
STAT 830

Probability Theory

In this section I want to define the basic objects. I am going to give full
precise definitions and make lists of various properties – even prove some
things rigorously – but then I am going to give examples. In different ver-
sions of this course I require more or less understanding of the objects being
studied.

Definition: A Probability Space (or Sample Space) is an ordered triple
(Ω,F , P ) with the following properties:

• Ω is a set (it is the set of all possible outcomes of some experiment);
elements of Ω are denoted by the letter ω. They are called elementary
outcomes.

• F is a family of subsets (we call these subsets events) of Ω with the
property that F is a σ-field (or Borel field or σ-algebra) – that is F
has the following closure properties:

1. The empty set denoted ∅ and Ω are members of F .

2. A ∈ F implies Ac = {ω ∈ Ω : ω 6∈ A} ∈ F .

3. A1, A2, · · · in F implies A = ∪∞i=1Ai ∈ F .

• P is a function whose domain is F and whose range is a subset of [0, 1].
The function P must satisfy:

1. P (∅) = 0 and P (Ω) = 1.

2. Countable additivity: A1, A2, · · · pairwise disjoint (j 6= k
Aj ∩ Ak = ∅)

P (∪∞i=1Ai) =
∞∑
i=1

P (Ai)

These axioms guarantee that we can compute probabilities by the usual
rules, including approximation. Here are some consequences of the axioms:

Ai ∈ F ; i = 1, 2, · · · implies ∩i Ai ∈ F
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A1 ⊆ A2 ⊆ · · · implies P (∪Ai) = lim
n→∞

P (An)

A1 ⊃ A2 ⊃ · · · implies P (∩Ai) = lim
n→∞

P (An)

The last two of these three assertions are sometimes described by saying
that P is continuous. I don’t like this jargon because it does not agree very
well with the standard meaning of a continuous function. There is (in what
I have presented so far) no well defined topology or metric or other way to
make precise the notion of a sequence of sets converging to a limit.

0.0.1 Examples

It seems wise to list a few examples of these triples which arise in various
more or less sophisticated probability problems.

Example 1: Three Cards Problem

I imagine I have three cards – stiff pieces of paper. One card is green on
both sides. One is red on both sides. The third card is green on one side
and red on the other. I shuffle up the three cards in some container and
pick one out, sliding it out of its container and onto the table in such a way
that you can see only the colour on the side of the card which is up on the
table. Later, when I talk about conditional probability, I will be interested
in probabilities connected with the side which is face down on the table but
here I just want to list the elements of Ω and describe F and P .

I want you to imagine that the sides of the card are labelled (in your
mind, not visibly on the cards) in such a way that you can see that there
are six sides of the card which could end up being the one which is showing.
One card, the RR card has red on both sides and ω1 = RR1 means the first
of these two sides is showing which ω2 = RR2 denotes the outcome that the
second of these two sides is showing. I use ω3 = RG1 to denote the outcome
where the Red / Green card is selected and the red side is up and ω4 = RG2
to denote the outcome where the same card is drawn but the green side is
up. The remaining two elementary outcomes are ω5 = GG1 and ω6 = GG2
in what I hope is quite obvious notation.

So now Ω = {ω1, ω2, ω3, ω4, ω5, ω6} is the sample space with six elements.
There are many other possible notations for the elements of this sample space
of course. I now turn to describing F and P .
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In problems where Ω is finite or countably infinite we almost always take
F to be the family of all possible subsets of Ω. So in this case F is the
collection of all subsets of Ω. To make a subset of Ω we must decide for each
of the six elements of Ω whether or not to put that element in the set. This
makes 2 possible choices for ω1, then for each of these 2 choices for ω2 and so
on. So there are 26 = 64 subsets of Ω; all 64 are in F . In order to be definite
I will try to list the pattern:

F = {∅, {ω1}, . . . , {ω6}, {ω1, ω2}, {ω1, ω3}, . . . , {ω5, ω6}, . . . ,Ω}

My list includes 1 set with 0 elements, 6 sets with 1 element, 6 choose 2 sets
with 2 elements (total of 15), 6 choose 3 with 3 elements (20 such), 6 choose
4 (=15) with 4 elements, 6 with 5 elements and Ω.

