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A–1 Find, with explanation, the maximum value of f(x) = x3−3x on the set of all real numbers x satisfying x4 +36 ≤ 13x2.

Solution: Write the constraint as

(x2 − 13/2)2 + 36 ≤ 169/4

or

(x2 − 13/2)2 ≤ 25/4.

This becomes

|x2 − 13/2| ≤ 5/2

or

4 ≤ x2 ≤ 9

which is the union of−3 ≤ x ≤ −2 and 2 ≤ x ≤ 3. The given cubic has derivative 3(x2−1) which is positive
for x > 1 and for x < −1. Thus the maximum over each of the two intervals occurs at the right hand end of
that interval; that is, the maximum is either at x = −2 or at x = 3. The former gives the value −8 + 6 = −2
while the latter gives 27− 9 = 18. Thus the maximum value is 18 which occurs when x = 3.

A–2 What is the units (i.e., rightmost) digit of ⌊
1020000

10100 + 3

⌋
?

Solution: Write the quantity inside the floor signs as

10m
∞∑

n=0

(
−3

10100

)n

where m = 19900. Terms with n < 199 give, after multiplication by 10m,

(−1)n3n10m−100n

which is divisible by 10; such terms contribute a 0 in the units place. The terms with n > 199 add up to

10m
(

3

10100

)200
1

1 + 3/10100
=

3200

10100(1− 3/10100)

which is less than 1. Finally the term with n = 199 gives

−3199

so the units digit desired is just the residue class, modulo 10, of this term. In fact

34 ≡ 1 mod 10

so that −3199 is congruent to −33 which is -27 which is congruent to 3. So the answer is 3.

A–3 Evaluate
∑∞

n=0 Arccot(n2 + n + 1), where Arccot t for t ≥ 0 denotes the number θ in the interval 0 < θ ≤ π/2 with
cot θ = t.
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Solution: Suppose tan θn = 1/n. Then

tan(θn − θn+1) =
tan(θn)− tan(θn+1)

1 + tan(θn+1) tan(θn)
=

1

n2 + n+ 1
.

We have cotφn = n2 + n+ 1 if and only if tanφn = 1/(n2 + n+ 1) so

Arccot(n2 + n+ 1) = θn − θn+1

Sum over n = 1 to M and get

M∑
n=1

Arccot(n2 + n+ 1) = θ1 − θM+1

As M →∞ we see θM → 0 so

∞∑
n=0

Arccot(n2 + n+ 1) = Arccot(1) + θ1 = π/2.

A–4 A transversal of an n× n matrix A consists of n entries of A, no two in the same row or column. Let f(n) be the number
of n× n matrices A satisfying the following two conditions:

(a) Each entry αi,j of A is in the set {−1, 0, 1}.
(b) The sum of the n entries of a transversal is the same for all transversals of A.

An example of such a matrix A is

A =

 −1 0 −1
0 1 0
0 1 0

 .

Determine with proof a formula for f(n) of the form

f(n) = a1b
n
1 + a2b

n
2 + a3b

n
3 + a4,

where the ai’s and bi’s are rational numbers.

Solution: Consider a transversal sum including the terms Aij and Ai′j′ . Replacing these two terms in the sum
by Aij′ and Ai′j gives another transversal with the same sum so

Aij +Ai′j′ = Aij′ +Ai′j .

Rewrite this as

Aij −Aij′ = Ai′j −Ai′j′

from which we see that the difference between column j and column j′ is the same in every row. Thus every
column may be obtained from column 1 by adding the same number to each entry.
If the entries in column 1 are all the same then we may satisfy the conditions of the problem by making every
other column a constant. In each column there are 3 choices for the constant entry so there are 3n matrices of
the desired form in which the first column is constant.
There are 2n−2 possible first columns which are not constant and do not include the number -1. For each such
we can make column j for each j ≥ 2 by copying column 1 or by subtracting 1. Thus I can make 2 choices for
each of n− 1 columns generating

2n−1 (2n − 2)

matrices. There are the same number of matrices in which the first column is non constant and contains no 1s.
This leaves

3n − 2(2n − 2)− 3 = 3n − 2 · 2n + 1
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ways to chooses column 1 so that the largest entry in column 1 is 1 and the smallest is -1. For these choices all
other columns must be a copy of column 1. There are thus

f(n) = (3n − 2 · 2n + 1) + 2 · 2n−1 (2n − 2) + 3n = 2 · 3n + 4n − 4 · 2n + 1

matrices with the desired property. Notice incidentally that if

Ai1 = Aij + cj

for each i and j then the sum of any transversal is the sum of column 1 minus the sum of the cj so that these
processes build matrices of the desired form.

