2009) when a golfer has played fewer than 20 complete rounds. When the spread calculation \(\hat{\sigma} \) falls outside of the interval (1.5,8.0), it is set equal to the corresponding endpoint.

A point that is worth emphasizing is that the calculation of \(\hat{\sigma} \) in (8) is simple and is directly analogous to the calculation of (5) which is part of the current handicapping
system. In Section 3, we assume that the values \(\hat{\sigma} \) are available for each golfer in the net best-ball competition. Moreover, the values \(\hat{\sigma} \) are the only values that are needed to form teams according to our proposal. Thus, teams are formed based on the basis of individual performance variability \(\hat{\sigma} \), and this is the main message of Section 2.

3 Team Composition

Suppose that the number of golfers in a net best-ball tournament is an even number. The task with teams of size \(m = 2 \) is to pair players in a fair manner. Following (1), we let \(Y_{ij} \) denote the net score of golfer \(i \) on hole \(j \). Although golf scores are discrete, we assume

\[
Y_{ij} \sim \text{Normal}(\mu_{ij}, \tau_{ij}^2).
\]

The essence of handicapping is to create fair matches. Therefore, we make the assumption that all golfers have the same mean net score, i.e. \(\mu_{ij} = \mu_j \). In addition, we are going to make the clearly false assumptions that \(\mu_j = \mu \) and \(\tau_{ij} = \tau_i \), that the mean net scores and the net score variances are the same on all holes. However, this assumption is not problematic as the same analysis can be undertaken on a hole-by-hole basis leading to the same proposal for team compositions. Without loss of generality, we also set \(\mu = 0 \) as it is only comparative golf scores that are relevant. Accordingly, we simplify (9) whereby the net score for golfer \(i \) on each hole is given by

\[
Y_i \sim \text{Normal}(0, \tau_i^2).
\]

With a two-man team consisting of players \(i_1 \) and \(i_2 \), the quantity of interest is the

<table>
<thead>
<tr>
<th>(q_1)</th>
<th>(q_2)</th>
<th>(q_3)</th>
<th>(q_4)</th>
<th>(q_5)</th>
<th>(q_6)</th>
<th>(q_7)</th>
<th>(q_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.1511</td>
<td>-0.1006</td>
<td>-0.0792</td>
<td>-0.0632</td>
<td>-0.0500</td>
<td>-0.0384</td>
<td>-0.0277</td>
<td>-0.0178</td>
</tr>
<tr>
<td>(q_9)</td>
<td>(q_{10})</td>
<td>(q_{11})</td>
<td>(q_{12})</td>
<td>(q_{13})</td>
<td>(q_{14})</td>
<td>(q_{15})</td>
<td>(q_{16})</td>
</tr>
<tr>
<td>-0.0082</td>
<td>0.0011</td>
<td>0.0103</td>
<td>0.0196</td>
<td>0.0291</td>
<td>0.0389</td>
<td>0.0492</td>
<td>0.3880</td>
</tr>
</tbody>
</table>

Table 1: The weights \(q_i \) in (8) that are used in the calculation of the spread \(\hat{\sigma} \).
distribution of the net best-ball result

\[Z_{i1,i2} = \min(Y_{i1}, Y_{i2}) . \]

It is shown by Nadarajah and Kotz (2008) that \(Z_{i1,i2} \) is nearly normal if \(\tau_{i1} \) and \(\tau_{i2} \) do not vary greatly. Using (10), assuming that \(\tau_{i1} \) and \(\tau_{i2} \) do not vary greatly and assuming the independence between \(Y_{i1} \) and \(Y_{i2} \), the moment expressions (11) and (12) from Nadarajah and Kotz (2008) lead to the approximate distribution

\[Z_{i1,i2} \sim \text{Normal}\left(-\frac{1}{\sqrt{2\pi}}(\tau_{i1}^2 + \tau_{i2}^2), \left(\frac{\pi - 1}{2\pi} \right)(\tau_{i1}^2 + \tau_{i2}^2) \right) . \] (11)

If we pair golfers such that every pair has the same probability distribution, then each pair has the same probability of finishing in any position in a tournament. Therefore, if the \(i_1 \)'s and \(i_2 \)'s are paired such that \(\tau_{i1}^2 + \tau_{i2}^2 = c \) for some constant \(c \), then the objective is achieved as each distribution in (11) is \(\text{Normal}(-c/\sqrt{2\pi}, c(\pi - 1)/(2\pi)) \).

