
Improved Draws for Highland Dance

Tim B. Swartz ∗

Abstract

In the sport of Highland Dance, Championships are often contested where the order

of dance is randomized in each of the four dances. As it is a widely held belief that

competing in the latter sets is advantageous, this paper develops algorithms where

balance is achieved in the dance order. Specifically, draws are randomly generated

where the sum of the dance orders over all four dances is constant for each dancer.

Keywords : Highland Dance, magic rectangles, random number generation, restricted

permutations.

∗Tim Swartz is Professor, Department of Statistics and Actuarial Science, Simon Fraser University,
8888 University Drive, Burnaby BC, Canada V5A1S6. The author has been partially supported by the
Natural Sciences and Engineering Research Council of Canada. The author thanks Mary Munro (SOBHD
judge) and Philippa Swartz (dancer) for helpful discussions concerning Highland Dance.

1



1 INTRODUCTION

The origin of Highland Dance precedes recorded history and has today evolved into a

highly technical and athletic sport (Flett and Flett 1964). It might be said that the

modern period of competitive Highland Dance began in 1950 when the Scottish Official

Board of Highland Dancing (SOBHD) was formed. The SOBHD is the umbrella organi-

zation for Highland Dancing Associations worldwide and is responsible for many aspects

of Highland Dance including the standardization of dance steps, the rules of competition

and the certification of instructors.

The most prestigious competitions sanctioned by the SOBHD are known as Champi-

onships where the competitors dance four dances; the Fling, the Sword, the Sean Truibhas

and the Reel. In a Championship, typically four competitors simultaneously dance the

Fling, and are judged. This is referred to as the first set. Then in the second set, four

more competitors perform and are judged not only with respect to one another, but also

in comparison to those who danced in the first set. The sets continue until all competi-

tors have completed the Fling. The same process is then followed for the Sword, the

Sean Truibhas and the Reel. Championship placings are given out based on the overall

performance in all four dances. The website www.toeandheel.com is a good resource for

all matters related to Highland Dance.

Although the SOBHD has many rules, the SOBHD does not dictate the order in which

competitors dance the four dances. Some Championships adhere to the rule whereby

competitors dance in the inverse order in which their entry form was received. However,

many Championships do not proceed according to the “first to register, last to dance”

rule. It is a widely held belief that competing in the latter sets is advantageous. Therefore

many Championships instead hold a draw where the dance order is randomized for each

of the four dances. Random draws are easily implemented, perhaps by choosing numbers

2



from a hat without replacement.

An example of a draw is given in Table 1 which refers to the 10-11 year old age

group in the ScotDance Canada Championship Series 2006 - Canadian Inter-Provincial

Championship, July 3, 2006. The ScotDance Canada Championship Series (SDCCS) is

an annual event and is the largest Highland Dance gathering in North America. The

SDCCS typically attracts in the neighbourhood of 1000 dancers. To interpret Table 1,

we observe that there are n = 22 competitors where the third competitor danced in the

18-th position in the Fling, the 7-th position in the Sword, the 11-th position in the Sean

Truibhas and the 12-th position in the Reel. Although the draw was “fair” in the sense

that each dance was based on a random permutation of the integers 1, . . . , n, it is clear

that some competitors danced on average much earlier/later than others. For example,

the 14-th competitor danced in the early sets in each of the four dances.

The motivation of this paper is the development of algorithms which produce ran-

dom draws that are more balanced. Specifically, we attempt to generate draws where

the sum of the dance orders over all four dances is constant for each competitor. Intro-

ducing some notation, we refer to X = (xij) = (x1, x2, x3, x4) as a draw matrix where

xij denotes the dance order of competitor i = 1, . . . , n in dance j = 1, 2, 3, 4. Then the

columns x1, x2, x3, x4 each consist of a permutation of the integers 1, . . . , n. Our balance

requirement imposes the added restriction

xi1 + xi2 + xi3 + xi4 = 2(n + 1), i = 1, . . . , n. (1)

Restricted draws in Highland Dance are related to magic rectangles in combinatorics

(Hagedorn 1999). A normal magic rectange is an n by m matrix consisting of the integers

1, . . . , nm where every row sums to the row constant m and every column sums to the

column constant n. The existence and construction of magic rectangles and their variants

3



Table 1: Actual draw for the 10-11 year age group at the SDCCS 2006 Canadian Inter-
Provincial Championship.

