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1. INTRODUCTIONIn an attempt to curtail prolonged disputes and to avoid employee strikes, arbitration pro-cedures are now commonplace in many labour contracts.Final o�er arbitration (FOA) is one such arbitration process whereby an employer o�ers awage (or some other quantity) x, the employee independently requests z, and an arbitrator makesa decision by choosing either x or z (Stevens 1966). In conventional arbitration, the arbitrator isnot constrained to choosing x or z. The motivation behind FOA over conventional arbitration isto reduce the \chilling" e�ect; i.e. knowing that either x or z will be chosen, negotiating teamsought to bargain more realistically and hence reduce the need for arbitration. Milner (1993)compares FOA with conventional arbitration on the basis of dispute deterrence. Ashenfelter etal (1992) provide laboratory evidence that FOA does not reduce the chilling e�ect.In FOA theory, it is commonly assumed that the arbitrator behaves according to the parityconcept (Farber 1980; Dworkin 1981). Under the parity concept, the arbitrator weighs theevidence and determines an undisclosed \fair" wage y. The arbitrator then chooses either x orz depending on which value is closer to y. Typically x < y < z.Assuming parity, an active area of research concerns the behaviour of the arbitrator. Forexample, one approach (Fizel 1996; Dworkin 1981) is based on probit models where the arbi-trator's decision is regressed against a set of covariates including (z � y)� (y � x). However, adi�culty associated with such models is that the unknown y must be estimated and this estima-tion is unaccounted for in the regression. Faurot and McAllister (1992) also consider arbitrator2



behaviour where it is assumed that y is normally distributed, o�ers are optimal risk-neutral andarbitrators are exchangeable.In this paper, we consider a related problem. We develop a model which focuses on thebehaviour of the bidders; i.e. we are concerned with covariates that e�ect the bids x and z. Oneapproach is to regress the \standardized gap" (z � x)=x or some transformed value against aset of covariates as in Frederick et al (1996) and Frederick, Kaempfer and Wobbekind (1992). Adi�culty with such an approach is that various information is intertwined in the standardizedgap. For example, if large gaps are observed for female employees, it could be the case thatemployers discriminate against women. However, it could also be the case that females have ahigher sense of self-worth or that they are less risk averse than males.In Section 2, we propose a Bayesian model that investigates the behaviour of bidders. Wede�ne variables related to the standardized gap which help identify 3 quantities: (1) the meanamount by which the employer (employee) underestimates (overestimates) the fair wage, (2)the amount due to discrimination on the part of the employer and (3) the amount due to themisevaluation of self-worth on the part of the employee. These 3 quantities are all relative tothe value y determined by the arbitrator. In addition, our model assumes the parity conditionand we take into account the fact that y is unknown. In Section 3, the posterior calculationsfor this model are obtained using a Markov chain algorithm. Inference can thus be carried outfor any function of the unknown parameters. In Section 4 we look at an example based on FOAdata arising from major league baseball. In Section 5, we conclude with a short discussion.3



2. A MODEL FOR FOAFor ease of presentation, we initially consider a single arbitration case and omit subscripts.Let x denote the employer's o�er and z denote the employee's request. The \true" market valueas determined by the arbitrator is a latent (i.e. unobserved) variable which we denote by y. Thearbitrator now chooses either x or z. Under the parity concept (Farber 1980; Dworkin 1981),the arbitrator's decision is given byd = 8>>><>>>: 1 if x is chosen (i.e. y � x < z � y)0 if z is chosen (i.e. y � x > z � y) : (1)The data therefore consist of x, z and d where typically x < z. We note that in major leaguebaseball salary arbitration, should x � z, the FOA protocol is to inform the parties and abandonthe arbitration hearing.We propose a model where conditional on (y; �; �; �1; �2; w1; w2),(y � x)=y � Normal(w01�; �21)(z � y)=y � Normal(w02�; �22) (2)and the two distributions are independent. This model should be interpreted as an approxi-mation, as it does not impose the condition x < z. In addition, the model is not necessarilybehavioural as the employer and employee do not observe the fair wage y. Here wi : (ri � 1) isa covariate vector whose values may be thought to a�ect the bids in FOA. For example, com-4



