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Abstract

When considering future performance in sport, age is an important feature for predic-

tion models. On average, players tend to improve from their rookie (earliest) season,

plateau, and then decline in performance until they retire from the league. In this

paper we apply Functional Principal Component Analysis to the careers of players

from the National Hockey League in order to construct individual aging curves. The

approach is nonparametric in the sense that a parametric structure is not imposed on

the aging curves. A main aspect of our work is the consideration of selection bias.
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1 INTRODUCTION

Many decisions made by front office staff of major sports clubs involve projecting the future

performance of players. In the case of drafting younger players, teams attempt to predict

a player’s future performance given their abilities relative to their peers in junior leagues.

However, decisions involving trades and free-agency are different from drafting decisions.

In these cases, a team must forecast the performance of players who have already been

entrenched in the league, and this is subject to the constraint that the number of players

on team rosters is fixed. The composition of players is constantly changing as older players

retire and younger players take on more prominent roles. In fantasy sports, the relationship

between performance and age is also greatly discussed (Cockcroft 2023). Therefore, it is

of vital interest to predict the future values of players as they age. The results of such

prediction models are referred to as aging curves. Aging curves can be difficult to construct

in team sports due to the fact that player performance is highly dependent on teammates

and the number of minutes played.

Aging curves have been studied in many sports including: golf (Berry, Reese and Larkey

1999), football (Young and Weckman 2008), baseball (Bradbury 2009), soccer (Swartz,

Arce and Parameswaran 2013), hockey (Brander, Egan and Yeung 2014), tennis (Mlakar

and Tušar 2015), cricket (Saikia, Bhattacharjee and Mukherjee 2019), basketball (Wakim

and Jin 2014) and snooker (McHale 2023).

The effect of aging on the body is a common issue for all athletes (Distefano and

Goodpaster 2018). For many sports, players reach their peak performance before the age of

30 years, and then generally decline as they age due to decreasing athleticism and increased

injury risk. The observance of this “peak” in performance has been studied, for example,

by Dendir (2016) and Bradbury (2009). Bradbury (2009) demonstrates that different skills

decline in baseball at different rates; baserunning, for example, declines at a much faster

rate than power. Most research reaches the general consensus that age effects are dependent

on position. For example, Brander, Egan and Yeung (2014) conclude that the peak age for

forwards in the National Hockey League (NHL) is between ages 27-28, while the peak age

for defensemen is between 28-29. Each player has a unique aging curve (due to different

body composition or previous athletic history, for example). However, it seems reasonable

that there should be some agreement in age curves between players.
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In the literature, there are two prominent general approaches for the construction of ag-

ing curves; (1) the so-called “Delta method” and (2) regression methods. The Delta method

calculates the difference between a player’s performance between years, and then averages

these differences over players. A feature of the Delta method is that it is not impacted

by the differences in quality between players. There are variations to the Delta method;

see for example, Lichtman (2009) and EvolvingWild (2017). With regression methods, the

response variable of interest (player performance) is regressed against the covariate age. Re-

gression methods may differ in the form of regression and whether additional covariates are

considered in the regression model (e.g., a player effect). Early regression methods tended

to take a parametric approach. For example, Fair (2008) and Bradbury (2009) imposed

quadratic shapes on aging curves in baseball. Villaroel, Mora and Gonzalez-Parra (2011)

consider both quadratic and cubic shapes with respect to the performance of triathletes.

Although convenient, parametric approaches do not permit freedom in the shape of aging

curves. For example, it has been observed in chess (Roring and Charness 2007) that perfor-

mance improvement leading to peak performance may occur at a steeper incline than the

decline in performance following the peak. Many of the more recent regression methods

tend to take a nonparametric or semiparametric approach. For example, Turtoro (2019)

uses generalized additive models (GAM) for constructing aging curves in the NHL.