Therefore, we have a prescription for pairing golfers in two-man net best-ball tournaments. We use \(\hat{\sigma} \) in (8) as a proxy for \(\tau \), and we simply match the golfer with the highest \(\hat{\sigma} \) with the golfer with the lowest \(\hat{\sigma} \), we match the golfer with the second highest \(\hat{\sigma} \) with the golfer with the second lowest \(\hat{\sigma} \), and so on. Given the \(\hat{\sigma} \) values, the forming of two-man teams is an incredibly easy task for the golf director.

In the case of four-man net best-ball tournaments, our heuristic is to begin with optimal two-man teams as described above, and then combine pairs of the two-man teams. It therefore makes sense to form teams based on the mean values in (11). Our procedure is to rank the two-man teams according to \(\hat{\sigma}_{i1}^2 + \hat{\sigma}_{i2}^2 \). We then match the two-man team with the highest \(\hat{\sigma}_{i1}^2 + \hat{\sigma}_{i2}^2 \) with the two-man team with the lowest \(\hat{\sigma}_{i1}^2 + \hat{\sigma}_{i2}^2 \), and so on. Again, given the \(\hat{\sigma} \) values, this is an incredibly easy task for the golf director.

We have therefore provided a theoretical justification for team composition. In Section 4, we supplement the theoretical underpinnings with simulation studies.
4 Simulation Studies

A rationale for the proposed team composition was provided using statistical theory in Section 3. However, given that the statistical theory was based on some approximations, it is good to supplement the theory via simulation. We first generate golf scores from a theoretical model for scoring. We then use a resampling scheme to generate golf scores from a dataset of actual golf scores.

4.1 Simulation via a theoretical scoring model

In Table 2, we provide probability distributions for 8 fictitious golfers corresponding to their performance on each hole. The distributions are not entirely realistic as we only permit the four net scores of birdie (-1 relative to par), par, bogey (+1 relative to par) and double-bogey (+2 relative to par). However, the probability distributions have been constructed such that each golfer has the same mean net score which is consistent with the desiderata of the handicapping system. The most noteworthy aspect of Table 2 is that the performance of the golfers is variable with increasing standard deviations as we go down the rows of the table. Therefore, golfer 1 is the most consistent and golfer 8 is the most variable.

<table>
<thead>
<tr>
<th>Golfer</th>
<th>Net Score Probability Distribution</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.02</td>
<td>0.96</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.88</td>
<td>0.06</td>
</tr>
<tr>
<td>3</td>
<td>0.10</td>
<td>0.80</td>
<td>0.10</td>
</tr>
<tr>
<td>4</td>
<td>0.14</td>
<td>0.72</td>
<td>0.14</td>
</tr>
<tr>
<td>5</td>
<td>0.18</td>
<td>0.64</td>
<td>0.18</td>
</tr>
<tr>
<td>6</td>
<td>0.20</td>
<td>0.61</td>
<td>0.18</td>
</tr>
<tr>
<td>7</td>
<td>0.26</td>
<td>0.51</td>
<td>0.20</td>
</tr>
<tr>
<td>8</td>
<td>0.32</td>
<td>0.41</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Table 2: Net score probability distributions for 8 fictitious golfers.

Imagine that these 8 golfers are competing in teams of size $m = 2$. Therefore, the number of possible tournament constructions is $\binom{8}{2}(\binom{6}{2}(\binom{4}{2})/4!) = 105$. Consider one such tournament
construction. For each team, we first generate 18 holes for each golfer in the pair according to their probability distributions in Table 2. We then determine the team’s aggregate net best-ball score T according to (3). For this particular round of 18 holes and for the particular tournament construction, we determine the finishing order of the four teams. We repeat the simulation procedure for 1,000 tournaments to obtain frequency tables for the finishing positions. Note that if a tie exists for a particular round, we randomly break ties.

According to our proposed team composition developed in Section 3, the optimal tournament construction in terms of fairness is 1&8, 2&7, 3&6 and 4&5. We denote this tournament construction as WCS (an acronym based on the author’s surnames). We are interested in how WCS performs compared to the other 104 potential tournament constructions. Table 3 provides the frequencies of the finishing positions corresponding to WCS. If the competition were completely fair, the expected cell entries would all be equal (i.e. 250). For WCS, we observe that Team 1&8 is clearly the strongest team finishing in the top two positions nearly 66% of the time (i.e. $374+285=659$ out of 1000 tournaments).

<table>
<thead>
<tr>
<th></th>
<th>1&8</th>
<th>2&7</th>
<th>3&6</th>
<th>4&5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish 1st</td>
<td>374</td>
<td>247</td>
<td>177</td>
<td>202</td>
</tr>
<tr>
<td>Finish 2nd</td>
<td>285</td>
<td>254</td>
<td>206</td>
<td>255</td>
</tr>
<tr>
<td>Finish 3rd</td>
<td>215</td>
<td>270</td>
<td>278</td>
<td>237</td>
</tr>
<tr>
<td>Finish 4th</td>
<td>126</td>
<td>229</td>
<td>339</td>
<td>306</td>
</tr>
</tbody>
</table>

Table 3: Frequencies of the finishing positions corresponding to WCS.