ponents of wi may include covariates such as the race, sex, age and occupation of the employee.The unknown parameters in (2) are � : (r1 � 1), � : (r2 � 1), �1 and �2. In most applications,we would choose w1 = w2 as it is di�cult to imagine criteria that would be important to oneparty but of absolutely no importance to the other in determining bids. However, for the sakeof generality, we will maintain the distinction involving w1 and w2.Our primary interest concerns the vector parameters � and �. Letting �1 and �1 denote theconstant terms, consider the baseline case where the remaining ri � 1 covariates in wi are equalto zero. Then y�1 is the mean amount that the employer underestimates the arbitrator's fairwage y. Similarly, y�1 is the mean amount that the employee overestimates the arbitrator's fairwage y. The quantities �1 and �1 may be tactical as suggested by the game theory literature ormay simply represent what the employer and employee deem to be fair. We are also interestedin �i, i = 1; : : : ; r1 and �i, i = 1; : : : ; r2. For example, if �i > 0, this implies that the employerdiscriminates according to the i-th covariate when compared against the baseline case. In otherwords, a smaller o�er is made to employees for whom the i-th covariate in w exceeds zero. Wemay also be interested in quantities such as w01��w02� for an employee with speci�ed covariatesw1 and w2. For if w01� > w02�, then the employee would have a better chance than the employerof winning the FOA decision.Introducing vector notation for the n independent cases and letting [A j B] denote the5



conditional \density" of A given B, we obtain the posterior density[�; �; �1; �2; y j x; z; d; w1; w2] / [�; �; �1; �2; y; x; z; d j w1; w2]= [d j �; �; �1; �2; y; x; z; w1; w2] [�; �; �1; �2; y; x; z j w1; w2]= [d j y; x; z] [z j �; �; �1; �2; y; x; w1; w2] [x j �; �; �1; �2; y; w1; w2] [�; �; �1; �2; y j w1; w2]= [d j y; x; z] [z j �; �2; y; w2] [x j �; �1; y; w1] [�; �; �1; �2] [y] (3)where we assume that (�; �; �1; �2; y) does not depend on w1 and w2 (relaxed in Section 4)and that the latent vector y is independent of (�; �; �1; �2). Here [d j y; x; z] is a point massaccording to the parity concept (1) and can be expressed asnYi=1 diI(yi � xi < zi � yi) + (1� di)I(yi � xi > zi � yi)where I is the indicator function. The densities [z j �; �2; y] � Qni=1Normal(yi + w02i�yi; �22y2i )and [x j �; �1; y] � Qni=1Normal(yi�w01i�yi; �21y2i ) follow immediately from (2). For [�; �; �1; �2],we use the improper prior density 1=(�1�2) which is a standard reference prior (Berger 1985).Finally, the modeling is complete by de�ning [y] / 1. Although this is a standard referenceprior, and is sensible given the application in Section 4, in other applications where good priorinformation is available, one might consider a subjective prior density for [y]. We also remarkthat although it causes neither inferential nor computational di�culties, the posterior density6



(3) is not de�ned when any yi = 0, i = 1; : : : ; n. In the Appendix, we establish that the posterioris proper.The posterior density (3) is a (n + r1 + r2 + 2)-dimensional function which fully describesthe uncertainty in the parameters given the data. However in practice, our primary interestconcerns marginal posterior characteristics (e.g. expectations with respect to � and �). As thecalculation of these characteristics involves intractable high-dimensional integrals, we estimatethe characteristics using a Markov chain Monte Carlo algorithm in Section 3.We note that a simpli�cation of the model can be obtained by imposing the restriction� = �1 = �2. In this case, the posterior density becomes[�; �; �; y j x; z; d] / [d j y; x; z] [z j �; �; y; w2] [x j �; �; y; w1] [�; �; �] [y] (4)where [�; �; �] is given by the improper prior density 1=�. In practice, one might begin withmodel (3), and if the posterior analysis shows �1 � �2, then proceed with the more parsimoniousmodel (4). We also note that model (3) can be viewed as a generalization of an ordinaryregression model. For if we reduce the uncertainty in the latent variable y (i.e. y approaches apoint mass at some known y0), then the posterior density converges to the density proportionalto [z j �; �2; y0; w2] [x j �; �1; y0; w1] [�; �; �1; �2].In passing, we note that a classical likelihood analysis would involve only the �rst threefactors of the posterior density (3). The maximization of the log-likelihood would most con-7