Another distinguishing feature in the construction of aging curves is whether or not an

approach considers selection bias. Selection bias is a systematic statistical error caused by

drawing a non-random sample from a population. In sports, samples of player performances

are typically non-random because only the most talented players enter leagues at very early

ages. Moreover, these players are usually the same players who stay in the league the longest

(except in the case of early career altering injuries). Therefore, gifted players are typically

overly represented in both the left and the right tails of age distributions. Schuckers, Lopez

and Macdonald (2023) demonstrate the considerable impact of selection bias using data

from the NHL. Various approaches have been proposed that consider selection bias in the

construction of aging curves. These all involve imputation schemes that “add” data over

missing periods. For example, after a player retires, data are imputed for the years following

retirement. Lichtman (2009) takes a basic approach where regression methods impute data

based on best estimates. Schuckers, Lopez and Macdonald (2023) use more sophisticated

imputation schemes based on the simulation of missing data. They introduce thresholds
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for player performance at different ages and ensure that simulated data do not breach the

threshold. Nguyen and Matthews (2023) take the simulation approach one step further by

investigating the cause of missingness, and use different simulation approaches based on

the different causes of missingness.

Although there is now a considerable literature on methods developed for the construc-

tion of aging curves, there are several innovations in this paper. First, we use an approach

based on Functional Principal Component Analysis (FPCA). This is a nonparametric ap-

proach which permits flexibility in the shape of growth curves. Second, within the FPCA

framework, we account for selection bias by imposing an intuitive constraint on the corre-

sponding likelihood function. Third, and most importantly, we construct aging curves for

individual players. This is obviously an important contribution since players age differently.

The curves have a predictive component where curves can be extended beyond a player’s

current age. An important aspect of the FPCA model is that there is an underlying rela-

tionship between the individual aging curves, and this enables prediction. Previously, aging

curves have only been constructed for the so-called “average” player.

The proposed FPCA approach is predicated on Functional Data Analysis (FDA). In

FDA, we use spline basis functions to determine functional relationships. This provides a

relationship between performance and age that is essentially nonparametric. In addition, to

fitting separated aging curves for each player, an FDA approach can identify clusters from

principal component scores, allowing us to readily compare players. FPCA aging curves

have been previously considered in the context of basketball by Wakim and Jin (2014) where

implementation is based on conditional expectation using the PACE method. However, the

PACE approach does not account for the selection bias issue.

In Section 2, we describe the data and the player evaluation metric. In Section 3, we

carry out some exploratory data analysis to investigate aging patterns. In Section 4, we

outline the methods for constructing an aging curve using FPCA. Here, we briefly outline

some of the underlying mathematical background. In Section 5, we present the results of

our modelling. We conclude with a short discussion in Section 6.
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2 DATA

The data in this project was scraped from Sports Reference LLC at https://www.hockey-

reference.com. The website contains summary statistics (goals, points, games played, etc)

for each player in the NHL during the period 1920-2022. Originally, there were approxi-

mately 50,000 rows in the dataset before adjusting for duplicate rows (due to players chang-

ing teams mid-season). This led to n = 7, 393 unique players with 43,705 player-seasons

worth of data. The maximum player age in the dataset is 51 years (Gordie Howe), and the

minimum player age is 17 years (Wayne Gretzky). From an alternative study (Diamond

2000), the average career length in the NHL is 4.5 years.

2.1 Player Value

As a measure of player value, we use the point share PS statistic (Kubatko 2010). It is a

measure derived from the win share metric (James and Henzler 2002) that was originally

used to evaluate baseball players. Here, “points” refer to the points a team gains from

winning games, and not the points a player gains from scoring a goal or assisting on a goal in

hockey. Hence, the metric attempts to credit a player’s contribution to their team’s success.

This metric was chosen because we require a composite measure of performance that adjusts

for the quality of linemates. Goals and assists metrics are not composite measures since

they are not reflective of contributions to team defense, and would consequently overvalue

forwards.

The point share metric has been developed so that a hockey team with 100 team points

(e.g., 40 wins and 10 overtime losses) will have players whose individual point shares sum

to 100. Players may have a negative point share. Negative point shares indicate that a

player is losing team points relative to a replacement level player. Point shares are obtained

from both offensive and defensive component point shares. The offensive point share for

a player during a season is based on their goals created (a weighted sum of the player’s

goals and assists divided by team goals and assists), adjusted by the player’s minutes and

adjusted for the league environment (league goals divided by league points). There are also

positional adjustments for forwards and defensemen.