However, whether WCS is meritorious can only be determined in the context of the other potential tournament constructions. And each tournament construction has a corresponding Table 3 resulting from the simulation procedure. For each tournament construction, it is natural to assess fairness via the Chi-Square test statistic

$$\tilde{\chi}^2 = \sum_{i=1}^{4} \sum_{j=1}^{4} \frac{(f_{ij} - E_{ij})^2}{E_{ij}}$$

where $E_{ij} = 250$ and the frequency f_{ij} is the (i,j)th entry from the corresponding matrix in the form of Table 3. Under the null hypothesis that the tournament construction is fair, $\tilde{\chi}^2$ has a Chi-Square distribution on 9 degrees of freedom. Large values of $\tilde{\chi}^2$ provide evidence
against the null hypothesis.

Table 4 lists the best performing and worst performing tournament constructions based on the Chi-Square test statistic (12). Although none of the team constructions are fair (i.e. they all have p-values that are statistically significant), we observe that our proposed team formation WCS is the best possible tournament construction. It is the best construction that can be achieved given the characteristics of the 8 golfers and the rules of net best-ball tournaments. We also note that the best five tournament constructions are similar in the sense that golfers with high variability are paired with ones with low variability.

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Team A</th>
<th>Team B</th>
<th>Team C</th>
<th>Team D</th>
<th>Chi-Square test statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (WCS)</td>
<td>1 & 8</td>
<td>2 & 7</td>
<td>3 & 6</td>
<td>4 & 5</td>
<td>221.4</td>
</tr>
<tr>
<td>2</td>
<td>1 & 8</td>
<td>2 & 7</td>
<td>3 & 5</td>
<td>4 & 6</td>
<td>270.4</td>
</tr>
<tr>
<td>3</td>
<td>1 & 7</td>
<td>2 & 8</td>
<td>3 & 6</td>
<td>4 & 5</td>
<td>371.2</td>
</tr>
<tr>
<td>4</td>
<td>1 & 8</td>
<td>2 & 6</td>
<td>3 & 7</td>
<td>4 & 5</td>
<td>420.8</td>
</tr>
<tr>
<td>5</td>
<td>1 & 7</td>
<td>2 & 8</td>
<td>3 & 5</td>
<td>4 & 6</td>
<td>433.0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>101</td>
<td>1 & 2</td>
<td>3 & 6</td>
<td>4 & 5</td>
<td>7 & 8</td>
<td>3705.0</td>
</tr>
<tr>
<td>102</td>
<td>1 & 2</td>
<td>3 & 4</td>
<td>5 & 7</td>
<td>6 & 8</td>
<td>3738.7</td>
</tr>
<tr>
<td>103</td>
<td>1 & 2</td>
<td>3 & 4</td>
<td>5 & 8</td>
<td>6 & 7</td>
<td>3851.5</td>
</tr>
<tr>
<td>104</td>
<td>1 & 2</td>
<td>3 & 5</td>
<td>4 & 6</td>
<td>7 & 8</td>
<td>3919.3</td>
</tr>
<tr>
<td>105</td>
<td>1 & 2</td>
<td>3 & 4</td>
<td>5 & 6</td>
<td>7 & 8</td>
<td>4047.0</td>
</tr>
</tbody>
</table>

Table 4: The five best and five worst tournament constructions for the golfers in Table 2 ordered according to the Chi-Square test statistic (12).

4.2 Simulation via actual golf scores

This simulation study is based on a dataset obtained from Coloniale Golf Club in Beaumont, Alberta collected over the years 1996 through 1999.

After restricting scores to male golfers who have played at least 40 rounds, we are left with a dataset consisting of 10,470 rounds collected on 80 golfers. Therefore, the average number of rounds played per golfer in the restricted dataset is approximately 131. In Figure 1, we provide a histogram and density plot of the handicap differentials corresponding to the 10,470 rounds. The mean handicap differential is approximately 13 and is marked by
the dashed vertical line. The data correspond to a large pool of golfers with varying skill levels. It should therefore have the required generality for testing our proposed method of team formation in net best-ball tournaments.

![Histogram and density plot of the handicap differentials for the Coloniale dataset.](image)

Figure 1: Histogram and density plot of the handicap differentials for the Coloniale dataset.