veniently proceed by �rst maximizing with respect to y = y(�; �; �1; �2) for which an analyticexpression is available. Substituting y = ŷ(�; �; �1; �2) into the log-likelihood, one could thennumerically maximize with respect to (�; �; �1; �2). An inferential di�culty with maximum like-lihood concerns the increasing dimensionality of the parameter space (i.e. n+ r1+ r2+2) as thesample size grows and this argues against the use of standard asymptotic theory. In contrast,the Bayesian approach provides exact inferences from the posterior distribution and the Markovchain algorithm allows the investigation of any posterior characteristic of interest.3. POSTERIOR CALCULATIONS VIA GIBBS SAMPLINGThe Gibbs sampling algorithm (Geman and Geman 1984; Gelfand and Smith 1990) providesan iterative approach to simulation from a target distribution. In our problem, an implemen-tation of Gibbs sampling proceeds by setting initial values j = 1 and (�(0); �(0); �(0)1 ; �(0)2 ; y(0)).We then repeat the following steps M +N times:(i) generate �(j) � [� j �(j�1); �(j�1)1 ; �(j�1)2 ; y(j�1); x; z; d; w1; w2](ii) generate �(j) � [� j �(j); �(j�1)1 ; �(j�1)2 ; y(j�1); x; z; d; w1; w2](iii) generate �(j)1 � [�1 j �(j); �(j); �(j�1)2 ; y(j�1); x; z; d; w1; w2](iv) generate �(j)2 � [�2 j �(j); �(j); �(j)1 ; y(j�1); x; z; d; w1; w2](v) generate y(j) � [y j �(j); �(j); �(j)1 ; �(j)2 ; x; z; d; w1; w2](vi) set j = j + 1 8



The idea is to sample from the full conditional distributions in (i)-(v) until we are con�dentthat the vector �(j) = (�(j); �(j); �(j)1 ; �(j)2 ; y(j)), j = M + 1; : : : ; N approximates a realizationfrom the posterior distribution. Note that convergence to the posterior asM !1 is a propertyof the Gibbs sampling algorithm. We then average the variates �(M+1); : : : ; �(N) to estimatevarious posterior characteristics.To generate from the full conditional distribution of �1, we generate v1 � Gamma(n=2; k1)where k1 = Pni=1(xi � yi + w01i�yi)2=(2y2i ) and then set �1 = 1=pv1. Similarly, to generatefrom the full conditional distribution of �2, we generate v2 � Gamma(n=2; k2) where k2 =Pni=1(zi � yi � w02i�yi)2=(2y2i ) and then set �2 = 1=pv2.The derivation of the full conditional distribution for � requires some algebra. For example,[� j �] / exp( �12�21 nXi=1�xi � yi + w01i�yiyi �2)/ exp� �12�21 ��0A1A01� � 2�0A1t��� (5)where A1 : (r1�n) = (w11; : : : ; w1n) and t0� : (1�n) = ((y1�x1)=y1; : : : ; (yn�xn)=yn). We rec-ognize the form of (5) and therefore generate � � Normalr1((A1A01)�1A1t�; �21(A1A01)�1). Simi-larly, we generate � � Normalr2((A2A02)�1A2t� ; �22(A2A02)�1) where A2 : (r2�n) = (w21; : : : ; w2n)and t0� : (1� n) = ((z1 � y1)=y1; : : : ; (zn � yn)=yn).The remaining n full conditional distributions are non-standard as the density [yi j �] is9



proportional togi(yi) = 8>>><>>>: 1y2i exp� (xi�yi+w01i�yi)2�2�21y2i + (zi�yi�w02i�yi)2�2�22y2i � I �yi < xi+zi2 � di = 11y2i exp� (xi�yi+w01i�yi)2�2�21y2i + (zi�yi�w02i�yi)2�2�22y2i � I �xi+zi2 < yi� di = 0 (6)where I denotes the indicator function. Rather than sample from (6) directly, we \imbed" aMetropolis step whereby we set ai = (xi + zi)=2 and introduce the proposal densitieshi1(y) = (3=ai) expf3(y � ai)=aig y < aiwhen di = 1 and hi0(y) = (3=ai) expf�3(y � ai)=aig y > aiwhen di = 0. The proposal densities are convenient as they allow e�cient variate generation viainversion. The proposal densities also capture the essential features of the gi(y) and thereforeyield high acceptance rates. Note that the proposal densities have exponentially decreasing tailsextending from the estimate ai = (xi + zi)=2 of the true market value yi. The jth iteration ofthe Metropolis step (see Gilks, Richardson and Spiegelhalter 1996) then proceeds by generatingu � Unif(0; 1), generating y(j)i � hdi(y) and setting y(j)i = y(j�1)i ifu > gi(y(j)i )hidi(y(j�1)i )gi(y(j�1)i )hidi(y(j)i ) :10



