STAT 830
 Probability Basics

Richard Lockhart

Simon Fraser University
STAT 830 - Fall 2013

Purposes of These Notes

- Cover the material in Wasserman Chapter 1, 2 pp 1-30; you are responsible for reading.
- This chapter is mostly review.
- Define probability spaces, σ-field.
- Define cdf, pmf, density, etc.
- Discuss coverage in text.

Probability Definitions

pp3-4

- Probability Space (or Sample Space): ordered triple (Ω, \mathcal{F}, P).
- Ingredients are a set Ω, \mathcal{F} which is a family of events (subsets of Ω), and P the probability.
- Required properties on next slide.

Outcomes, Events, Probabilities

- Ω is a set (possible outcomes); elements are ω called elementary outcomes.
- \mathcal{F} is a family of subsets (events) of Ω with the property that \mathcal{F} is a σ-field (or Borel field or σ-algebra):
(1) The empty set \emptyset and Ω are members of \mathcal{F}.
(2) $A \in \mathcal{F}$ implies $A^{c}=\{\omega \in \Omega: \omega \notin A\} \in \mathcal{F}$
(3) A_{1}, A_{2}, \cdots all in \mathcal{F} implies $A=\cup_{i=1}^{\infty} A_{i}$.
- P a function, domain \mathcal{F}, range a subset of $[0,1]$ satisfying:
(1) $P(\emptyset)=0$ and $P(\Omega)=1$.
(2) Countable additivity: A_{1}, A_{2}, \cdots pairwise disjoint ($j \neq k$ $\left.A_{j} \cap A_{k}=\emptyset\right)$

$$
P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Consequences of axioms

- Can compute probabilities by usual rules, including approximation.
- Closure under countable intersections:

$$
A_{i} \in \mathcal{F} \text { implies } \cap_{i} A_{i} \in \mathcal{F}
$$

- "Continuity" of P :

$$
A_{1} \subset A_{2} \subset \cdots \text { all in } \mathcal{F} \text { implies } P\left(\cup A_{i}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)
$$

and

$$
A_{1} \supset A_{2} \supset \cdots \text { all in } \mathcal{F} \text { implies } P\left(\cap A_{i}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)
$$

Vector valued random variable

$$
\text { pp } 19-22(p=1)
$$

- A random vector is a function $X: \Omega \mapsto R^{p}$ such that, writing $X=\left(X_{1}, \ldots, X_{p}\right)$,

$$
P\left(X_{1} \leq x_{1}, \ldots, X_{p} \leq x_{p}\right)
$$

is defined for any constants $\left(x_{1}, \ldots, x_{p}\right)$.

- Formally the notation

$$
X_{1} \leq x_{1}, \ldots, X_{p} \leq x_{p}
$$

is a subset of Ω or event:

$$
\left\{\omega \in \Omega: X_{1}(\omega) \leq x_{1}, \ldots, X_{p}(\omega) \leq x_{p}\right\}
$$

- Remember X is a function on Ω so X_{1} is also a function on Ω.
- Dependence of rv on ω is hidden! Almost always see X not $X(\omega)$.

Borel sets

Not in Text; cf pp13,43

- Borel σ-field in R^{p} : smallest σ-field in R^{p} containing every open ball.
- Intersection of all σ fields containing all open balls.
- Every common set is a Borel set, that is, in the Borel σ-field.
- An R^{p} valued random variable is a map $X: \Omega \mapsto R^{p}$ such that when A is Borel then $\{\omega \in \Omega: X(\omega) \in A\} \in \mathcal{F}$.
- Fact: this is equivalent to

$$
\left\{\omega \in \Omega: X_{1}(\omega) \leq x_{1}, \ldots, X_{p}(\omega) \leq x_{p}\right\} \in \mathcal{F}
$$

for all $\left(x_{1}, \ldots, x_{p}\right) \in R^{p}$.

- Jargon and notation: we write $P(X \in A)$ for $P(\{\omega \in \Omega: X(\omega) \in A\})$
- We define the distribution of X to be the map

$$
A \mapsto P(X \in A)
$$

- This is a probability on the set R^{p} with the Borel σ-field rather than the original Ω and \mathcal{F}.
- Talk about normal, Gamma, Weibull, Binomial, etc distributions.
- This is why we rarely see ω.

Cumulative Distribution Functions
 pp20-22 $p=1$

- The Cumulative Distribution Function (CDF) of X : function F_{X} on R^{p} defined by

$$
F_{X}\left(x_{1}, \ldots, x_{p}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{p} \leq x_{p}\right)
$$

- Properties of F_{X} (usually just F) for $p=1$:
(1) $0 \leq F(x) \leq 1$.
(2) $x>y \Rightarrow F(x) \geq F(y)$ (monotone non-decreasing).
(3) $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$
(9) $\lim _{x \searrow y} F(x)=F(y)$ (right continuous).
(5) $\lim _{x} \nearrow_{y} F(x) \equiv F(y-)$ exists.
(0) $F(x)-F(x-)=P(X=x)$.
(3) $F_{X}(t)=F_{Y}(t)$ for all t implies that X and Y have the same distribution, that is, $P(X \in A)=P(Y \in A)$ for any (Borel) set A.

Discrete Distributions
 pp 20-25

- Distribution of a random variable X is discrete (also call rv discrete) if there is a countable set x_{1}, x_{2}, \cdots such that

$$
P\left(X \in\left\{x_{1}, x_{2} \cdots\right\}\right)=1=\sum_{i} P\left(X=x_{i}\right)
$$

- Then discrete density or probability mass function of X is

$$
f_{X}(x)=P(X=x)
$$

- $\sum_{x} f(x)=1$.

Absolutely Continuous Distributions pp 20-25

- $\operatorname{Rv} X$ is absolutely continuous if there is a function f such that for any (Borel) set A :

$$
\begin{equation*}
P(X \in A)=\int_{A} f(x) d x \tag{1}
\end{equation*}
$$

- This is a p dimensional integral in general. Equivalently (for $p=1$)

$$
F(x)=\int_{-\infty}^{x} f(y) d y
$$

- Any function f satisfying (1) is a density of X.
- Unique (up to null sets).
- For almost all values of $x F$ is differentiable at x and

$$
F^{\prime}(x)=f(x)
$$

- Text calls these continuous distributions.

Example distributions

see pp26-30,39-40

- X is Uniform $[0,1]$ means

$$
\begin{gathered}
F(x)= \begin{cases}0 & x \leq 0 \\
x & 0<x<1 \\
1 & x \geq 1\end{cases} \\
f(x)= \begin{cases}1 & 0<x<1 \\
\text { undefined } & x \in\{0,1\} \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

- X is exponential:

$$
\begin{aligned}
& F(x)= \begin{cases}1-e^{-x} & x>0 \\
0 & x \leq 0\end{cases} \\
& f(x)= \begin{cases}e^{-x} & x>0 \\
\text { undefined } & x=0 \\
0 & x<0\end{cases}
\end{aligned}
$$