Over time, adjustments have been made to the point share calculation based on various
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rule changes. For example, player minutes on ice have only been recorded since the 2000-

2001 NHL season. Also, the number of games in the NHL season has increased over the

years and the NHL previously permitted tied games, which yielded one point to both

teams. Consequently the point share metric is not perfect; however it is still regarded as an

advanced statistic in hockey analytics. The point share PS statistic can be obtained from

https://www.hockey-reference.com. More details on it’s calculation are found in Kubatko

(2023).

Alternative metrics for assessing performance include those based on salary considera-

tions (Swartz, Arce and Parameswaran 2013). Also, there are limitations on the availability

of advanced match statistics for use in aging curves. For example, the NHL only started to

track individual shots and plus-minus statistics in 1960-1961.

3 EXPLORATORY DATA ANALYSIS

In Section 5, our FPCA analyses consider forwards and defensemen separately. In this sec-

tion, we provide some basic exploratory plots that motivate this distinction. It is suggested

that forwards and defensemen age differently in the NHL.

Figure 1 is a histogram based on what is called the “participation method” (Brander,

Egan and Young 2014). Here, every player-season is taken as an observation where age

is the recorded variable based on player age at the end of the season. The idea is that

players participate in the NHL during the seasons of their peak performance. For some,

this window may be short. Therefore, the modal regions of the histogram indicate peak

periods of performance. In the histograms, there are 28,871 observations corresponding to

forwards and 14,834 observations corresponding to defensemen. From Figure 1, we observe

that the modal age for both positions lies between 23-24 years of age. We also observe that

there is greater participation longevity for defenseman than forwards.

We also provide histograms for the ages of the rookie and retirement seasons of NHL

players in Figure 2 and Figure 3, respectively. From Figure 2, there is little difference

between the time when forwards and defensemen begin their careers. It appears that

most players begin their careers around 20-22 years of age. From Figure 3, there is some

indication that defensemen end their careers slightly later than forwards. There is much
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(a) Forwards (b) Defencemen

Figure 1: Histograms of the age of NHL players based on player-seasons from 1920-2022.

greater variability in the retirement age than the rookie age; most players retire before

38 years of age. Of course, “early retirement” may simply be a case of players no longer

achieving the standards of NHL play.

(a) Forwards (b) Defensemen

Figure 2: Histograms of rookie age by position.
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(a) Forwards (b) Defencemen

Figure 3: Histograms of retirement season age by position.

4 METHODS

4.1 Overview of FDA

FDA is a highly flexible statistical framework which is concerned with the modelling of

longitudinal data. FDA is a modern approach to multivariate statistical modelling, with

many applications as seen in Ramsay and Silverman (2005). A review of the current

advances in the topic can be found in Wang, Chiou and Müller (2016). Recently, FDA has

been used in the analysis of sports data, as seen in Guan et al. (2022) where it is used

to specify conditional distributions for in-game win probabilities in rugby. In Chen and

Fan (2018), FDA is used to model the score difference process in basketball. Statistical

contributions to sport are highlighted in the handbook by Albert et al. (2017).

FDA is different from well-known related methods. For example, unlike time series

analysis, FDA does not impose underlying assumptions regarding stationarity. Also, un-

like standard multivariate statistics whose data consist of multiple measurements for each

subject, FDA curves are viewed as infinite-dimensional random vectors in a functional

space. There is an underlying assumption in FDA that observed samples are independent

stochastic processes. FDA is particularly suited to handle sparse data.

FDA can be used to perform a number of common machine learning tasks such as

classification, clustering, ANOVA, regression, principal component analysis, interpolation
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and extrapolation. The enhancement provided by FDA is that point estimators are replaced

with functional estimators. Some benefits of FDA include the representation of observed

data as smooth functions, dimensionality reduction and the ability to compute derivatives

of smoothed estimators. The are numerous packages that can be used to perform FDA; the

common ones being scikit-fda (Python) and the R package fda available on CRAN.