Therefore the Markov chain Monte Carlo algorithm is easily implemented and provides amethodology for studying the bidding behaviour in FOA. We note that minor simpli�cationsarise in the algorithm when the posterior density (4) is considered.4. ANALYSIS OF MAJOR LEAGUE BASEBALL SALARY DATAWe obtained salary data based on 161 cases of FOA in major league baseball during theperiod 1990 through 2001. The covariate w = w1 = w2 is 4-dimensional (i.e. r1 = r2 = 4)where the �rst coordinate is the constant term and the second coordinate is 1 (0) correspondingto a pitcher (non-pitcher). The third coordinate is a race variable given by 1 (0) for whites(non-whites) where the non-white setting refers to blacks and latinos. We remark that althoughrace is not scienti�cally well-de�ned, there was complete agreement and no indecisiveness in twoindependent assignments of the race variable by viewing photos of the 161 baseball players. Thefourth coordinate is an age variable given by age� 22 where age is the player's age at the timeof arbitration.Table 1 provides estimates of the posterior means and standard deviations of various param-eters of interest based on N = 105 iterations of the Markov chain algorithm. The calculationsrequire approximately 10 minutes of computation on a SUN workstation. Since �̂2 > �̂1, weconclude that players are more variable in their bids than owners. We also observe that theredoes not seem to be much of an e�ect due to position (pitcher/non-pitcher) as the bulk of theposterior distributions for �2 and �2 are centred near zero. Interestingly, there is no indicationof race discrimination on the part of the owners (i.e. �̂3 � 0) and there is mild evidence that11



white players are more risk averse than blacks and latinos (i.e. �̂3 < 0). The latter �ndingdisagrees with the conclusions discussed in Fizel (1996). It is also of interest to note that �̂4 < 0and �̂4 > 0. This implies that owners discriminate against older players (i.e. o�er less) whereasolder players are less risk averse (i.e. request more). Perhaps owners de-value the limited futureof older players whereas older players want to be primarily rewarded for past performance?It should be noted that one must be cautious in assigning a behavioural interpretation to theresults as the employer and employee do not observe the fair wage y.We now consider the analysis of a more complex model which allows us to investigate thesensitivity of the analysis with respect to the prior speci�cation. Expanding on (3) with w =w1 = w2 and r = r1 = r2, we consider the posterior density[�; �; �1; �2; �; y j x; z; d; w] / [d j y; x; z] [z j �; �2; y; w][x j �; �1; y; w] [�; �; �1; �2] [y j �; w] [�] : (7)In motivating the new model, one might reason that if the gaps depend on the covariate w, thenso might y. In (7), we assume that the yi are conditionally independent, we introduce � : (r�1)and set [yi j �; w] � Normal(w0i�; (ka0)2)where a0 = $2; 000; 000 represents a typical salary in major league baseball. Here, the prior12



mean of yi can be interpreted as a base salary �1 which is then perturbed according to the non-constant covariates. The prior standard deviation of yi can be interpreted as k typical salarieswhere k is a speci�ed hyperparameter. We complete the model speci�cation by assigning thestandard reference prior [�] / 1.Under model (7), there are only two changes in the Markov chain computations. First, amultiplicative factor (i.e. [yi j �; w]) is introduced to the full conditional densities (6). Second,an extra step is added to the Gibbs sampling algorithm corresponding to the generation of �from its full conditional distribution. It is not di�cult to show that [� j �] � Normal(; V )where V = (ka0)2(Pni=1 wiw0i)�1 and  = (Pni=1 wiw0i)�1(Pni=1wiyi). The results of the majorleague baseball analysis based on k = 1 are given in Table 2. We observe close agreementwith the results from the simpler model (i.e. Table 1) indicating that the FOA model is robustwith respect to the prior speci�cation of y. Furthermore, we note that �1 and �2 are the onlyimportant parameters in �. That is, the arbitrator's fair wage is centered about $2; 107; 000 andis adjusted downward for pitchers. On average then, amongst those who have gone through thearbitration process, pitchers do not command as high a salary as position players. Finally, asmight be expected, when we choose k large (i.e. k = 10), the prior for y is quite at and thesubsequent analysis produces the same results as in Table 1 to three decimal places.5. CONCLUDING REMARKSIn FOA, the data consist solely of the arbitrator's decision d, the employer's o�er x and theemployee's request z. With only such data, it is impossible to determine which of the 3 parties13