Our simulation procedure is based on a resampling scheme. In this exercise, suppose that we investigate a particular team construction heuristic where we form \(n = 20 \) teams of size \(m = 4 \). For each golfer, our first step involves randomly selecting 20 of his rounds of golf. These rounds will form his 20 differentials from which his handicap index \(I \) in (5) and his spread statistic \(\hat{\sigma} \) in (8) can be calculated. These two statistics are sufficient for determining all of the common methods of team composition including our proposed method. Therefore, based on the particular team construction heuristic, the 20 teams of four players are identified. For each of these 80 golfers, we next generate one of their remaining rounds of golf for which we have hole-by-hole scores. In golf, detailed hole-by-hole data is rare and is a feature of the Coloniale dataset. Using the generated round of golf for each of the 80 golfers, each team’s aggregate net best-ball score \(T \) can be calculated according to (3), and
we obtain the finishing order of the 20 teams composed by the particular team construction heuristic. This resampling procedure is repeated over 40,000 hypothetical tournaments. Frequency tables are obtained as in Table 3 where finishing order corresponds to the rows and team compositions correspond to the columns. In this simulation exercise we therefore have matrices of dimension 20×20.

We now compare two team constructions against our proposed method WCS of team formation. Recall from Section 3 that our method of team formation first ranks golfers according to $\hat{\sigma}$, and then pairs golfers 1&80, 2&79, and so on. Then, these 40 pairs are ranked according to $\hat{\sigma}_1^2 + \hat{\sigma}_2^2$ where i_1 and i_2 are in the same pair. We then pair the pairs as before with high values of $\hat{\sigma}_1^2 + \hat{\sigma}_2^2$ matched with low values. This algorithm determines the 4-man teams.

We refer to the most common method of team formation as “High-Low” where High-Low is very similar in construction to WCS. The only difference is that orderings are based on the handicap index I in (5) rather than spread statistic $\hat{\sigma}$ in (8). The High-Low heuristic is that strong golfers are matched with weak golfers in the first pairing, and then strong teams (based on cumulative handicap indices) are matched with weak teams in the subsequent pairing.

We refer to the third method of team formation as “Zigzag” which is less common than High-Low. Pavlikov, Hearn and Uryasev (2014) provide an illustrative example of Zigzag. For simplicity, consider the formation of 16 golfers into four teams of four players as shown in Table 5. For example, Team 1 consists of golfers 1, 8, 9 and 16. The intuition behind Zigzag is that the summation of handicap indices should be nearly constant across teams.

<table>
<thead>
<tr>
<th>Team</th>
<th>Golfer 1</th>
<th>Golfer 2</th>
<th>Golfer 3</th>
<th>Golfer 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Team 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Team 3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Team 4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 5: Demonstration of the Zigzag method of team composition where 16 golfers are formed into four teams.

In Table 6, we provide the results of the comparison using the simulated frequency tables.
based on WCS, High-Low and Zigzag. In this exercise, the Chi-Square statistic (12) is used to assess the three methods of team formation where the summations in (12) extend over the 20×20 cells and $E_{ij} = 2,000$. We observe that WCS outperforms the other two methods in terms of giving the lowest Chi-Square statistic. The High-Low method is clearly the worst of the three methods in terms of fairness.

Table 6: Comparison of the three methods of team formation based on the Chi-square test statistic.

<table>
<thead>
<tr>
<th>Method</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Low</td>
<td>4049.09</td>
</tr>
<tr>
<td>Zigzag</td>
<td>2136.88</td>
</tr>
<tr>
<td>WCS</td>
<td>2034.99</td>
</tr>
</tbody>
</table>

Another way of assessing the three methods is via heatmaps. In Figure 2, we produce heatmaps corresponding to the simulated frequency tables based on High-Low, Zigzag and WCS. It is evident that WCS has a more constant coloring; this indicates that it is a fairer method of team composition than both High-Low and Zigzag.

Figure 2: Heatmaps of the frequency tables produced by High-Low, Zigzag and WCS.
5 Discussion

In most sports, it is only reasonable for players of comparable abilities to compete. For example, it is difficult to imagine any basketball related competition where an average person is matched up against Lebron James.

However, in golf, a comprehensive handicap system has been devised to allow players of different abilities to compete fairly against one another. Unfortunately, the handicap system can be far from fair in particular competitions, and there are many types of competitions in golf. For example, golf can be played according to match play or stroke play, golf can be played 1v1, 2v2 or in tournament settings, and golf can be played in various formats such as best-ball, foursomes, aggregate, scrambles, etc.

In this paper, we have devised a simple proposal where teams of sizes two and four are formed in net best-ball competitions. Using both statistical theory and simulation studies, we have demonstrated that the proposal is more fair than standard procedures for team composition.

The key component of our proposal is the recognition of variability in golf performance. Perhaps the variability aspect can be introduced to improve fairness in other types of golf competitions.

6 References

