The Monte Hall Problem

Richard Lockhart
Simon Fraser University

STAT 870 - Summer 2011

Purposes of Today's Lecture

- Illustrate modelling process.
- Discuss choice of sample or probability space.
- Illustrate ambiguities in real world problems.
- Compare conditional and unconditional modelling assumptions.

The Monte Hall Problem

- Monte Hall hosted a TV game show called "Let's Make a Deal".
- At the end of the show top two winners each got to pick one of three doors, numbered 1, 23.
- One door had big prize. One had small prize. One had "goat".
- This problem is not quite the same - modelled on that one, though.
- Imagine only one player, not two.
- Three doors, one prize, 2 goats.

Monte Hall set-up

- Player picks a door.
- Monte Hall opens some other door to show you it had a goat - this is always possible.
- Monte offers you the chance to switch the door you picked for the one he did not open.
- Should you switch?

Monte Hall sample space

- What is the set of possible outcomes - the sample space?
- Ingredients: Monte hides prize (H), player chooses door (C), Monte opens door (O), player chooses whether or not to switch (S).
- So typical outcome is sequence (H, C, O, S). The notation is
- H is 1,2 or 3 - the door where Monte hides the prize;
- C is the door the player initially picks - again 1,2 or 3 .
- O is door Monte opens; can't be the door where the prize is hidden;
- S is either 1 for switching or 0 for not switching.
- Total of $3 \times 3 \times 2 \times 2=36$ possible outcomes.
- or, for simplicity allowing $O=H, 3 \times 3 \times 3 \times 2=54$ possible outcomes.

Some events, random variables and probabilities

- Have 4 obvious random variables: H, C, O, S.
- Another random variable of interest X which is the number of the door the player ends up with.
- What do we know about probabilities of events or distributions of random variables?
- Assume that player has no knowledge of how the prize is hidden.
- Convert this to H and C are independent.
- Convert this to assumption:

$$
\operatorname{Pr}(H=C)=\frac{1}{3} .
$$

- That is: no matter how player picks the original door s/he cannot improve on picking a door at random.
- See homework for discussion of $P(H=i)=1 / 3$ for $i=1,2,3$.

What is a strategy?

- The player gets to pick
- $p_{j}=P(C=j)$ - the probability that the player chooses door j.
- A strategy: $q_{i j}=P($ Switch $\mid C=i, O=j)$.
- Want to compute
$P(H=X \mid S=1, C=i, O=j)$ and $P(H=X \mid S=0, C=i, O=j)$ and
for given strategy for switching.
- You control S as a function of D and O (and external randomization).

What else do we know?

- We don't know $P(O=k \mid C=j, H=i)$ which is Monte's strategy.
- We do know that if $i \neq j$ (the player has chosen wrongly) then $P(O=k \mid C=j, H=i)=1$ for the k which is not i and not j.
- It really remains to specify $P(O=k \mid C=j, H=j)$. It might be natural for Monte to be making this value $1 / 2$ for the two possible k values. But this is not really clearly specified by the problem.

First Analysis

- Imagine you adopt the strategy $S=1$; that is $P(S=1)=1$. In fact

$$
P(S=1 \mid C, O)=1 \text { for all } C, O
$$

- Then the event $H=X$ is exactly the same event as $H \neq C$ because if the player picked the wrong door then the one you can switch to is the right door.
- So for this strategy $P(H=X)=1-P(H=C)=2 / 3$.
- Similarly if you never switch you win with probability $1 / 3$.
- So you should switch.

Criticism of First Analysis

- The analysis did not answer the question about $P(H=X \mid S=1)$ for a general strategy.
- What if you switch whenever Monte opens the door with the larger number? Could that be good?
- The strategy is

$$
\begin{array}{ll}
P(S=1 \mid C=1, O=3)=1 & P(S=0 \mid C=1, O=2)=0 \\
P(S=1 \mid C=2, O=3)=1 & P(S=0 \mid C=2, O=1)=0 \\
P(S=1 \mid C=3, O=2)=1 & P(S=0 \mid C=3, O=1)=0
\end{array} .
$$

A computation for this strategy

- We try to compute as an example $P(X=H \mid S=1)$.
- Back to basics, keeping track of when Monte has a choice $(H=C)$ and when not:

$$
\begin{aligned}
P(H=X \mid S=1) & =\sum_{i=1}^{3} P(H=i, X=i \mid S=1) \\
& =\sum_{i=1}^{3} P(H=i, X=i, S=1) / P(S=1) \\
& =\{P(H=1, C=2)+P(H=2, C=1)\} / P(S=1)
\end{aligned}
$$

Computation Continued

Event $S=1$ has following pieces:
(1) I switch if $H=1$ and $C=2$ because Monte opens door 3 .
(2) I switch if $H=2$ and $C=1$ because Monte opens door 3 .
(3) I switch if $\mathrm{H}=3, \mathrm{C}=3$ and Monte opens door 2 .
(4) I switch if $H=1, C=1$ and Monte opens door 3 .
(3) I switch if $H=2, C=2$ and Monte opens door 3 .

- Notice several probabilities depend on how I model Monte's behaviour. For instance, what is $P(O=2 \mid H=3, C=3)$?
- In general the story does not specify enough to compute all possible probabilities.

Related Problems

- Many game theory examples.
- Prisoner's dilemma.
- Three cards problem
- tit for tat
- Relation is in incomplete specification of the problem.

Step by Step Probabilities

- Game is sequence in time: $H \rightarrow C \rightarrow O \rightarrow S$
- Decompose joint distribution in same way

$$
\begin{aligned}
& P(H=i, C=J, O=k, S=I)= \\
& P(H=i) P(C=j \mid H=i) P(O=k \mid H=i, C=j) P(S+I \mid H=i, C=j, O
\end{aligned}
$$

- Apply modelling assumptions to pieces.
- $P(C=j \mid H=i)=P(C=j)$ because player has no information about where the prize is hidden.
- $P(S=\| H=i, C=j, O=k)=P(S=\| C=j, O=k)$ for same reason.
- $P(S=\| C=j, O=k)$ is the player's strategy.
- $P(O=k \mid H=i, C=j)$ and $P(H=i)$ are summaries of what the player knows about Monte's strategy.