Finally I am supposed to describe P . The usual way, when Ω is finite, to
assign probabilities is to give some probability, say pi to the ith elementary
outcome ωi. In our case it is reasonable to assume that all 6 sides of the
cards have the same chance of ending up visible so all

pi = P ({ωi}) =
1

6
.

Then the probability of any subset of Ω is found by adding up the probabil-
ities of the elementary outcomes in that set. So, for instance

P ({ω1, ω3, ω4}) =
3

6
=

1

2
.

The event “the side showing is red” is a subset of Ω, namely,

{ω1, ω2, ω3}.

The event “the side face down is red” is also subset of Ω, namely,

{ω1, ω2, ω4}.

The event “the side face down is green” is

{ω3, ω5, ω6}.

Example 2: Coin Tossing till First Head Problem
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Now imagine tossing a coin until you get “heads” which I denote H. To
simplify the problem I will assume that you quit tossing either when you get
H OR when you have tossed the coin three times without getting H. Letting
T denote tails the elements of Ω are, in obvious notation:

{ω1, ω2, ω3, ω4} ≡ {H,TH, TTH, TTT}

Again F is the collection of all 24 = 16 subsets of Ω and we specify P by
assigning probabilities to elementary outcomes. The most natural probabili-
ties to assign are p1 = 1/2, p2 = 1/4 and p3 = p4 = 1/8. I will return to this
assumption when I discuss independence.

Example 3: Coin Tossing till First Head Problem, infinite case

Now imagine tossing the coin until you get “heads” no matter how many
tosses are required. Let ωk be a string of k tails T followed by H. Then

Ω = {ω0, ω1, ω2, · · · }

which has infinitely many elements. Again F is the collection of all subsets
of Ω; the number of such subsets is uncountably infinite so I won’t make
a list! We specify P by assigning probabilities to elementary outcomes. In
order to add a bit to the example I will consider a biased coin. The most
natural probabilities to assign are then

pi = P ({ωi}) = p(1− p)i.

This list of numbers adds up to 1, as it must, to ensure P (Ω) = 1; you should
recognize the sum of a geometric series.

Example 4: Coin Tossing forever

In order to discuss such things as the law of large numbers and many
other probability problems it is useful to imagine the conceptual experiment
of tossing the coin forever. In this case a single “elementary outcome”, ω is
actually an infinite sequence of Hs and Ts. One ω might be

HTHTHTHTHTHTHT · · ·

where the heads and tails alternate for ever. It would be typical to say

Ω = {ω = (ω1, ω2, . . .); such that each ωi ∈ {H,T}}.
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You can think about how many elements there are in Ω by taking a typical
ω and replacing each H with a 1, then each T with a 0. Then put “0.” in
front and think of the result as a binary number between 0 and 1. So for
instance the sequence above of alternating 0s and 1s is

ω = 0.1010101010 · · · = 1

2

(
1 +

1

4
+

(
1

4

)2

+ · · ·

)

which is just 2/3 by summing a geometric series.
The summary is that there are as many elements in Ω as there are numbers

between 0 and 1 – an uncountably infinite number. It turns out that this
is the situation where we just can’t cope, logically, with having F be the
collection of all subsets of Ω. If you want to know which subsets go into F
you need to find out about Borel sets.

In fact we take F to be “the smallest σ-field” which contains all sets of
the form

Bi ≡ {ω ∈ Ω : ωi = H}

which is the subset of Ω obtained by keeping only outcomes whose ith toss
is H. There is a bit of mathematical effort to prove the existence of any such
“smallest” σ-field; it is the intersection of all σ-fields which contain the given
special sets. Much greater effort is needed to understand the structure of this
σ-field but I want to emphasize that if you can give a truly clear and explicit
description of a subset of Ω that subset will be a Borel set – a member of F .

Finally we have to say something about how to compute probabilities.
Let’s start with an intuitive presentation using the idea that we might be
talking about independent tosses of a fair coin; I will define independence
precisely later but for now I just want you to use what you already know
about independent events. Let

C = B1 ∩Bc
2 ∩B3 ∩Bc

4 ∩B5 ∩Bc
6 · · · .

The only point in C is the sequence of alternating heads and tails I wrote
down up above. So what is the probability of C. Certainly

P (C) ≥ P (B1 ∩Bc
2 ∩B3 ∩Bc

4 ∩B5 ∩Bc
6 · · ·Bc

2n)

for any n. For independent tosses of a fair coin we compute the probability
of this intersection by just multiplying 1/2 by itself 2n times to get 2−n. But
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if P (C) ≤ 2−n for all n then P (C) = 0. In the same way we can check that
P ({ω}) = 0 for every elementary outcome ω!