Competitor Fling Sword ST Reel
1 14 5 13 1
2 5 6 5 11
3 18 7 11 12
4 21 13 6 22
5 11 20 12 20
6 15 15 2 4
7 20 9 7 2
8 3 8 15 7
9 17 12 14 16

10 16 17 1 8
11 1 10 20 19
12 22 21 4 14
13 10 19 19 5
14 4 3 3 6
15 2 22 16 15
16 8 1 18 3
17 12 16 22 9
18 7 18 8 13
19 6 2 10 21
20 13 11 9 18
21 19 4 21 10
22 9 14 17 17

4



are two questions that are of interest to researchers. Restricted draws in Highland Dance

are also related to various experimental designs that arise in statistics. For example, the

search and enumeration of orthogonal arrays are important in achieving balance in frac-

tional factorial designs. Design choice is also important with respect to the confounding of

variables. Li, Deng and Tang (2004) use a minimum G-aberration criterion in obtaining

good designs.

In section 2, we begin by exploring the vast space of draw matrices which satisfy the

balance constraint (1). This leads to an algorithm for generating draws that does not

require the enumeration of the space. A downside of the algorithm is that it can be

computationally demanding for large values of n. To this end, we present a simpler and

faster algorithm that generates from a subspace of the original space. In section 3, we

discuss the implementation of the algorithm and its potential use in the competitive world

of Highland Dance.

2 GENERATING RESTRICTED PERMUTATIONS

When generating uniformly from a finite set, one of the first approaches that comes to

mind is to enumerate the set, put the elements of the set in a 1:1 correspondence with the

integers 1, . . . , N , and then invoke a uniform generator on {1, . . . , N}. Although simple

in theory, this approach is difficult when the enumeration process is challenging.

In the case of generating uniform draw matrices subject to the constraint (1), the

enumeration process is challenging. We take an approach where complete enumeration

of the set is not necessary. Instead, we generate uniform draw matrices by breaking the

process into manageable steps. The first step is the generation of the draw for the Fling.

This corresponds to generating the column x1, a permutation of the integers 1, . . . , n. The

first step is computationally simple and fast, as we implement the pseudo-code:

5



• let xi1 = i i = 1, . . . , n

• for m = n, . . . , 2

- uniformly generate k ∈ (1, . . . , m)

- exchange xm1 and xk1

The second step is also computationally simple and fast, as similarly, we generate the

column x2, a permutation of the integers 1, . . . , n for the Sword.

At this point, it is instructive to reflect on the scope of the remaining problem; the

generation of x3 and x4 subject to constraint (1). Given x1 and x2, it is possible that

there are very few candidates x3 and x4 that satisfy (1). For example, if xi1 = xi2 = i for

i = 1, . . . , n, then the only solution is xi3 = xi4 = n + 1− i for i = 1, . . . , n. Alternatively,

given x1 and x2, it is possible that there are many candidates x3 and x4 that satisfy (1).

For example, if xi1 = i and xi2 = n + 1 − i for i = 1, . . . , n, then x3 can be any of the n!

permutations of the integers 1, . . . , n and xi4 = n+1−xi3, i = 1, . . . , n. It is also obvious

that given any x1 and x2, there exists at least one solution x3 and x4 that satisfies (1).

The third and final step of the algorithm maintains the philosophy of breaking the

process into manageable steps. For this, we generate x3 componentwise, going down

(and up) the column vector x3. Note that when xi3 is generated, xi4 is determined via

xi4 = 2(n + 1) − xi1 − xi2 − xi3. We define Ii as the index set for xi3, i = 1, . . . , n − 1. Ii

is the set of candidate values of xi3 given x1 and x2, and given the previously generated

values x13, . . . , xi−1,3. It is straightforward to determine Ii at any point in the third step.

For example, I1 = {max{1, n− x11 − x12 + 2}, . . . , min{n, 2n− x11 − x12 + 1}}. The third

step is described by the following pseudo-code:

6



• i = 0

• i = i + 1 ⋆

• if i = n

- then stop

• if Ii is the empty set

- then remove xi−1,3 from Ii−1 and set i = i − 2

- else uniformly generate xi3 ∈ Ii

• goto step ⋆

Since we would like to make the algorithm as efficient as possible, it is clear that the

speed of the third step is affected by the frequency with which empty sets are encountered.

The occurrence of an empty set implies that the draw matrix with its current values does

not satisfy constraint (1). When an empty set is encountered, the algorithm moves one

position up the column of x3 and attempts to generate an acceptable value. Going up

the column x3 corresponds to a rejection step using the rejection algorithm for variate

generation (see Evans and Swartz 2000). We have found that a temporary reordering

of the dancers is effective in improving the speed of the algorithm. The idea is that

we attempt to deal earlier with dancers who have smaller (i.e. more restrictive) index

sets. More specifically, we temporarily sort the rows of the draw matrix according to

the criterion Ci = min{xi1 + xi2, 2(n + 1) − xi1 + xi2} with the top rows of the matrix

corresponding to small values of Ci.