are acting in an unbiased fashion. For example, with all of the arbitration outcomes falling inthe employer's favour, it could be the case that the arbitrator is unfair and/or the employer issubmitting high o�ers and/or the employee is submitting high requests. Therefore, in studyingFOA data, certain assumptions need to be made.Most of the literature in FOA tends to focus on the behaviour of the arbitrator where, forexample, y is estimated (Fizel 1996) or it is assumed that the employer and employee submito�ers according to rational game theory considerations (Faurot and McAllister 1992).In this paper, we focus on the behaviour of the employer and employee relative to thearbitrator. This is a convenient perspective as the assumptions are weak and it is often thoughtthat the arbitrator is an unbiased but random decision maker (Ashenfelter 1987). In this case,the behaviour of the employer and employee can be interpreted in terms of departures from aposition of \fairness". The major contribution of the paper is the development of a Bayesianmodel and the associated computations to investigate such departures.ACKNOWLEDGMENTSThis work was partially supported by a grant from the Natural Sciences and EngineeringResearch Council of Canada. The author thanks James Dworkin, David Faurot and SteveGietschier for assistance in obtaining the data. The author also thanks the associate editor anda referee for helpful comments that lead to an improvement in the manuscript.APPENDIX: PROPRIETY OF THE POSTERIOR14



In light of the improper prior density [�; �; �1; �2][y] / 1=(�1�2), we establish that theposterior (3) is proper by showing that the integralZ Z Z Z Z 1�1�2 " nYi=1 1�1�2y2i g(�; �; �1; �2; yi) Ii# d� d� d�1 d�2 dy (8)is �nite whereg(�; �; �1; �2; yi) = exp((xi � yi + w01i�yi)2�2�21y2i + (zi � yi � w02i�yi)2�2�22y2i )and Ii = 8>>><>>>: I(yi < (xi + zi)=2) if di = 1I(yi > (xi + zi)=2) if di = 0 :Integrating �rst with respect to �, we concentrate on the inner integralZ exp( �12�21 nXi=1�xi � yi + w01i�yiyi �2) d� = �r11[det(A1A01)]1=2 exp� �12�21 t0�Q1t��where we have used the notation from Section 3 and have set Q1 = (I � A1(A1A01)�1A1) withA1 assumed full rank. Similarly, letting Q2 = (I � A2(A2A02)�1A2) with A2 assumed full rank,15



we haveZ exp( �12�22 nXi=1�zi � yi � w02i�yiyi �2) d� = �r22[det(A2A02)]1=2 exp� �12�22 t0�Q2t�� :Returning to the original integral (8), we establish that the posterior is proper ifZ "Z 1�n�r1+11 exp� �12�21 t0�Q1t�� d�1# � "Z 1�n�r2+12 exp� �12�22 t0�Q2t�� d�2# (Qni=1 Ii)(Qni=1 y2i ) dyis �nite. Working on the two inner integrals and recalling the norming constant of the InverseGamma distribution, the posterior is proper ifZ (t0�Q1t�)�(n�r1)=2 (t0�Q2t�)�(n�r2)=2 (Qni=1 Ii)(Qni=1 y2i ) dy (9)is �nite. We �rst need to check the singularities of the integrand in (9). Since Q1 and Q2 arepositive de�nite matrices, singularities only occur when any of the yi = 0, i = 1; : : : ; n, and it isstraightforward to show that the limit of the integrand is �nite as we approach the singularitiesprovided that n > (r1+r2+4)=2. Therefore it is only a matter of investigating the tail behaviourof (8), and since t0�Q1t� and t0�Q2t� are both bounded in the tails, integrability follows.To establish the existence of moments for �1 and �2, the proof is modi�ed by changing thenorming constants in the Inverse Gamma distributions. To establish the existence of moments for� and �, we modify the proof using the known moments of the multivariate normal distribution.16
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Table 1: Estimates of posterior means and standard deviations based on model (3).Parameter Post Mean Post Std Dev�1 .241 .028�2 -.011 .019�3 -.005 .020�4 -.007 .004�1 .198 .040�2 .004 .027�3 -.044 .029�4 .007 .005�1 .101 .007�2 .141 .012�1 � �2 -.040 .013Table 2: Estimates of posterior means and standard deviations based on model (7).Parameter Post Mean Post Std Dev�1 .237 .028�2 -.013 .019�3 -.004 .020�4 -.007 .004�1 .203 .040�2 .007 .027�3 -.045 .028�4 .007 .006�1 .103 .008�2 .139 .012�1 � �2 -.036 .013�1 2107.608 863.256�2 -836.505 351.106�3 -236.098 382.086�4 -65.895 119.51419