This just means we cannot compute probabilities of an event by adding
up probabilities of elementary outcomes in the event – that always gives 0.
Instead we use the idea of independence and the assumption that the various
Bi are independent and have probability 1/2 to compute any probability we
want; sometimes this is hard.

0.1 Random Variables

:

Definition: A Vector valued random variable is a function function
X : Ω 7→ Rp such that, writing X = (X1, . . . , Xp),

P (X1 ≤ x1, . . . , Xp ≤ xp)

is defined for any constants (x1, . . . , xp). Formally the notation

X1 ≤ x1, . . . , Xp ≤ xp

describes a subset of Ω or event:

{ω ∈ Ω : X1(ω) ≤ x1, . . . , Xp(ω) ≤ xp} .

Remember X is a function on Ω so X1 is also a function on Ω; that is why
we can stick in the argument ω of the function.

ASIDE: In almost all of probability and statistics the dependence of a
random variable on a point in the probability space is hidden! You almost
always see X not X(ω).

There is a subtle mathematical point being made here. Not every function
from Ω to Rp is a random variable or random vector. The problem is that
the set

{ω ∈ Ω : X1(ω) ≤ x1, . . . , Xp(ω) ≤ xp}

might not be in F ! For our fourth example this is a potential mathematical
(but not practical) problem.
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0.1.1 Borel sets

In this subsection I give a small presentation of the notion of Borel sets in
Rp. The material is not really part of this course.

Definition: The Borel σ-field in Rp is the smallest σ-field in Rp containing
every open ball.

Definition: For clarity the open ball of radius r > 0 centred at x ∈ Rp is

{y ∈ Rp : ||y − x|| < r}

where

||u|| =

√√√√ p∑
1

u2i

for a vector u ∈ Rp. The quantity ||u|| is called the Euclidean norm of u; it
is also the usual notion of length of a vector.

Every common set is a Borel set, that is, in the Borel σ-field.

Definition: An Rp valued random variable is a map X : Ω 7→ Rp such
that when A is Borel then {ω ∈ Ω : X(ω) ∈ A} ∈ F . This is equivalent to

{ω ∈ Ω : X1(ω) ≤ x1, . . . , Xp(ω) ≤ xp} ∈ F

for all (x1, . . . , xp) ∈ Rp.
Jargon and notation: we write P (X ∈ A) for P ({ω ∈ Ω : X(ω) ∈ A})
and define the distribution of X to be the map

A 7→ P (X ∈ A)

which is a probability on the set Rp with the Borel σ-field rather than the
original Ω and F . We also write

X−1(A) = {ω ∈ Ω : X(ω) ∈ A}

and call this set the inverse image of A under X. So the distribution of X is

PX(A) = P (X−1(A))

which is defined for all Borel sets A ∈ Rp.
Remark: The definition of a random variable depends only on the functions
and the σ-fields involved and NOT on the probability P .
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Definition: The Cumulative Distribution Function (cdf) of X is the
function FX on Rp defined by

FX(x1, . . . , xp) = P (X1 ≤ x1, . . . , Xp ≤ xp) .

I will not always use the subscript X to indicate which random vector is
being discussed. When there is no real possibility of confusion I will just
write F .

Here are some properties of F for p = 1:

1. 0 ≤ F (x) ≤ 1.

2. x > y ⇒ F (x) ≥ F (y) (monotone non-decreasing).

3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

4. limx↘y F (x) = F (y) (right continuous).

5. limx↗y F (x) ≡ F (y−) exists.

6. F (x)− F (x−) = P (X = x).

7. FX(t) = FY (t) for all t implies thatX and Y have the same distribution,
that is, P (X ∈ A) = P (Y ∈ A) for any (Borel) set A.

Proof: The values of F are probabilities so they are between 0 and 1. If F
is the cdf of X and y < x then

{X ≤ y} ⊆ {X ≤ x}

so
F (y) = P (X ≤ y) ≤ P (X ≤ x) = F (x).