Apart from the simplicity of the proposed algorithm, one of the nice features is that it

generates uniform draw matrices from the full space of draw matrices subject to restriction

(1). However, when the number of competitors n is large, the algorithm is sometimes very

slow in generating a draw matrix. To this end, we propose a second algorithm which is

always fast but generates draw matrices from a subspace of the original space. Fortunately,

the subspace is still very large.

7



The second algorithm proceeds as in the first algorithm by efficiently generating per-

mutations x1 and x2. That is, random draws are generated for both the Fling and the

Sword. We then set xi3 = n+1−xi1 and xi4 = n+1−xi2 for i = 1, . . . , n, and this defines

a draw matrix that satisfies (1). We then consider the distinct values of xi3 + xi4 for all

i = 1, . . . , n. For each distinct value, we permute the rows of the draw matrix X which

share the value. Clearly, the row permutations leave the restriction (1) intact. Finally,

we permute the four columns, and the column permutation also leaves the restriction (1)

intact. An example of a draw matrix which satisfies (1) but cannot be generated by the

second algorithm is

X =





















1 1 4 4

3 3 1 3

2 4 2 2

4 2 3 1





















.

To get a sense of the relative sizes of the sets of draw matrices, consider the case n = 4.

There are a total of (4!)4 = 331776 draw matrices obtained by permuting the entries

within each of the four columns. However, there are only 2520 draw matrices that satisfy

(1), and there are 1944 draw matrices that satisfy (1) and can be generated via the second

algorithm.

3 IMPLEMENTATION AND DISCUSSION

In this paper, we have proposed two algorithms for the generation of draw matrices in

Highland Dancing Championships. The motivation of this work is an attempt to improve

draws so that the order in which competitors dance is balanced across the four dances.

8



We have implemented the algorithms using a perl script which invokes a Fortran

programme. The software is free to use and is available at the website

www.stat.sfu.ca/∼tim/highland/highland.html

The interface is simple. A user is required to submit the number of dancers 1 ≤ n ≤ 99

and an integer seed. The purpose of the seed is to allow officials to replicate draws when

required and to generate different random draw matrices.

The perl script has been coded such that the first algorithm is invoked when n ≤ 28,

and the second algorithm is invoked when n > 28. In our investigations, when n = 28, a

user should not have to wait more than a minute to obtain a generated draw. Note that

when n is large, say n = 70, the first algorithm may require several days of computation

with some seeds. Our choice of n = 28 as the cutoff point was based on computational

speed and was also based on a practical matter. In the annual Canadian Inter-Provincial

Championship, there are typically at most 28 competitors. These competitors consist of

the three representatives from each of 9 provinces and the former Canadian Champion.

For illustration of our software, in Table 2, we provide a hypothetical draw for the 10-11

year old age group at the SDCCS 2006 Canadian Inter-Provincial Championship based

on the integer seed 4327.

We see the possibility of the generalization of the ideas found in this paper to other

sports where aggregate prizes are awarded based on the performance in p sub-events. In

this case, a random draw with n competitors would correspond to an n by p matrix rather

than an n by 4 matrix. Events such as the men’s individual all-around competition in

gymnastics comes to mind where this is based on p = 6 sub-events.

Finally, we mention that our software is being presented to the executive members of

ScotDance BC and ScotDance Canada for consideration in future Championships.

9



Table 2: Hypothetical draw for the 10-11 year age group at the SDCCS 2006 Canadian
Inter-Provincial Championship.

Competitor Fling Sword ST Reel
1 18 15 2 11
2 7 16 22 1
3 2 11 12 21
4 13 5 21 7
5 19 10 11 6
6 4 21 19 2
7 21 6 5 14
8 15 2 10 19
9 9 19 6 12

10 12 1 20 13
11 11 8 9 18
12 8 9 13 16
13 16 22 4 4
14 1 12 18 15
15 17 18 1 10
16 14 20 3 9
17 5 14 7 20
18 20 13 8 5
19 3 4 17 22
20 22 7 14 3
21 10 3 16 17
22 6 17 15 8

10



4 REFERENCES

Evans, M. and Swartz, T.B. (2000). Approximating Integrals via Monte Carlo and Determin-

istic Methods, Oxford University Press.

Flett, J.F. and Flett, T.M. (1964). Traditional Dancing in Scotland, London: Routledge &
Paul.

Hagedorn, T.R. (1999). “Magic rectangles revisted”, Discrete Mathematics, (207), 65-72.

Li, Y., Deng, L.Y. and Tang, B. (2004). “Design catalog based on minimum G-aberration”,
Journal of Statistical Planning and Inference, (124), 219-230.

11