A–5 Suppose f1(x), f2(x), . . . , fn(x) are functions of n real variables x = (x1, . . . , xn) with continuous second-order partial
derivatives everywhere on Rn. Suppose further that there are constants cij such that

∂fi
∂xj
− ∂fj
∂xi

= cij

for all i and j, 1 ≤ i ≤ n, 1 ≤ j ≤ n. Prove that there is a function g(x) on Rn such that fi + ∂g/∂xi is linear for all i,
1 ≤ i ≤ n. (A linear function is one of the form

a0 + a1x1 + a2x2 + · · ·+ anxn.)

Solution: We will define

hi(x) = fi −
∑
j

bijxj

for some constants bij chosen to make

∂hi
∂xj
− ∂hj
∂xi

= 0.

This will guarantee that the function h with components hi is the gradient of a potential g. The function g may
be taken to be the line integral of h from the origin to the point x which is free of the path by virtue of the
condition on h. It remains to find the constants bij . For a given set of constants we find

∂hi
∂xj
− ∂hj
∂xi

= cij − (bij − bji).

Notice that

cij + cji = 0

and define bij = cij/2 to find

cij − (bij − bji) = cij − cij/2 + cji/2 = cij − cij/2− cij/2 = 0.

This finishes the problem.

A–6 Let a1, a2, . . . , an be real numbers, and let b1, b2, . . . , bn be distinct positive integers. Suppose that there is a polynomial
f(x) satisfying the identity

(1− x)nf(x) = 1 +

n∑
i=1

aix
bi .

Find a simple expression (not involving any sums) for f(1) in terms of b1, b2, . . . , bn and n (but independent of
a1, a2, . . . , an).



4

Solution: For n = 1 we have

f(x) =
1 + axb

1− x

which is a polynomial if and only if 1 − x divides the numerator which requires the numerator to vanish at
x = 1. So a = −1 and

f(x) = 1 + x+ · · ·+ xb−1

so that f(1) = b. In general the RHS has a 0 of order n at 1 so its derivatives up to order n − 1 vanish at
x = 1. Moreover the value of f at 1 may be computed by applying l’Hôpital’s rule n times. We get

−1 =
∑

ai

0 =
∑

aibi

... =
...

0 =
∑

aibi(bi − 1) · · · (bi − n+ 1)

We may write

bli = bi(bi − 1) · · · (bi − l + 1) + bi(bi − 2) · · · (bi − l + 1) + 2b2i (bi − 3) · · · (bi − l + 1) + · · ·

to see that

1 =
∑

ai

0 =
∑

aibi

... =
...

0 =
∑

aib
n−1
i

On the other hand if I differentiate the given formula n times and evaluate at x = 1 I get

n!(−1)nf(1) =
∑

aibi(bi − 1) · · · (bi − n)

The right hand side may be expanded as a sum of terms of the form aib
l
i for l ≤ n So we get, for suitable

constants cl,

n!(−1)nf(1) =

n∑
l=1

cl
∑
i

aib
l
i =

∑
i

aib
n
i .

If B is the Vandermonde matrix of order n whose lth row contains entries bl−1i and A is the column vector
of ai then BA = −e where e is the first natural basis vector in Rn. Since the bi are distinct the matrix B in
invertible and A = −B−1e determines the as from the bs. I now suspect the rest of the problem needs just an
application of known theory of Vandermonde matrices!
Since the only non-zero entry in e is the first we need only compute the first column of B−1. The jth entry in
the first column of B−1 is the ratio of two determinants times (−1)j+1. The denominator is the determinant ∆
of the Vandermonde matrix B, namely,

∆ =
∏
i<j

(bj − bi).