Since F is monotone the assertions about limits may be checked by consider-
ing a sequence xn. For instance, to prove the first half of the third assertion
we take xn to be any sequence decreasing to −∞ – such as xn = −n, say. If

An = {X ≤ xn}

then
A1 ⊇ A2 ⊇ · · ·
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and
∩∞n=1An = ∅

so by the “continuity” of P

0 = P (∅) = lim
n→∞

P (An) = lim
n→∞

F (xn).

The argument at ∞ uses unions in place of intersections and a sequence xn
increasing to ∞.

Assertion 4 considers a sequence xn decreasing to y and then with the Ai

as above we find
∩∞n=1An = {X ≤ y}

so that right continuity of F comes from the continuity of P . Assertion 5
does the parallel thing with unions and shows F (y−) = P (X < y).

Assertion 6 comes from the fact that

{X < x} ∪ {X = x} = {X ≤ x}.

The union is disjoint so

F (y−) + P (X = x) = F (y).

The final point, property 7, is much more sophisticated – much harder
to prove. If you want to read about it you can look at the appendix on
Monotone Class arguments if I ever get it done. •

For p = 1 any function F with properties 1, 2, 3 and 4 is the cumulative
distribution function of some random variable X. For p > 1 the situation is
a bit more complicated. Consider the case p = 2 and two points (u1, u2) and
(v1, v2). If v1 ≥ u1 and v2 ≥ u2 then the event X1 ≤ u1, X2 ≤ u2 is a subset
of the event X1 ≤ v1, X2 ≤ v2. This means that

F (u1, u2) = P (X1 ≤ u1, X2 ≤ u2) ≤ P (X1 ≤ v1, X2 ≤ v2) = F (v1, v2).

In this sense F is monotone non-decreasing. But even if F is continuous,
monotone non-decreasing and satisfies properties 1 and 3 above we cannot
be sure it is a cdf. Think about the rectangle

R ≡ {(x1, x2) : u1 < x1 ≤ v1, u2 < x2 ≤ v2}
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The probability that X lands in this rectangle must be at least 0 but in terms
of F you should be able to check that

P (X ∈ R) = P (u1 < X1 ≤ v1, u2 < X2 ≤ v2)

= F (v1, v2)− F (u1, v2)− F (v1, u2) + F (u1, u2).

So this combination of values of F at the four corners of the rectangle must
be non-negative. For a thorough discussion of the properties of multivariate
cumulative distributions see some reference which I must add.

0.2 Discrete versus Continuous Distributions

Definition: The distribution of a random variable X is called discrete (we
also say X is discrete) if there is a countable set x1, x2, · · · such that

P (X ∈ {x1, x2 · · · }) = 1 =
∑
i

P (X = xi) .

In this case the discrete density or probability mass function of X is

fX(x) = P (X = x) .

Definition: The distribution of a random variable X is called absolutely
continuous (again we also say X is absolutely continuous) if there is a
function f such that

P (X ∈ A) =

∫
A

f(x)dx (1)

for any (Borel) set A. This is a p dimensional integral in general. Equivalently

F (x) =

∫ x

−∞
f(y) dy .

Definition: Any f satisfying (1) is a density of X.
There are a few important warnings and observations here:

• Many statisticians use the word continuous instead of the phrase ab-
solutely continuous for this property.
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• Others use the word continuous to mean only that F is a continuous
function.

• If X is absolutely continuous then for most (almost all) x the function
F is differentiable at x and

F ′(x) = f(x) .

• Absolute continuity is the property which is needed for a function to
be equal to the integral of its derivative. If the function is continuously
differentiable, for instance, then it is continuous. If F is continuously
differentiable except at a finite number of points where it is continuous
then F is absolutely continuous.

Example: The Uniform[0,1] distribution. We say that X is Uniform[0,1] if

F (x) =


0 x ≤ 0
x 0 < x < 1
1 x ≥ 1 .

which is equivalent to

f(x) =


1 0 < x < 1
undefined x ∈ {0, 1}
0 otherwise .

Example: The standard exponential distribution. We say that X is expo-
nential with mean 1 (sometimes written Exp(1)) if

F (x) =

{
1− e−x x > 0
0 x ≤ 0 .

or equivalently

f(x) =


e−x x > 0
undefined x = 0
0 x < 0 .

Remark: I am not going to create notes on all the well known distributions. I
expect you will know something about all the famous distributions (including
the uniform and exponential distributions I just mentioned).
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