4.2 Spline Regression for FDA

When performing FDA, we consider the observations from each individual arising from a

random, smooth function. For example, suppose that we observe data from i = 1, . . . , N

players, and for the ith player, we observe m data points (yi1, . . . , yim) at time points

t1, . . . , tm. Then the core assumption in FDA is that

yij = Xi(tij) + ϵij (1)

where the ϵij are independent and normally distributed with mean θ and variance σ2.

Equation (1) explicitly assumes that the observations from individual i can be modelled by

a single stochastic function Xi(t) after accounting for measurement error ϵij. Although we

suppress additional notation, we note that the number of observed points m can actually

vary from player to player. In order to approximate the functions Xi(t), we introduce Q

spline basis functions b1(t), . . . , bQ(t). Spline functions are piecewise polynomials joined at

specific points, called knots. The number of knots τ is determined by τ = Q− d+ 1 where

d is the degree of the polynomial. We write

Xi(t) ≈
Q∑

q=1

αiqbq(t)

for sufficiently large Q where the αiq are the coefficients of the spline basis functions. We

estimate αi1, . . . , αiQ, by minimizing the least squares loss function

m∑
j=1

(
yij −

Q∑
q=1

αiqbq(t)

)2

.
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Once the αik have been estimated via α̂ik, this leads to the estimated aging curve

X̂i(t) =

Q∑
q=1

α̂iqbq(t) (2)

for the ith player. We can also compute statistics such as the mean aging curve across all

players

µ̂(t) =

∑N
i=1 X̂i(t)

N
.

4.3 Functional Principal Component Analysis

In our problem, assume for the time being that the number of observations m is constant

across all players, i = 1, . . . , N and that tik = tjk for all players i, j and all ages k = 1, . . . ,m.

FPCA begins with the estimated covariance function

v̂(s, t) =
1

N

N∑
i=1

(
X̂i(t)− µ̂(t)

)(
X̂i(s)− µ̂(s)

)
which describes the correlation of aging curves at ages s and t, where X̂i(t) is the estimated

aging curve in (2) corresponding to player i.

Our objective is to obtain the orthonormal eigenfunctions ξ̂1(t), . . . , ξ̂p(t) and the eigen-

values ρ1, . . . , ρp by solving the equation∫
v̂(s, t)ξ(s) ds = ρξ(t)

where we introduce the dimensionality reduction p ≤ m. The eigenfunctions ξ̂1(t), . . . , ξ̂p(t)

are known as functional principal components. This leads to FPC scores

siℓ =

∫
ξ̂ℓ(t)(X̂i(t)− µ̂(t)) dt (3)

for players i = 1, . . . , N and the ℓth functional principal component, ℓ = 1, . . . , p.

It is the FPC scores siℓ in (3) that readily permit the comparison of players in lower-
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dimensional settings. Once we have computed all of the FPCs terms, individual aging

curves are expressed by

X̂i(t) = µ̂(t) +

p∑
ℓ=1

siℓξ̂ℓ(t) . (4)

The formula (4) follows from the Karhunen–Loève expansion. The truncation is based on

the first p principal components that explain most of the variation between curves.

4.4 FPCA using imFunPCA

The conventional FPCA method assumes that missing data are missing at random (MAR).

For the aging curves, we know that this is not the case due to selection bias. In Shi et

al. (2021), the authors adjust for this bias using a constrained likelihood approach for

missing data. For example, assuming that the data yij are normally distributed with the

mean Xi(tij) = µ(tij) +
∑p

ℓ=1{siℓξℓ(tij)} and the variance σ2, the authors show that the

functional principal components can be calculated by maximizing the likelihood function

N∏
i=1

M∏
j=1

f(yij)
1−δijP (yij ≤ ci)

δij , (5)

where M is the index corresponding to maximum age, f(yij) is the probability density

function of yij, δij is an indicator function corresponding to whether the jth observation for

player i is missing where player i has mi observations. Here, we allow for different numbers

of observations per player. The missing data in the right tail have the natural constraint

that once a player is out of the league, future values of performance are no larger than ci; ci

is set to be the final observation for the ith player. More details concerning the imFunPCA

method are provided in Shi et al. (2021).