The numerator is the determinant of the matrix obtained by striking out row 1 and column j from B. Each
column of this matrix is of the form b, b2, . . . , bn−1 with b being one of the bi omitting i = j. Factoring out one
power of b we find the numerator is ∏

i 6=j

bi∆j
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where ∆j is the determinant of the Vandermonde matrix of order n − 1 with columns which are powers of bk
for k 6= j. To compute

∑
aib

n
i we multiply this element of the matrix inverse by -1 and by (−1)j+1bnj to get

∑
i

aib
n
i =

[∑
bn−1i (−1)j+2 ∆j

∆

]∏
bi.

I claim that ∑
bn−1i (−1)j+1∆j = ∆.

Now compute the determinant of B by expanding in minors about the elements of the last row. Striking out the
last row and column j gives the Vandermonde matrix of order n− 1 so that

∆ =

n∑
j=1

(−1)n+jbn−1j ∆j

It follows that ∑
i

aib
n
i = (−1)n

∏
bj

and

f(1) =
∏

bj/n!

B–1 Inscribe a rectangle of base b and height h in a circle of radius one, and inscribe an isosceles triangle in the region of the
circle cut off by one base of the rectangle (with that side as the base of the triangle). For what value of h do the rectangle
and triangle have the same area?

Solution: We have (b/2)2 + (h/2)2 = 1. The area of the rectangle is bh. The height if the triangle is 1− h/2
and its base is b so the area of the triangle is b(1− h/2)/2 so

h = (1− h/2)/2 or 5h/2 = 1/2 or h = 1/5

and

b = 2
√

99/100 = 3
√

11/5.

Looks like I misunderstand!

B–2 Prove that there are only a finite number of possibilities for the ordered triple T = (x− y, y− z, z − x), where x, y, z are
complex numbers satisfying the simultaneous equations

x(x− 1) + 2yz = y(y − 1) + 2zx = z(z − 1) + 2xy,

and list all such triples T .

Solution: Let u = y − x and v = z − y. We have

x(x− 1) + 2yz = x(x− 1) + 2(u+ x)(u+ v + x) = x(x− 1) + 2x2 + (4u+ 2v − 1)x+ 2u(u+ v),

y(y − 1) + 2xz = (u+ x)(u+ x− 1) + 2x(u+ v + x) = x(x− 1) + 2x2 + (4u+ 2v − 1)x+ u(u− 1)

and

z(z−1)+2xy = (u+v+x)(u+v+x−1)+2x(u+x) = x(x−1)+2x2+(4u+2v−1)x+(u+v)(u+v−1).

Setting these three equal gives

2u(u+ v) = u(u− 1) = (u+ v)(u+ v − 1).
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If u+ v 6= 0 we get

2u = u+ v − 1 or v = 1 + u.

This gives

u(u− 1) = u2 − u = (2u+ 1)(2u).

If u 6= 0 then we see

u− 1 = 4u+ 2 or 3u = −3

so u = −1, v = 1 + u = 0 is one solution. If u = 0 then v = 1 and it is easily checked that this is a solution.
Finally there is the case u + v = 0 or v = −u giving u(u − 1) = 0 so u = −v = 0 or u = 1 = −v. In
summary the possible values of

T = (x− y, y − z, z − x) = (−u,−v, u+ v)

are (0,0,0), (-1,1,0), (1,0,-1), and (0,-1,1).

B–3 Let Γ consist of all polynomials in x with integer coefficienst. For f and g in Γ and m a positive integer, let f ≡ g
(mod m) mean that every coefficient of f − g is an integral multiple of m. Let n and p be positive integers with p prime.
Given that f, g, h, r and s are in Γ with rf + sg ≡ 1 (mod p) and fg ≡ h (mod p), prove that there exist F and G in Γ
with F ≡ f (mod p), G ≡ g (mod p), and FG ≡ h (mod pn).

Solution: We will construct F and G in the form

F = f +

n−1∑
1

pjqjs

and

G = g +

n−1∑
1

pjqjr;

for some polynomials q1, . . . , qn−1 with integer coefficients. The hypotheses of the question guarantee that
there are polynomials t and u with integer coefficients such that

rf + sg = 1 + pt

and

fg = h+ pu.