5 RESULTS

We restrict the data to include only player-years 22-34 with a minimum of 30 games played

in a season. We also limit the data to players who had an NHL career lasting at least seven

seasons. This provides us with 873 forwards and 438 defencemen. We randomly partitioned
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the data into training sets (750 forwards, 370 defensemen) and testing sets (123 forwards,

68 defensemen) such that the testing sets form approximately 15% of the data.

First, we obtained the estimated mean function µ̂(t) using the spline regression method

outlined in Section 4.2 on the training data. We used Q = 6 spline basis functions of degree

three, resulting in τ = 4 knots. Elijah, can you reproduce Fig 4 without normalization?

The mean function is shown in Figure 4 where we observe concave shapes with peaks around

26-28 years. This period of peak performance differs from the participation peak observed

in Figure 1. In keeping with the consideration of selection bias, we note that both curves

in Figure 4 (forwards and defensemen) decline quickly past the age of 30 years, and that

the curves are nearly indistinguishable.

(a) Forwards (b) Defensemen

Figure 4: Plots of the estimated mean function for FPCA.

Figure 5 shows the estimated first functional principal component ξ̂1(t). We notice simi-

lar trends between the two positions. We interpret the first functional principal component

as highlighting performance change between a player’s early career (22-28 years) and late

career (28-34 years). Hence, a player i with a large positive FPCA score si1 given by (3)

corresponds to a player who performs extremely well in their early career and poorly in

their late career.

Figure 6 shows the estimated second functional principal component ξ̂2(t) which appears

to have an up-and-down pattern for both positions. We interpret the second functional

principal component as highlighting performance change between a player’s peak age and

their early and late stages of their career. Hence, a player i with a large positive FPCA
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(a) Forwards (b) Defensemen

Figure 5: The estimated first functional principal component for the forwards and the
defensemen.

score si2 given by (3) corresponds to a player who has an exceptional peak but is not

distinguished in the early and late stages of their career.

(a) Forwards (b) Defensemen

Figure 6: The estimated second functional principal component for the forwards and the
defensemen.

5.1 Using FPCA for Prediction

I like this section very much. I think it is important, I like the general structure of providing

and discussing Table 1. However, I have confusion on several fronts. First, I am wondering
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about the predictions Xi(tij). I believe that you cannot predict future seasons for a player

unless you have some existing seasons for the player. The existing seasons are used to find

the player-specific FPCA components. So, I am wondering about the set D below. I think

we need some observed seasons, and then D might be, for example, seasons beyond 28 years

of age for which yij exists. Only when yij exists, can we calculate the MAEi. So, I think

D should be described differently and carefully. Now, regarding MAEi, I believe this is a

sum of absolute errors over years where we really have data. But in Table 1, we discuss

career PS differences. So I don’t think the absolute value sign makes sense. Also, right now,

things are not comparable for a player who is predicted for 2 years versus a player who is

predicted for 5 years, since there the sum will be most likely greater for the latter. I guess

I am saying that career PS differences might instead be changed to yearly PS differences.

For the prediction problem, we first estimate the first two principal components using

the training data. Prediction is then based on those players included in the testing set. For

the testing data, we estimated FPC scores (3)

The prediction error for the ith player is given by the mean absolute error

MAEi =
∑
j∈D

|yij −Xi(tij)|

where j ∈ D are the observed ages, yij is the true point share performance and Xi(tij)

is the prediction based on FPCA. We measure average FPCA prediction error for the N

players in the testing set

Test Error =
1

N

N∑
i=1

MAEi .

Table 1 provides the test error for FPCA. The error corresponds to the difference in

career point shares between the prediction and actual results. Hence a test error of 10

corresponds to a model being 10 career point shares different from the true performance of

the player. For a player who plays for 10 years in the NHL, this error would correspond

to a difference in one PS per year between the predicted and actual performance. To

investigate the FPCA approach, we calculate the testing error from using the Delta method

(Lichtman 2009) based on the same training and testing datasets. We observe that FPCA

is comparable to the Delta methods in terms of forward prediction and is better in terms
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of defensemen prediction.

Position Method Error

Forwards FPCA 21.5
Delta 19.2

Defencemen FPCA 14.2
Delta 18.3

Table 1: Prediction performance of FPCA versus the Delta method.

This investigation highlights one of the major benefits of FPCA analysis. We can

approximate the FPC scores from a player’s early seasons, and then use the estimated mean

curve and estimated FPCA eigenfunctions to forecast the player’s future performance. This

may be of great value to front office staff at major sports clubs.

5.2 Using FPCA for Clustering

I also like this section, but the clustering has been done using PACE. Could we do the

cluster exercise using our approach according to my simple suggestion below?

Cluster analysis is an unsupervised learning technique where we attempt to form groups

of subjects that share common characteristics. If the clustering is effective, then one would

see significant variation between groups. We use the FPCA score estimates sij given by

(3) to cluster players. We choose p = 2 principal components, and plot the pairs of points

in Figure 7. We colour-code the players into two categories according to whether they

were ever selected to an all-star team. From the separation in the colours, it seems that

clustering was effective. (Note that Fig 7 needs to be produced as described above.)

6 DISCUSSION

Discuss benefits and limitations.
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(a) Forwards (b) Defensemen

Figure 7: Clustering the FPC scores by position. The colour-coding refers to players’ all-
star status.

7 REFERENCES

Albert, J.A., Glickman, M.E., Swartz, T.B. and Koning, R.H., Editors (2017). Handbook of

Statistical Methods and Analyses in Sports, Chapman & Hall/CRC Handbooks of Modern

Statistical Methods, Boca Raton.

Berry, S.M., Reese, C.S. and Larkey, P.D. (1999). Bridging different eras in sports. Journal of

the American Statistical Association, 94(447), 661–676.

Bradbury, J.C. (2009). Peak athletic performance and ageing: evidence from baseball. Journal

of Sports Sciences, 27(6), 599-610.

Brander, J.A., Egan, E.J. and Yeung, L. (2014). Estimating the effects of age on NHL player

performance. Journal of Quantitative Analysis in Sports, 10(2), 241-259.

Chen, T. and Fan, Q. (2018). A functional data approach to model score difference process in

professional basketball games. Journal of Applied Statistics, 45(1), 112-127.

Cockcroft, T.H. (2023). Fantasy football: What age do players peak/decline? ESPN Fan-

tasy, Accessed September 29, 2023 at https://www.espn.co.uk/fantasy/football/story/ /id/

37933720/2023-fantasy-football-players-peak-decline-quarterback-running-back-wide-receiver

16



Dendir, S. (2016). When do soccer players peak? A note. Journal of Sports Analytics, 2(2),

89-105.

Diamond, D. (2000). Total Hockey (2nd ed.), Total Sports Publishing.

Distefano, G. and Goodpaster, B.H. (2018). Effects of exercise and aging on skeletal muscle.

Cold Spring Harbor Perspectives in Medicine, 8(3), 1-15. a029785.

EvolvingWild (2017). A new look at aging curves for NHL skaters. Hockey Graphs, Accessed

September 5, 2023 at https://hockey-graphs.com/2017/04/10/a-new-look-at-aging-curves-

for-nhl-skaters-part-2/

Fair, R.C. (2008). Estimated age effects in baseball. Journal of Quantitative Analysis in Sports,

4(1), Article 1.

Guan, T., Nguyen, R., Cao, J. and Swartz, T.B. (2022). In-game win probabilities for the

National Rugby League. The Annals of Applied Statistics, 16(1), 349-367.

James, B. and Henzler J. (2002). Win Shares (1st ed.), STATS Pub.

Kubatko, J. (2010). Calculating point shares. Hockey-Reference.com, Accessed September 5,

2023 at https://www.hockey-reference.com/about/point shares.html

Lichtman, M. (2009). How do baseball players age (Part 2)? The Hardball Times, Accessed

September 5, 2023 at https://tht.fangraphs.com/how-do-baseball-players-age-part-2/

McHale, I. (2023). A flexible mixed model for the relationship between age and performance:

Application to football, golf and snooker. 10th MathSport International Conference, Bu-

dapest, Hungary. Abstract accessed September 25, 2023 at https://drive.google.com/file/d/

19lGMQ0j0j3365mHEHiz6YpyxmzJS9nE2/view
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