Then

FG = fg +

n−1∑
1

pjqj(rf + sg) + rs

2n−2∑
2

plvl

where vl is the polynomial

vl =

l−1∑
j=1

qjqj−j .

Replace rf + sg and fg on the right hand side of FG to see

FG = h+ p(u+ q1) +

n−1∑
2

pj(qj + tqj−1 + rsvj) + pnw
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where w is a polynomial with integer coefficients. Now define inductively

q1 = −u

and

qj = −tqj−1 − rsvj

for j = 2, . . . , n− 1 to get

FG = h+ pnw

as desired. Notice that vj is defined from q1, . . . , qj−1 so that it may be used in the inductive definition of qj .

B–4 For a positive real number r, let G(r) be the minimum value of |r −
√
m2 + 2n2| for all integers m and n. Prove or

disprove the assertion that limr→∞G(r) exists and equals 0.

Solution: The limit indicated is 0. For a given r let m be defined by m ≤ r < m+ 1 and then define n by

m2 + 2n2 ≤ r2 < m2 + 2(n+ 1)2.

Since √
m2 + 2n2 ≤ r <

√
m2 + 2(n+ 1)2

we see that

G(r) ≤
√
m2 + 2(n+ 1)2 −

√
m2 + 2n2 =

√
m2 + 2n2

(√
1 + (2n+ 1)/(m2 + 2n2)− 1

)
Note that

m ≤
√
m2 + 2n2 < m+ 1

so that

2n2 ≤ 2m+ 1

and 2(n+ 1)2 ≤ 4(n2 + 1) < 4m+ 6 (using the inequality (a+ b)2 ≤ 2(a2 + b2)). It follows that

2n+ 1

m2 + 2n2
≤
√

4m+ 2

m2 + 2n2
≤
√

6m

m2
=

√
6

m3/2
.

Use a Taylor expansion of
√

1 + x to see that there is a constant c such that for all x ≤ 6 we have

√
1 + x− 1 ≤ c

x
.

Then

G(r) ≤ (m+ 1)

√
6c

m3/2

which clearly converges to 0.

B–5 Let f(x, y, z) = x2 + y2 + z2 + xyz. Let p(x, y, z), q(x, y, z), r(x, y, z) be polynomials with real coefficients satisfying

f(p(x, y, z), q(x, y, z), r(x, y, z)) = f(x, y, z).

Prove or disprove the assertion that the sequence p, q, r consists of some permutation of ±x,±y,±z, where the number
of minus signs is 0 or 2.
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Suppose first that p ≡ x and q ≡ y. Then r must satisfy

r2 + xyr = z2 + xyz.

Solving gives

r =
−xy ±

√
x2yy + 4xyz + 4z2

2
=
−xy ±

√
(xy + 2z)2

2
.

This gives two roots: r ≡ z and

r = −z − xy.

Now for the latter case we find

f(p(x, y, z), q(x, y, z), r(x, y, z)) = x2 + y2 + (z + xy)2 − xy(z + xy) = x2 + y2 + z2 + xyz.

So the assertion is false, apparently, and totally surprisingly to me.

B–6 Suppose A,B,C,D are n × n matrices with entries in a field F , satisfying the conditions that ABT and CDT are
symmetric and ADT −BCT = I . Here I is the n× n identity matrix, and if M is an n× n matrix, MT is its transpose.
Prove that ATD − CTB = I .

Solution: Let M be the 2n× 2n matrix with blocks A,B,C,D:

M =

[
A B
C D

]
and N be the 2n× 2n matrix given by

N =

[
DT −BT

−CT AT

]
Then

MN =

[
ADT −BCT BAT −ABT

CDT −DCT DAT − CBT

]
The symmetry conditions show that the two off-diagonal matrices vanish. We are given that the top left corner
is I and the lower right hand corner is the transpose of this so it is also the identity. Thus MN is the 2n× 2n
identity matrix. Hence NM is the identity matrix since left inverses are right inverses. That is[

I 0
0 I

]
= NM =

[
DTA− CTB DTB −BTD
CTA−ATC ATD − CTB

]
This gives the desired conclusion in the lower right corner and the added information that BTD and ATC are
both symmetric.


